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SCHWARZ METHODS FOR A PRECONDITIONED WOPSIP
METHOD FOR ELLIPTIC PROBLEMS

PAOLA F. ANTONIETTI, BLANCA AYUSO DE DIOS, SUSANNE C. BRENNER,
AND LI-YENG SUNG

Abstract. We construct and analyze non-overlapping Schwarz methods for
a preconditioned weakly over-penalized symmetric interior penalty (WOPSIP)
method for elliptic problems.

Contents

1. Introduction 1
2. Problem setting and WOPSIP discretization 2
2.1. An efficient preconditioner for the WOPSIP method 4

2.2. Construction of B
−1/2
h 5

3. Schwarz methods for the preconditioned WOPSIP discretization 8
3.1. Schwarz operators 16
3.2. Computational issues 17
4. Convergence analysis 18
4.1. Local stability 19
4.2. Stable decomposition 20
5. Numerical results 25
5.1. Exact local solvers 25
5.2. Inexact local solvers 28
5.3. Variable penalty parameter 31
Acknowledgments 32
Appendix A. Appendix 32
References 35

1. Introduction

The weakly over-penalized symmetric interior penalty (WOPSIP) method was
introduced in [10] (and extended to higher order elements in [11]) for the Poisson
problem: find u ∈ H2(Ω) ∩H1

0 (Ω) such that

(1)
−∆u = f in Ω ,

u = 0 in ∂Ω ,
1
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2 P. F. ANTONIETTI, B. AYUSO DE DIOS, S. C. BRENNER, AND L.-Y SUNG

were Ω ⊂ R2 is a polygonal domain and f a given source term in L2(Ω). The
WOPSIP method is stable for any positive penalty parameter and satisfies quasi-
optimal error estimates in both the energy and the L2 norms. Moreover, its
simplicity renders the method particularly suitable for parallel computations (cf.
[8]). However, due to the over-penalization, the condition number of the stiffness
matrix is of order O(h−4), h being the mesh-size. A simple block preconditioner
was proposed in [10] that reduces the condition number of the preconditioned
system to O(h−2). A nice feature of the preconditioner is that by construction it is
well suited for parallel computations since it retains the intrinsic parallelism of the
WOPSIP method. The goal of this paper is to further improve the performance
of the preconditioned WOPSIP method and to develop additive Schwarz methods
for the resulting preconditioned WOPSIP approximation, without destroying the
parallel properties of the final linear algebraic system. We note that overlapping
additive Schwarz preconditioners for the unpreconditioned WOPSIP method was
investigated in [6], where the condition number of the subdomain problems remain
O(h−4).

An outline of the paper is as follows. In the next section, we recall the precon-
ditioned WOPSIP discretization for the Poisson problem. Then, we introduce
the Schwarz methods for the preconditioned WOPSIP discretization and discuss
some computational issues. The convergence analysis is carried out in Section 4
and validated through numerical experiments in Section 5. Finally, the proof of
some technical results needed in our theoretical analysis is shown in the Appen-
dix.

Throughout the paper, we shall use standard notation for Sobolev spaces
(cf. [1]), and x . y will mean that there exists a generic constant C > 0
(that may not be the same at different occurrences but is always mesh indepen-
dent) so that x ≤ C y. Analogously, x ≈ y will mean that C−1 y ≤ x ≤ C y, for
a constant C > 0.

2. Problem setting and WOPSIP discretization

In this section, we introduce some notation, recall the WOPSIP approximation
and present some of the properties of the formulation.

Let {Th}h>0 be a family of quasi-uniform triangulations of Ω. The mesh size
is defined by h := maxT∈Th

diam T . We denote by Vh the first order DG finite
element space associated to Th, defined by

Vh := {v ∈ L2(Ω) : v|T ∈ P1(T ) ∀ T ∈ Th} ,
where P1(T ) is the space of linear polynomials in T . The set of all the edges in
Th is denoted by Eh; the set of internal edges by E◦

h and the set of boundary edges
by E∂

h , so that Eh := E◦
h ∪ E∂

h . For any e ∈ Eh, he will denote the length of the
edge e.
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SCHWARZ METHODS FOR A PRECONDITIONED WOPSIP 3

We use standard notation for trace operators [4] to define the jumps [[v]], [[τ ]] and
averages {{v}}, {{τ}} of (sufficiently regular) scalar and vector–valued functions v
and τ . For each interior edge e ∈ E◦

h such that e = ∂T+ ∩ ∂T− we define

[[v]] := v+
e n

+
e + v−e n

−
e , [[τ ]] := τ

+
e · n+

e + τ
−
e · n−

e ,

{{v}} := (v+
e + v−e )/2, {{τ}} := (τ+

e + τ
−
e )/2,

where v+
e (respectively v−e ) denotes the trace of v on e taken within the interior of

T+ (respectively T−), and n
+
e (respectively n

−
e ) is the unit normal of e pointing

towards the outside of T+ (respectively T−). For e ∈ E∂
h , we define

{{τ}} := τ e, [[v]] := ve n.

We do not need either [[τ ]] or {{v}} on boundary edges, and we leave them unde-
fined.

The WOPSIP approximation to the solution of (1) reads: Find uh ∈ Vh such
that

(2) Ah(uh, v) =

∫

Ω

fv dx ∀ v ∈ Vh,

where Ah(·, ·) : Vh × Vh −→ R is the bilinear form defined by [10, 8]:
(3)

Ah(w, v) :=
∑

T∈Th

∫

T

∇w · ∇v dx+
∑

e∈Eh

α

h3
e

∫

e

Π0
e([[w]]) · Π0

e([[v]]) ds ∀w, v ∈ Vh ,

Here, α denotes the penalty parameter which we assume to be ≥ 1 and Π0
e :

L2(e) −→ P0(e) is the L2-orthogonal projection onto the space P0(e) of constant
functions on e:

(4) Π0
e(v) :=

1

he

∫

e

v ds = v(me) ∀ e ∈ Eh ∀v ∈ Vh ,

where in the last step we have used the mid-point rule for integration and me

is the midpoint of the edge e ∈ Eh. For vector valued functions Π0
e(·) is defined

componentwise.
By considering the energy norm:

‖v‖2
h :=

∑

T∈Th

‖∇v‖2
0,T +

∑

e∈Eh

1

h3
e

‖Π0
e([[v]])‖2

0,e ∀ v ∈ Vh ,

(observe that ‖v‖2
h = Ah(v, v) for α = 1), it can be shown that the bilinear form

defining the WOPSIP method is coercive and continuous in Vh:

Ah(v, v) ≥ ‖v‖2
h ∀v ∈ Vh,

Ah(v, w) . ‖v‖h‖w‖h ∀v, w ∈ Vh .

Also, optimal rates of convergence in the ‖ · ‖h and L2-norms can be proved for
the WOPSIP approximation to problem (1) (i.e., the solution of (2)). For details
see [9, 10].
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4 P. F. ANTONIETTI, B. AYUSO DE DIOS, S. C. BRENNER, AND L.-Y SUNG

2.1. An efficient preconditioner for the WOPSIP method. We recall that,
given a basis of Vh, any function v ∈ Vh is uniquely determined by a set of degrees
of freedom (dofs). If Ah is the stiffness matrix associated with the bilinear form
Ah(·, ·) and the given basis, problem (2) can be rewritten as the linear system of
equations

Ahu = f,

with Ah symmetric and positive definite. Due to the over-penalization of the
method, it can be easily seen that the condition number of Ah is of order κ(Ah) =
O(h−4). To effectively compute the approximation with the WOPSIP method,
the bilinear form

Bh(w, v) :=
∑

T∈Th

∑

e⊂∂T

wT (me)vT (me)+
∑

e∈Eh

α

h3
e

∫

e

Π0
e([[w]]) · Π0

e([[v]]) ds ∀w, v ∈ Vh,

was introduced in [10], where wT := w|T for all T ∈ Th. Denoting by Bh the
matrix associated to the above bilinear form and the given basis, the authors
proved in [10] that

(5) vT Bhv . vT Ahv . h−2vT Bhv ∀v ∈ Rn ,

where n := dim(Vh). From (5), it immediately follows that

κ(B−1
h Ah) = O(h−2).

The issue of the efficiency of the preconditioner Bh was further explored in [8],
where the authors showed that if a suitable ordering of the dofs is employed the
resulting matrix Bh (and so its action) turns out to be block diagonal with 1× 1
and 2 × 2 blocks and therefore can be computed in parallel.

The aim of this paper is to design a Schwarz method for the efficient solution
of the linear system

B−1
h Ahu = B−1

h f .

Note that, although Ah is a symmetric and positive definite (s.p.d.) matrix,
B−1

h Ah is no longer symmetric in general. Hence, to avoid the non-symmetry and
the resulting difficulties, we consider the equivalent linear system of equations

(6) Dhy = B
−1/2
h f,

where y := B
−1/2
h u and

Dh := B
−1/2
h AhB

−1/2
h ,

which is well-defined since Bh is s.p.d. and so it admits a unique s.p.d. square

root B
1/2
h . From now on, we focus on the construction of Schwarz preconditioners

for s.p.d. system of equations (6). Clearly, it still holds that

κ(B
−1/2
h AhB

−1/2
h ) = O(h−2),

since we can take v = B
−1/2
h w in (5) for any w ∈ Rn .
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Figure 1. Sample of elementwise (left) and edgewise (right) or-
dering of the degrees of freedom.

So far, we have not said anything about the selection of the basis or the location
of the dofs of Vh. In [8], it was shown that the use of the Crouziex-Raviart basis
for P1(T ) on each T ∈ Th and the choice of the dofs at the midpoints of the edges
in each T has some advantages. More precisely, the authors showed that by using
an edgewise ordering of dofs (that is, the dofs associated to the midpoints of an
interior edge are always consecutive, cf. Figure 1 for an example), the matrix
Bh, and consequently B−1

h , turn out to be block diagonal with 1 × 1 and 2 × 2
blocks, and therefore the preconditioned WOPSIP method has an intrinsic highly
parallel structure. In the next section we show that by using the same special

ordering, also the action of B
−1/2
h retains the same highly parallel structure and

can be efficiently computed. Moreover, we shall also show that this ordering
facilitates our analysis of the Schwarz methods for the preconditioned WOPSIP
discretization. Hence, throughout the rest of the paper it is assumed that the
edgewise ordering is employed (see Section 3.2 for details on the implementation).

2.2. Construction of B
−1/2
h . As shown in [8], by ordering the dofs in an edge-

wise manner (cf. Figure 1 (right)) the matrix representing Bh is block diagonal,
with either 2× 2 blocks (corresponding to an interior edge) or 1× 1 blocks (cor-
responding to a boundary edge). Denoting by Be

h the block of the matrix Bh

corresponding to the dofs associated to the edge e ∈ Eh, we have

Be
h =






1

θe

[
1 + θe −1

−1 1 + θe

]
if e ∈ E◦

h,

1

θe

[
1 + θe

]
if e ∈ E∂

h ,
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6 P. F. ANTONIETTI, B. AYUSO DE DIOS, S. C. BRENNER, AND L.-Y SUNG

where θe = h2
e/α for all edges e ∈ Eh. Observe that for any e ∈ E◦

h, since Be
h is

s.p.d. it can be diagonalized as follows:

Be
h =

1

2
QΛQT =

1

2

[
1 1
1 −1

]
·
[

1 0
0 2+θe

θe

]
·
[

1 1
1 −1

]
.

And so, we obtain an explicit expression for (Be
h)

−1/2,

(Be
h)

−1/2 =
1

2
QΛ−1/2QT =

1

2

[
1 1
1 −1

]
·
[

1 0

0
√

θe

2+θe

]
·
[

1 1
1 −1

]

=
1

2

[
1 + βe 1 − βe

1 − βe 1 + βe

]
,

(7)

where we have set

βe :=

√
θe

2 + θe

∀e ∈ E◦
h.

For e ∈ E∂
h , we simply have

(Be
h)

−1/2 =
[
β∂

e

]
, β∂

e :=

√
θe

1 + θe
∀e ∈ E∂

h .

We define β := {βe}e∈E◦

h
∪ {β∂

e }e∈E∂
h

with

(8) β|e :=





βe :=

√
θe

2 + θe
if e ∈ E◦

h,

β∂
e :=

√
θe

1 + θe

if e ∈ E∂
h ,

θe :=
h2

e

α
∀e ∈ Eh .

Observe now that

(9) (β|e)2 α

h3
e

=






α

he

(
1

α + h2
e

)
≤ 1

he
if e ∈ E◦

h,

α

he

(
1

2α + h2
e

)
≤ 1

2he
if e ∈ E∂

h ,

since 2α+h2
e ≥ α+h2

e > α. Furthermore, rewriting (8) as β2
e = (θe/k)

1+ θe
k

, with k = 1

(resp. 2) if e is a boundary (resp. an interior) edge, and assuming that θe/k ≪ 1,
we have

β2
e =

θe

k

∞∑

i=0

(
−θe

k

)i

=
θe

k

(
1 +O

(
θe

k

))
,

and therefore, by using θe = h2
e/α, we obtain

βe ≈
he√
α

(1 +O(he/
√
α)),
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SCHWARZ METHODS FOR A PRECONDITIONED WOPSIP 7

and hence, by the quasi-uniformity of the mesh,

(10) β ≈ h√
α

(1 +O(h)).

Having found an explicit expression for each block (Be
h)

−1/2, we look at its
action on the vector of degrees of freedom associated to an edge e ∈ Eh. Let
e ∈ E◦

h be an arbitrary edge shared by the elements T+ and T−, e = T+ ∩ T−,
and let ue := [u+, u−]T denote the nodal values of the trace u|e of u at the
midpoint of the edge e. It follows from (7) that

(Be
h)

−1/2ue =

[
{{u}} + βe

n
+
e

2
· [[u]]

{{u}} − βe
n

+
e

2
· [[u]]

]
.

If e ∈ E∂
h is a boundary edge, we have

(Be
h)

−1/2ue =
[ √

θe

1+θe

]
ue = β∂

e ue.

Next, we define the discrete operator Bh : Vh −→ V ′
h associated with the

bilinear form Bh(·, ·):
< Bhw, v >:= Bh(w, v) ∀w, v ∈ Vh,

where < ·, · > is the canonical bilinear form. Since the bilinear form Bh(·, ·) is

symmetric and coercive, we can define the operator B
−1/2
h : Vh −→ Vh. According

to the previous discussion, for any u ∈ Vh, B
−1/2
h u is given by

(B
−1/2
h u)|e =






{{u}} + βe
n

+
e

2
· [[u]] on T+ ∩ e

{{u}} − βe
n

+
e

2
· [[u]] on T− ∩ e

∀ e ∈ E◦
h ,(11)

(B
−1/2
h u)|e = β∂

e u|e ∀ e ∈ E∂
h .(12)

Finally, we introduce the bilinear form Dh(·, ·) : Vh × Vh −→ R defined by

(13) Dh(u, v) := Ah(B
−1/2
h u,B

−1/2
h v) =

∑

T∈Th

∫

T

∇(B
−1/2
h u) · ∇(B

−1/2
h v) dx

+
∑

e∈Eh

α

h3
e

∫

e

Π0
e([[B

−1/2
h u]]) · Π0

e([[B
−1/2
h v]]) ds ,

and the norm

(14) ‖u‖2
DG :=

∑

T∈Th

‖∇u‖2
0,T +

∑

e∈Eh

1

he
‖Π0

e([[u]])‖2
0,e ∀u ∈ Vh.

The next result shows that Dh(·, ·) is continuous and coercive in Vh with respect
to the above DG norm, provided h is small enough (see Remark 2.2).
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8 P. F. ANTONIETTI, B. AYUSO DE DIOS, S. C. BRENNER, AND L.-Y SUNG

Lemma 2.1. The bilinear form Dh(·, ·) defined by (13) is continuous in the
DG norm (14), and it is also coercive for all h ≤ h0 with

(15) h0 := min

(
1√
2
,

√
2α

16C2
t − 1

)
,

where Ct is the trace inequality constant. More precisely, there exist Cc, Cs > 0
such that

Continuity: Dh(u, w) ≤ Cc‖u‖DG‖w‖DG ∀u, w ∈ Vh;(16)

Coercivity: Dh(u, u) ≥ Cs‖u‖2
DG ∀u ∈ Vh.(17)

The proof of Lemma 2.1 can be found in Appendix A.
We also define the following bilinear forms

Sh(·, ·) : Vh × Vh −→ R,

Sh(w, v) :=
∑

T∈Th

∫

T

∇w · ∇v dx+
∑

e∈Eh

α

he

∫

e

[[w]] · [[v]] ds,

S∗
h(·, ·) : Vh × Vh −→ R,

S∗
h(w, v) :=

∑

T∈Th

∫

T

∇w · ∇v dx+
∑

e∈Eh

α

he

∫

e

Π0
e([[w]]) · Π0

e([[v]]) ds.

(18)

Remark 2.2. The restriction on h in Lemma 2.1 is necessary for guaranteeing
the coercivity in the DG norm ‖ · ‖DG. Note however that taking into account our
assumption α ≥ 1 together with the fact that for piecewise linear polynomials on
triangles C2

t ≈ 3 (see for instance [17]), the above restriction on h is a very mild
one.

Remark 2.3. Notice that since Dh(·, ·) is symmetric, Lemma 2.1 implies in
particular that Dh(·, ·), Sh(·, ·) and S∗

h(·, ·) are spectrally equivalent.

3. Schwarz methods for the preconditioned WOPSIP
discretization

In this section we introduce the Schwarz methods and provide some technical
tools needed in the analysis.

We denote by TN a partition of Ω into N non-overlapping subdomains, i.e., Ω =⋃N
i=1 Ωi, and by {TH}H>0 and {Th}h>0 two families of coarse and fine partitions,

respectively, with mesh sizes H > 0 and h > 0. All the partitions are assumed to
be regular and quasi-uniform and we shall always proceed under the assumption
that Th, TH and TN are nested:

TN ⊆ TH ⊆ Th,
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SCHWARZ METHODS FOR A PRECONDITIONED WOPSIP 9

i.e., each Ωi, i = 1, . . . , N , can be written as the union of some elements D ∈ TH ,
each of which is the union of elements of the finer partition Th; that is

D =
⋃

Ti∈Th
Ti⊂D

Ti ∀D ∈ TH .

For each subdomain Ωi ∈ TN , i = 1, . . . , N , we define the local DG spaces V i
h

as

V i
h := {u ∈ L2(Ωi) : v|T ∈ P1(T ) ∀ T ∈ Th, T ⊂ Ωi},

and denote by RT
i : V i

h −→ Vh the standard inclusion operator from V i
h to Vh, and

by Ri its transpose with respect to the canonical bilinear form. We observe that

Vh = R
T
1 V

1
h ⊕ . . .⊕ R

T
NV

N
h .

Finally, we define

(19) Γ :=

N⋃

i,j=1

Γij Γij := {e ∈ Eh , such that e ⊂ ∂Ωi ∩ ∂Ωj , i 6= j} .

We now introduce the local solvers, for which we consider two classes: ex-
act local solvers (as those proposed in [15]) and inexact local solvers (as those
introduced in [2, 3]).

(i) Exact local solvers:: For each subdomain Ωi ∈ TN , i = 1, . . . , N , the
local bilinear form DE

i (·, ·) : V i
h × V i

h −→ R is defined as the restriction of
the (preconditioned) WOPSIP bilinear form (13) to the space RT

i V
i
h :

(20) DE

i (ui, vi) := Dh(R
T
i ui,R

T
i vi) = Ah(B

−1/2
h R

T
i ui,B

−1/2
h R

T
i vi) ∀ui, vi ∈ V i

h .

(ii) Inexact local solvers:: Following [2], we first consider the model
problem (1) set in the subdomain Ωi:

(21) −∆ui = f|Ωi
in Ωi, ui = 0 on ∂Ωi .

The ith-local solver (that is associated to the subdomain Ωi) is defined as
the (preconditioned) WOPSIP approximation to (21). Hence, the local
bilinear form DI

i (·, ·) : V i
h × V i

h −→ R is given by:

(22) DI

i (ui, vi) := Ai(B
−1/2
i ui,B

−1/2
i vi) ∀ui, vi ∈ V i

h ,

where Ai(·, ·) is given by:

(23)
Ai(wi, vi) :=

∑

T∈Th
T⊂Ωi

∫

T

∇wi · ∇vi dx+
∑

e∈Eh

e⊂Ωi

α

h3
e

∫

e

Π0
e([[wi]]) · Π0

e([[vi]]) ds.
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10 P. F. ANTONIETTI, B. AYUSO DE DIOS, S. C. BRENNER, AND L.-Y SUNG

and Bi : V i
h −→ (V i

h)′ refers to the operator associated to the bilinear form
Bi(·, ·) defined by

Bi(wi, vi) :=
∑

T∈Th
T⊂Ωi

∑

e⊂∂T

wiT (me)viT (me)

+
∑

e∈Eh

e⊂Ωi

α

h3
e

∫

e

Π0
e([[wi]]) · Π0

e([[vi]]) ds ∀wi, vi ∈ V i
h .

Note that, the edges e ∈ E◦
h such that e ⊂ ∂Ωi although interior edges in

the global partition Th, are however boundary edges with respect to the
local partitioning induced in the subdomain Ωi. On these edges the defi-
nition of the jump operator on boundary edges applies, i.e., [[wi]] = wi|e n.

Consequently the action of B
−1/2
i on the functions restricted to these edges

is given by (12).

A key issue in the analysis of the non-overlapping Schwarz methods is the
relation between the global bilinear form Dh(·, ·) and the sum of the local solvers.
To study such a relation, we need first to introduce some additional notation.
Recalling the definition (19) of the interface Γ, we define the strip ΩΓ as

(24) ΩΓ =

N⋃

i,j=1

ΩΓij
, ΩΓij

= {T ∈ Th | T has one edge in Γij} .

Now following [15, 2] we have the following result:

Lemma 3.1. For any u ∈ Vh, let ui ∈ V i
h , i = 1, . . . , N , be the unique functions

such that u =
∑N

i=1 RT
i ui. Then the following identities hold:

Dh(u, u) =

N∑

i=1

DE

i (ui, ui) + IEh(u, u) ,(25)

Dh(u, u) =
N∑

i=1

DI

i (ui, ui) + IIh(u, u) ,(26)

where

IEh(u, u) = 2

[ ∑

T∈ΩΓ

∫

T

∇(B
−1/2
h RT

i ui) · ∇(B
−1/2
h RT

j uj) dx(27)

−
∑

e∈Γ

β2
e

α

h3
e

∫

e

Π0
e(ui)Π

0
e(uj) ds

]
,(28)

IIh(u, u) = IEh(u, u) +GI

h(u, u),(29)

with βe defined as in (8), and
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(30) GI

h(u, u) =

N∑

i=1

[ ∑

T∈ΩΓ

∫

T

∇(B
−1/2
h R

T
i ui) · ∇(B

−1/2
h R

T
i ui) dx

−
∑

T∈ΩΓ

T⊂Ωi

∫

T

∇(B
−1/2
i ui) · ∇(B

−1/2
i ui) dx,

]

−
∑

e∈Γ

α

h3
e

η2
e

∫

e

(
[Π0

e(ui)]
2 + [Π0

e(uj)]
2
)

ds.

Here, ηe is defined as:

(31) η2
e := −[βe]

2 + [β∂
e ]2 =

θe

(1 + θe)(2 + θe)
> 0, θe = h2

e/α .

Proof. For simplicity we present the proof in the case of N = 2 subdomains, that
is Ω = Ω1∪Ω2. The extension to the case of N subdomains is straightforward and
we omit the details. We first show (25). Taking into account the definition (13)
of Dh(·, ·), the linearity and symmetry of Dh(·, ·) and of the exact local solvers
DE

i (·, ·) (cf. (20)), it is easy to see that

IEh(u, u) = Dh(u, u) −DE

1(u1, u1) −DE

2(u2, u2)

= Dh(R
T
1 u1, R

T
2 u2) + Dh(R

T
2 u2, R

T
1 u1)

= 2Dh(R
T
1 u1,R

T
2 u2)

= 2Ah(B
−1/2
h RT

1 u1,B
−1/2
h RT

2 u2)

= 2
∑

T∈Th

∫

T

∇(B
−1/2
h RT

1 u1) · ∇(B
−1/2
h RT

2 u2) dx

+ 2
∑

e∈Eh

α

h3
e

∫

e

Π0
e([[B

−1/2
h RT

1 u1]]) · Π0
e([[B

−1/2
h RT

2 u2]]) ds .

To give a more explicit expression of the last two terms on the right hand side,
we take a closer look at the support of the terms involved. We first observe that

supp(RT
1 u1) ∩ supp(RT

2 v2) ⊆ Γ, so it is enough to consider the action of B
−1/2
h on

e ∈ Γ. Fix an edge e ∈ Γ shared by the elements T1 ⊆ Ω1 and T2 ⊆ Ω2, and
recall that (see Figure 1(a)),

RT
1 u1 =

{
u1 = u|Ω1

in Ω1,

0 in Ω2,
RT

2 u2 =

{
0 in Ω1,

u2 = u|Ω2
in Ω2,
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(a) dofs of R
T
1
u1 (b) dofs of B

−1/2

h R
T
1
u1

(c) dofs of ∇(B
−1/2

h R
T
1
u1) (d) dofs of [[B

−1/2

h R
T
1
u1]]

Figure 2. Degrees of freedom of RT
1 u1, B

−1/2
h RT

1 u1, ∇(B
−1/2
h RT

1 u1)

and [[B
−1/2
h RT

1 u1]], respectively, on a N = 2 subdomain partition.
The dofs marked with • are different from zero; those marked with
◦ are equal to zero.

Taking into account the action of B
−1/2
h on internal edges (since e ∈ Γ so e ∈ E◦

h)
we have

(32)

(B
−1/2
h RT

1 u1)|e = B
−1/2
h

[
u1

0

]
=




1 + βe

2
u1

1 − βe

2
u1


 ,

(B
−1/2
h RT

2 u2)|e = B
−1/2
h

[
0
u2

]
=




1 − βe

2
u2

1 + βe

2
u2


 ,

where βe is defined as in (8). Therefore, under the action of B
−1/2
h , the support

of RT
1 u1 (resp. RT

2 u2) expands into the Ω2 (resp. Ω1) across Γ, with an additional
dof at the midpoint of the edge e (see Figure 1(b)). Next, we have to further

consider the actions of the operators ∇ and [[·]] on B
−1/2
h RT

i ui. For the gradient
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term, it is clear that the resulting support expands along the strip of elements
that touch Γ (see Figure 1(c)), that is:

(33) supp(∇B
−1/2
h RT

1 u1) ∩ supp(∇B
−1/2
h RT

2 u2) ⊆ ΩΓ ,

where the set ΩΓ is defined in (24). For the penalty term, it can be seen that
(cf. Figure 1(d)),

(34) supp(Π0
e([[B

−1/2
h RT

1 u1]])) ∩ supp(Π0
e([[B

−1/2
h RT

2 u2]])) ⊆ Γ .

Using the definition of the jump operator on interior edges and (32) we have

[[B
−1/2
h RT

1 u1]] = βe[[R
T
1 u1]] = βeu1n

1
e, [[B

−1/2
h RT

2 u2]] = βe[[R
T
2 u2]] = βeu2n

2
e,(35)

and taking into account the definition (4) we obtain
∑

e∈Γ

α

h3
e

∫

e

Π0
e([[B

−1/2
h RT

1 u1]]) · Π0
e([[B

−1/2
h RT

2 u2]]) ds

=
∑

e∈Γ

α

h2
e

[[B
−1/2
h RT

1 u1]](me)[[B
−1/2
h RT

2 u2]](me)

=
∑

e∈Γ

α

h2
e

(β2
eu1(me)u2(me)n

+
e · n−

e )

= −
∑

e∈Γ

α

h3
e

β2
e

∫

e

Π0
e(u1) · Π0

e(u2) ds .

Therefore, we finally have

IEh(u, u) = 2

[
∑

T∈ΩΓ

∫

T

∇(B
−1/2
h R

T
1 u1) · ∇(B

−1/2
h R

T
2 u2) dx

−
∑

e∈Γ

β2
e

α

h3
e

∫

e

Π0
e(u1)Π

0
e(u2) ds

]
,

which establishes (28) and hence (25).
We now turn to the case of inexact local solvers and the proof of (26). We

first note that, when acting on (the restriction of the functions to) interior edges

e ∈ E◦
h that do not belong to the interface Γ, we have that B

−1/2
h ≡ B

−1/2
i . Hence,

we can write:

IIh(u, u) = Dh(u, u)−DI

1(u1, u1) −DI

2(u2, u2) = W1 +W2,

where

W1 :=
∑

T∈ΩΓ

∫

T

∇(B
−1/2
h u) · ∇(B

−1/2
h u) dx−

2∑

i=1

∑

T∈ΩΓ

T⊂Ωi

∫

T

∇(B
−1/2
i ui) · ∇(B

−1/2
i ui) dx,

and
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14 P. F. ANTONIETTI, B. AYUSO DE DIOS, S. C. BRENNER, AND L.-Y SUNG

W2 :=
∑

e∈Γ

α

h3
e

∫

e

[
Π0

e([[B
−1/2
h u]]) · Π0

e([[B
−1/2
h u]]) − Π0

e([[B
−1/2
1 u1]]) · Π0

e([[B
−1/2
1 u1]])

−Π0
e([[B

−1/2
2 u2]]) · Π0

e([[B
−1/2
2 u2]])

]
ds.

We first observe that the main difference with respect to the case of exact solvers

is that the action of B
−1/2
h on a function restricted to an edge e ∈ Γ differs from

the action of the local operator B
−1/2
i entering in the definition of DI

i (·, ·). In the
former case e ∈ Γ is an interior edge, while for the latter e is a boundary edge.
In fact, in view of (12) we have

(36)

(B
−1/2
1 u1)|e = B

−1/2
1

[
u1

0

]
=

[
β∂

e u1

0

]
,

(B
−1/2
2 u2)|e = B

−1/2
2

[
0
u2

]
=

[
0

β∂
e u2

]
,

and so in this case the support of B
−1/2
i ui remains in Ωi. For W1, (33) together

with (36) gives

(37) W1 = 2
∑

T∈ΩΓ

∫

T

∇(B
−1/2
h R

T
1 u1) · ∇(B

−1/2
h R

T
2 u2) dx

+
2∑

i=1

[
∑

T∈ΩΓ

∫

T

∇(B
−1/2
h RT

i ui) · ∇(B
−1/2
h RT

i ui) dx

−
∑

T∈ΩΓ

T⊂Ωi

∫

T

∇(B
−1/2
i ui) · ∇(B

−1/2
i ui) dx

]
.

For the term W2, using (36) and (34) we have

[[B
−1/2
i ui]] = β∂

e ui,

where β∂
e is defined in (8). Hence, taking into account the above identity together

with (35) and (34) we find,

Π0
e([[B

−1/2
h u]]) · Π0

e([[B
−1/2
h u]]) = [βe]

2
([

Π0
e(u1)

]2
+
[
Π0

e(u2)
]2 − 2Π0

e(u1)Π
0
e(u2)

)
,

Π0
e([[B

−1/2
i ui]]) · Π0

e([[B
−1/2
i ui]]) = [β∂

e ]2
[
Π0

e(ui)
]2

i = 1, 2 .

Thus we have

W2 = − 2
∑

e∈Γ

α

h3
e

[βe]
2

∫

e

Π0
e(u1)Π

0
e(u2) ds(38)

+
∑

e∈Γ

α

h3
e

(
[βe]

2 − [β∂
e ]2
) ∫

e

(
[Π0

e(u1)]
2 + [Π0

e(u2)]
2
)

ds
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=−2
∑

e∈Γ

α

h3
e

[βe]
2

∫

e

Π0
e(u1)Π

0
e(u2) ds(39)

−
∑

e∈Γ

α

h3
e

η2
e

∫

e

(
[Π0

e(u1)]
2 + [Π0

e(u2)]
2
)

ds,

where ηe is defined as in (31). Putting together (37) and (??) we finally obtain

IIh(u, u) = IEh(u, u) −
∑

e∈Γ

α

h3
e

η2
e

∫

e

(
[Π0

e(u1)]
2 + [Π0

e(u2)]
2
)

ds

+

2∑

i=1

[
∑

T∈ΩΓ

∫

T

∇(B
−1/2
h RT

i ui) · ∇(B
−1/2
h RT

i ui) dx

−
∑

T∈ΩΓ

T⊂Ωi

∫

T

∇(B
−1/2
i ui) · ∇(B

−1/2
i ui) dx

]
,

which is (29), and concludes the proof. �

The last ingredient in the construction of the Schwarz methods is the coarse
solver. We consider a coarse partition TH and we take for ℓ = 0, 1

VH ≡ V 0
h := {v ∈ L2(Ω) : v|T ∈ Pℓ(T ) ∀D ∈ TH}.

We denote by RT
0 : V 0

h −→ Vh the standard inclusion operator from V 0
h to Vh,

by R0 its transpose with respect to the canonical bilinear forms, and define the
following three coarse solvers:

D0(u0, v0) := Dh(R
T
0 u0,R

T
0 v0) ∀u0, v0 ∈ V 0

h ,(40)

S0(u0, v0) := Sh(R
T
0 u0,R

T
0 v0) ∀u0, v0 ∈ V 0

h ,(41)

S∗
0 (u0, v0) := S∗

h(RT
0 u0,R

T
0 v0) ∀u0, v0 ∈ V 0

h ,(42)

where Sh(·, ·),S∗
h(·, ·) : Vh × Vh −→ R are defined in (18).

Remark 3.2. As in [15, 2], the coarse solver D0(·, ·) is defined as the restriction
of the original method to the coarse finite element space V 0

h . However, it should
be noted that

D0(u0, v0) := Dh(R
T
0 u0,R

T
0 v0) 6= DH(u0, v0) ∀u0, v0 ∈ VH .

In particular to ensure the performance of the resulting Schwarz method it turns
out to be essential to choose the penalty parameter αH in the definition of AH(·, ·)
as αH = α(H/h)3.

Remark 3.3. Since the coarse solvers (40), (41) and (42) are defined as the
restriction of Dh(·, ·), Sh(·, ·) and S∗

h(·, ·), respectively, to the coarse space V 0
h ,

we can immediately conclude that all the coarse solvers are spectrally equivalent
thanks to Remark 2.3.



C
R

M
P

re
p
ri

n
t

S
er

ie
s

n
u
m

b
er

1
0
5
7

16 P. F. ANTONIETTI, B. AYUSO DE DIOS, S. C. BRENNER, AND L.-Y SUNG

3.1. Schwarz operators. We now define the Schwarz operators and show that
they can be viewed as preconditioners for the original (preconditioned) system of
equations (6).

For the exact local solvers, let PE

i : Vh −→ RT
i V

i
h be defined as

(43) Dh(P
E

iu,R
T
i vi) := Dh(u,R

T
i vi) = Ah(B

−1/2
h u,B

−1/2
h RT

i vi) ∀vi ∈ V i
h .

For the inexact local solvers we set PI

i := RT
i P̃

I

i : Vh −→ RT
i V

i
h ⊂ Vh, where

P̃ I

i : Vh −→ V i
h is defined as

(44) DI

i (P̃
I

i u, vi) := Dh(u,R
T
i vi) = Ah(B

−1/2
h u,B

−1/2
h RT

i vi) ∀vi ∈ V i
h .

We observe that the operators PE

i and PI

i are well-defined since the local bilinear
forms DE

i (·, ·) and DI

i (·, ·) are coercive. We also define the operators P0,Q0,T0 :
Vh −→ RT

0 V
0
h as follows:

(45)

Dh(P0u,R
T
0 v0) := Dh(u,R

T
0 v0) = Ah(B

−1/2
h u,B

−1/2
h RT

0 v0) ∀v0 ∈ V 0
h ,

Sh(Q0u,R
T
0 v0) := Dh(u,R

T
0 v0) = Ah(B

−1/2
h u,B

−1/2
h RT

0 v0) ∀v0 ∈ V 0
h ,

S∗
h(T0u,R

T
0 v0) := Dh(u,R

T
0 v0) = Ah(B

−1/2
h u,B

−1/2
h RT

0 v0) ∀v0 ∈ V 0
h .

Since the coarse bilinear forms Dh(·, ·), Sh(·, ·) and S∗
h(·, ·) are coercive, the op-

erators P0, Q0 and T0 are well defined.
We are now ready to define the following additive Schwarz operators:

PE :=

N∑

i=1

PE

i + P0, QE :=

N∑

i=1

PE

i + Q0. TE :=

N∑

i=1

PE

i + T0.(46)

PI :=
N∑

i=1

PI

i + P0, QI :=
N∑

i=1

PI

i + Q0. TI :=
N∑

i=1

PI

i + T0.(47)

In the case of exact local solvers, the matrix representation of the additive Schwarz
operators PE, QE and TE is given by

PE =

(
N∑

i=1

R
T
i (DE

i )−1
Ri + R

T
0 D−1

0 R0

)
Dh := ME

1Dh,

QE =

(
N∑

i=1

RT
i (DE

i )−1Ri + RT
0 S−1

0 R0

)
Dh := ME

2Dh,

TE =

(
N∑

i=1

R
T
i (DE

i )−1
Ri + R

T
0 (S∗

0)
−1

R0

)
Dh := ME

3Dh,

where Sh and S∗
h are the matrix representations of the bilinear forms Sh(·, ·) and

S∗
h(·, ·), respectively. We observe that the preconditioners differ by the choice

of the coarse solver (cf. Table 1). ME

1 employs as coarse solver the restriction
of the preconditioned WOPSIP bilinear form to the finite element coarse space



C
R

M
P

re
p
ri

n
t

S
er

ie
s

n
u
m

b
er

1
0
5
7

SCHWARZ METHODS FOR A PRECONDITIONED WOPSIP 17

whereas for ME

2 and ME

3 the coarse solver is defined as the restriction to the
coarse space of the bilinear form Sh(·, ·) and S∗

h(·, ·), respectively. The same kind
of representation holds for inexact local solvers. Details are given in Table 1.

Preconditioner Coarse Component Local Components (i = 1, . . . , N)

ME

1
:=
∑N

i=1
RT

i (DE
i )−1Ri + RT

0
D
−1

0
R0 D0 := R0DhRT

0
DE

i := RiDhRT
i

M
E

2 :=
∑N

i=1 R
T
i (DE

i )−1
Ri + R

T
0 S

−1

0
R0 S0 := R0ShR

T
0 D

E
i := RiDhR

T
i

ME

3
:=
∑N

i=1
RT

i (DE
i )−1Ri + RT

0
(S∗

0
)−1R0 S∗

0
:= R0S∗

hRT
0

DE
i := RiDhRT

i

M
I

1 :=
∑N

i=1 R
T
i (AI

i )
−1

Ri + R
T
0 D

−1

0
R0 D0 := R0DhR

T
0 see (22)

MI

2
:=
∑N

i=1
RT

i (AI

i )
−1Ri + RT

0
S
−1

0
R0 S0 := R0ShRT

0
see (22)

M
I

3 :=
∑N

i=1 R
T
i (AI

i )
−1

Ri + R
T
0 (S∗

0)−1
R0 S

∗

0 := R0S
∗

hR
T
0 see (22)

Table 1. Coarse and local components for the preconditioners
ME

1 − ME

2 − ME

3 and MI

1 − MI

2 − MI

3.

3.2. Computational issues. Let v be a vector representing a finite element
function v in the edgewise ordering, and let P be the permutation matrix so that
Pv becomes the vector representing v in the elementwise ordering. We define J

to be the matrix representing the jumps term

wT Jv =
∑

e∈Eh

α

h3
e

∫

e

Π0
e([[w]]) · Π0

e([[v]]) ds,

and G to be the matrix representing the volume term

wT Gv =
∑

T∈Th

∫

T

∇w · ∇v dx.

We remark that in the elementwise ordering the matrix G is block diagonal with
3 × 3 blocks, whereas in the edgewise ordering the matrix J is block diagonal
and therefore the preconditioner Bh = I + J is block diagonal, with I the identity

matrix. Therefore, B
−1/2
h is block diagonal as well and the 2 × 2 blocks can be

computed directly with (7). Algorithm 1 computes the action of the stiffness

matrix of the WOPSIP method and the action of the preconditioner B
−1/2
h on a

vector (cf. [8]).
Next, we also describe the action of the additive Schwarz preconditioner ME

1 on
a vector v edgewise ordered (cf. Algorithm 2). The routines for the other precon-
ditioners can be written exactly in the same way with only notational changes
involved. Note that, for the application of the preconditioner, it is more conve-
nient to employ the elementwise ordering of the dofs, and to number first the dofs
corresponding to elements in the first subdomain, then the dofs corresponding to
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elements in the second subdomain and so on. With such an ordering, the local
solvers turn out to be a block Jacobi preconditioner where each block corresponds
to the dofs in a subdomain.

Algorithm 1 Compute z = B
−1/2
h AhB

−1/2
h v

Solve B
1/2
h z = v

Compute x := Jz
Compute y := PT GPz

Solve B
1/2
h z = x + y

Algorithm 2 Compute z = ME

1v

Solve z = RT
0 D−1

0 RT
0 Pv

for i = 1, . . . , N do
z ⇐ z + RT

i D−1
i RT

i z
end for
z ⇐ PTz.

4. Convergence analysis

In this section we present the convergence analysis of the proposed Schwarz
methods for the preconditioned WOPSIP scheme. We start by stating the main
result of this section:

Theorem 4.1. Let P be any of the Schwarz operators defined in (46) and (47).
Then, the condition number of P satisfies

κ(P) ≤ C2
0ωr(Na + 1) . 1 +

H

h
, r = E or I,

where Na is the maximum number of adjacent subdomains that a given subdomain
might have and ωr is a positive constant independent of H, h and the number of
subdomains.

The rest of the section is devoted to the proof of the above theorem. We follow
the classical abstract convergence theory of Schwarz methods [14, 13] (cf. also
[16, Chapter 2] and [12, Chapter 7]), and therefore, we only have to verify the
following three assumptions.

Assumption A1 (Stable decomposition). There exists C0 > 0 such that every

u ∈ Vh admits a decomposition u =
∑N

i=0 RT
i ui, with u0 ∈ V 0

h , and ui ∈ V i
h ,

i = 1, . . . , N , that satisfies
N∑

i=1

Dr

i (ui, ui) + γ0(u0, u0) ≤ C2
0 Dh(u, u), r = E or I ,

where γ0(·, ·) is one of the coarse bilinear forms defined in (40)–(42).
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Assumption A 2 (Strengthened Cauchy–Schwarz inequalities). There exist
0 ≤ εij ≤ 1, 1 ≤ i, j ≤ N , such that

∣∣Dh(R
T
i ui,R

T
j uj)

∣∣ ≤ εijDh(R
T
i ui,R

T
i ui)

1/2Dh(R
T
j uj,R

T
j uj)

1/2

for all vi∈V i
h , uj ∈V j

h . Define ρ(E) to be the spectral radius of E := {εij}i,j=1,...,N .

Assumption A3 (Local stability). There exists ωr > 0 such that

(48) Dh(R
T
i ui,R

T
i ui) ≤ ωrDr

i (ui, ui) ∀ ui ∈ V i
h , r = {E, I}.

We start by verifying Assumption A2. Following [15, 2], it is straightforward
to see that εii = 1 for i = 1, . . . , N . For i 6= j, we note that Dh(R

T
i ui,R

T
j uj) =

Ah(B
−1/2
i RT

i ui, B
−1/2
j RT

j uj) 6= 0 only if ∂Ωi ∩ ∂Ωj 6= ∅, so εij = 1 in those cases,
and εij = 0 otherwise. Then, ρ(E) can be bounded by ρ(E) ≤ maxi

∑
j |εij| ≤

1 +Na, where Na is the maximum number of adjacent subdomains that a given
subdomain might have.

In the next sections we verify Assumptions A3 and A1.

4.1. Local stability. We now prove that the local solvers satisfy a local stability
property. Observe that for the exact local solvers defined in (20), it follows
from their definition that (48) holds true with ωE ≡ 1. Before showing that
Assumption A3 holds true also for the inexact local solvers, we define the norm
‖ · ‖DG,Ωi

according to (14) but at the subdomain level, i.e.,

‖ui‖2
DG,Ωi

:=
∑

T∈Th
T⊂Ωi

‖∇ui‖2
0,T +

∑

e∈Eh
e⊂Ωi

1

he
‖Π0

e([[ui]])‖2
0,e

+
∑

e∈Eh
e⊂∂Ωi

1

he
‖Π0

e(uin)‖2
0,e ∀ui ∈ V i

h ,

and observe that the coercivity (17) holds also at the subdomain level for h ≤ h0

with h0 given in (15), by the definition of DI

i (·, ·).
The next result shows that the local stability property holds also for the inexact

local solvers defined in (22).

Lemma 4.2. For i = 1, . . .N , let DI

i : V i
h ×V i

h −→ R be the bilinear form defined
by (22). Then, there exists ωI > 0 such that the following local stability property
holds:

Dh(R
T
i ui,R

T
i ui) ≤ ωIDI

i (ui, ui) ∀ui ∈ V i
h ∀ i = 1, . . . , N .

Proof. Observe that
‖RT

i ui‖2
DG = ‖ui‖2

DG,Ωi
.

It then follows from (16) and (17) (for DI

i (·, ·)) that

Dh(R
T
i ui,R

T
i ui) ≤ Cc‖RT

i u‖2
DG ≤ Cc‖ui‖2

DG,Ωi
≤ CDI

i (ui, ui) . �
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4.2. Stable decomposition. In this section we finally show that the decompo-
sition underlying the definition of the additive Schwarz operator is indeed stable
with respect to the energy norm defined by Dh(·, ·).

We first state an auxiliary result needed in the proof of Proposition 4.5. This
result provides an estimate for the interface bilinear forms IEh(·, ·) and IIh(·, ·).
Lemma 4.3. For any u ∈ Vh, it holds that

(49) |Ir
h(u, u)| . ‖u‖2

DG + h−1
∑

D∈TH

∑

E⊂∂D

‖u‖2
0,E, r = E or I .

Proof. We start by proving the bound for IEh(·, ·). From the definition (28) of IEh
given in Lemma 3.1 and the standard triangle inequality, we have |IEh(u, u)| ≤
2 |F1| + 2 |F2|, where

F1 :=
∑

T∈ΩΓ

∫

T

∇(B
−1/2
h RT

i ui) · ∇(B
−1/2
h RT

j uj) dx,

F2 :=
∑

e∈Γ

β2
e

α

h3
e

∫

e

Π0
e(ui)Π

0
e(uj) ds.

We next estimate the two terms separately, starting with F2. By recalling the
definition (8) of βe on e ∈ E◦

h and using (9), the Cauchy-Schwarz inequality, the
arithmetic-geometric inequality and the stability of the projection Π0

e(·), we find

2 |F2| ≤ 2

(
∑

e∈Γ

1

he

‖Π0
e(ui)‖2

0,e

)1/2(∑

e∈Γ

1

he

‖Π0
e(uj)‖2

0,e

)1/2

≤
∑

e∈Γ

1

he
‖Π0

e(ui)‖2
0,e +

∑

e∈Γ

1

he
‖Π0

e(uj)‖2
0,e ≤

∑

e∈Γ

(
1

he
‖ui‖2

0,e +
1

he
‖uj‖2

0,e

)
.

Observe that each subdomain Ωi is the union of some elements D ∈ TH and the
mesh is quasi-uniform. Denoting by E the edges of D, we have

(50) 2 |F2| ≤
∑

e∈Γ

(h−1
e ‖ui‖2

0,e + h−1
e ‖uj‖2

0,e) . h−1
∑

D∈TH

∑

E⊂∂D

‖u‖2
0,E.

Next, we estimate the term |F1|. Using the Cauchy-Schwarz inequality we have

|F1| =

∣∣∣∣∣

N∑

i,j=1
i6=j

∑

T∈ΩΓij

∫

T

∇(B
−1/2
h RT

i ui) · ∇(B
−1/2
h RT

j uj) dx

∣∣∣∣∣

.

N∑

i,j=1
i6=j

( ∑

T∈ΩΓij

‖∇B
−1/2
h RT

i ui‖0,T ‖∇B
−1/2
h RT

j uj‖0,T

)
.(51)
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Next, observe that for any fixed j 6= i and T ∈ ΩΓij
with T ⊆ Ωi, the Diver-

gence theorem, the Cauchy-Schwarz and the trace inequalities together with the
stability of the projection Π0

e(·) give

‖∇B
−1/2
h RT

j uj‖2
0,T = −

∫

T

∆(B
−1/2
h RT

j uj) B
−1/2
h RT

j uj dx

+

∫

∂T

∇(B
−1/2
h RT

j uj) · n B
−1/2
h RT

j uj ds

=

∫

∂T

∇(B
−1/2
h RT

j uj) · n Π0
e(B

−1/2
h RT

j uj) ds

≤ ‖∇(B
−1/2
h RT

j uj)‖0,∂T ‖Π0
e(B

−1/2
h RT

j uj)‖0,∂T

. ‖∇(B
−1/2
h RT

j uj)‖0,T h
−1/2
e ‖RT

j uj‖0,e (e = ∂T ∩ Γij) ,

where in the last step we have used that Π0
e(B

−1/2
h RT

j uj) 6= 0 only on the edge
e = ∂T ∩ Γij due to (32) (see also Figure 2). Hence,

(52) ‖∇B
−1/2
h RT

j uj‖0,T . h−1/2
e ‖uj‖0,e e = ∂T ∩ Γij T ⊂ Ωi ∩ ΩΓij

i 6= j.

Therefore, inserting the above estimate into (51) and using the continuity (16)
of Dh(·, ·) given in Lemma 2.1, we finally obtain

|F1| .

N∑

i,j=1
i6=j

(
∑

T∈ΩΓij

T⊂Ωi

‖∇B
−1/2
h RT

i ui‖0,Th
−1/2
e ‖uj‖0,e

+
∑

T∈ΩΓij

T⊂Ωj

‖∇B
−1/2
h RT

i uj‖0,Th
−1/2
e ‖ui‖0,e

)
(e = ∂T ∩ Γij)

.
∑

T∈ΩΓ

(
‖∇u‖2

0,T +
∑

e⊂∂T

h−1
e ‖Π0([[u]])‖2

0,e

)
+ h−1

∑

D∈TH

∑

E⊂∂D

‖u‖2
0,E

. ‖u‖2
DG + h−1

∑

D∈TH

∑

E⊂∂D

‖u‖2
0,E.

The above estimate together with (50) concludes the proof for IEh(·, ·). To
bound IIh(·, ·) we observe that, thanks to Lemma 3.1

IIh(u, u) = IEh(u, u) +GI

h(u, u) ∀u ∈ Vh ,

and so it is enough to bound GI

h(·, ·) which we recall is defined as

GI

h(u, u) =

N∑

i=1

∑

T∈ΩΓ

∫

T

∇(B
−1/2
h RT

i ui) · ∇(B
−1/2
h RT

i ui) dx (F3)
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−
N∑

i=1

∑

T∈ΩΓ

T⊂Ωi

∫

T

∇(B
−1/2
i ui) · ∇(B

−1/2
i ui) dx (F4)

−
N∑

i=1

∑

e∈Γ

α

h3
e

η2
e

∫

e

(
[Π0

e(ui)]
2 + [Π0

e(uj)]
2
)

ds . (F5)

We start with the last term F5. Recalling the definition (31) of ηe and using the
fact that α2/(α+ h2

e)(2α+ h2
e) ≤ 1, we have

α

h3
e

η2
e =

α

h3
e

θe

(1 + θe)(2 + θe)
=

1

he

α2

(α + h2
e)(2α + h2

e)
≤ 1

he
.

Then, taking into account the stability of the projection Π0
e(·) and arguing as we

did for F2, we obtain

|F5| ≤
N∑

i=1

∑

e∈Γ

α

h3
e

η2
e

(
‖ui‖2

0,e + ‖uj‖2
0,e

)

. 2

N∑

i=1

∑

e∈Γ

1

he
‖ui‖2

0,e . h−1
∑

D∈TH

∑

E⊂∂D

‖u‖2
0,E.

We now estimate the other terms. The estimate for F3 is similar to the estimate
for |F1|:

|F3| ≤
N∑

i=1

∑

T∈ΩΓ

T⊂Ωi

‖∇(B
−1/2
h RT

i ui)‖2
0,T +

N∑

i=1

∑

T∈ΩΓ

T 6⊂Ωi

‖∇(B
−1/2
h RT

i ui)‖2
0,T

.
∑

T∈ΩΓ

(
‖∇u‖2

0,T +
∑

e⊂∂T

h−1
e ‖Π0([[u]])‖2

0,e

)
+ h−1

∑

D∈TH

∑

E⊂∂D

‖u‖2
0,E

. ‖u‖2
DG + h−1

∑

D∈TH

∑

E⊂∂D

‖u‖2
0,E.

Finally, the term F4 is readily estimated by the continuity of the bilinear form
DI

i (·, ·):

|F4| ≤
N∑

i=1

∑

T∈ΩΓ

T⊂Ωi

‖∇(B
−1/2
i ui)‖2

0,T

.

N∑

i=1

‖ui‖2
DG,Ωi

. ‖u‖2
DG + h−1

∑

D∈TH

∑

E⊂∂D

‖u‖2
0,E . �

The last preliminary result concerns the coarse solver.
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Lemma 4.4. For any u ∈ Vh, let u0 ∈ V 0
h = VH be defined as

(53) u0|D :=
1

|D|

∫

D

u dx ∀D ∈ TH .

Then it holds that

(54) γ0(u0, u0) .
(
1 +Hh−1

)
Dh(u, u),

where γ0(·, ·) is one of the coarse bilinear forms defined in (40)–(42).

Proof. It is sufficient to show the bound in the case γ0(·, ·) = S∗
0 (·, ·); the other

two cases follow from the observation made in Remark 3.3. Let u ∈ Vh and let u0

be defined as in (53). Note that u0 is piecewise constant (by definition) on TH .
Then it follows from the definition of S∗

0 (·, ·), adding and subtracting u and the
stability of the projection Π0(·) that

S∗
0 (u0, u0) =

∑

e∈Eh

α

he

∫

e

∣∣Π0
e([[R

T
0 u0]])

∣∣2 ds

.
∑

e∈Eh

1

he

∫

e

∣∣Π0
e([[R

T
0 u0 − u]])

∣∣2 ds+
∑

e∈Eh

1

he

∫

e

∣∣Π0
e([[u]])

∣∣2 ds

.
∑

e∈Eh

1

he

∫

e

∣∣[[RT
0 u0 − u]]

∣∣2 ds+ Dh(u, u) ,

where in the last step we have also used the coercivity of Dh(·, ·) (cf. (17)).
We now observe that last term can be estimated exactly following [15] and
[2, Lemma 4.3]:

∑

e∈Eh

1

he

∫

e

∣∣[[RT
0 u0 − u]]

∣∣2 ds . Hh−1‖u‖2
DG . Hh−1Dh(u, u) . �

We close the section with the proof of Assumption A1.

Proposition 4.5 (Stable decomposition). For any u ∈ Vh, let u =
∑N

i=0 RT
i ui,

ui ∈ V i
h , i = 0, . . . , N , where u0 ∈ V 0

h is defined by

u0|D :=
1

|D|

∫

D

u dx ∀D ∈ TH ,

and u1, . . . , uN are (uniquely) determined by u − RT
0 u0 = RT

1 u1 + · · · + RT
NuN .

Then, there exists C2
0 = O(Hh−1) such that

N∑

i=1

Dr

i (ui, ui) + γ0(u0, u0) ≤ C2
0 Dh(u, u), r = {E, I} ,

where γ0(·, ·) is one of the coarse bilinear forms defined in (40)–(42).
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Proof. The proof follows those given in [15, 2]. We set γ0(·, ·) = D0(·, ·). Given

u ∈ Vh, we decompose u − RT
0 u0 uniquely as

∑N
i=1 RT

i ui. Taking into account
Lemma 3.1 we can write

D0(u0, u0) +
N∑

i=1

Dr

i (ui, ui) = D0(u0, u0) + Dh(u− RT

0 u0, u−RT

0 u0)

− Irh(u−RT

0 u0, u− RT

0 u0) ,

(55)

then we just need to estimate each term on the right hand side.
The first term is readily estimated by using Lemma 4.4:

(56) D0(u0, u0) .
(
1 +Hh−1

)
Dh(u, u).

For the second term on the right hand side of (55), triangle inequality, the con-
tinuity of Dh(·, ·) (cf. (16)) together with (56) and the definition of the coarse
solver gives,

Dh(u− RT

0 u0, u−RT

0 u0) . Dh(u, u) + Dh(R
T

0 u0, R
T

0 u0)

= Dh(u, u) + D0(u0, u0) .
(
1 +Hh−1

)
Dh(u, u).(57)

For the last term, it follows from (17), Lemma 4.3 and (57) that

∣∣Irh(u− RT

0 u0, u− RT

0 u0)
∣∣.‖u−RT

0 u0‖2
DG +

∑

D∈TH

∑

E⊂∂D

h−1‖u− RT

0 u0‖2
0,E

.
(
1 +Hh−1

)
Dh(u, u)+h

−1
∑

D∈TH

∑

E⊂∂D

‖u−RT

0 u0‖2
0,E.

Noting now that the trace inequality together with a Poincaré-Friedrichs inequal-
ity [7] gives

∑

D∈TH

∑

E⊂∂D

h−1‖u− RT

0 u0‖2
0,E

.

[
∑

D∈TH

H−1
D h−1‖u− RT

0 u0‖2
0,D +HDh

−1‖∇h(u− RT

0 u0)‖2
0,D

]

. Hh−1‖u‖2
DG +Hh−1

∑

T∈Th

‖∇u‖2
0,T . Hh−1Dh(u, u) ,

we finally obtain the estimate
∣∣Irh(u− RT

0 u0, u− RT

0 u0)
∣∣ .

(
1 +Hh−1

)
Dh(u, u)

for the last term in (55). Substituting this estimate together with (57) and (56)
into (55), the proof is completed. For the other coarse solvers, the proof follows
exactly the same steps, replacing the bound in (56) by the corresponding one. �
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5. Numerical results

In this section we present a series of numerical experiments to highlight the
practical performance of our non-overlapping Schwarz preconditioners.

We restrict ourselves to two-dimensional model problems: we let Ω = (0, 1) ×
(0, 1) and choose f such that the analytical solution of the model problem (1) is
given by u(x, y) = exp(xy)(x− x2)(y − y2).
Throughout Sections 5.1 and 5.2 we take the stability constant α appearing in the
formulation of the WOPSIP method (3) to be 1; numerical results with different
choices of the penalty parameter are discussed in Section 5.3.

We employ a uniform subdomain partition consisting of N = 4, 16 squares,
and consider initial coarse and fine refinements as depicted in Figure 3 (for N =
4 (top) and N = 16 (bottom)). We denote by H0 and h0 the corresponding
initial coarse and fine mesh sizes, respectively, and consider j = 1, 2, 3, successive
uniform refinements of the initial grids.

Figure 3. Initial coarse and fine refinements, respectively, onN =
4 subdomain partitions (top) and N = 16 subdomain partitions.

We solved the preconditioned linear systems of equations by the conjugate gra-
dient (CG) iterative solver with a (relative) tolerance set equal to 10−9 allowing a
maximum of 100 iterations. For the solution of the linear system (6) we employed
the CG iterative solver with the same relative tolerance but allowing a maximum
of 1100 iterates.

5.1. Exact local solvers. In this section we test the performance of the Schwarz
preconditioners

ME

1 =
N∑

i=1

RT
i (DE

i )−1Ri + RT
0 D−1

0 R0,



C
R

M
P

re
p
ri

n
t

S
er

ie
s

n
u
m

b
er

1
0
5
7

26 P. F. ANTONIETTI, B. AYUSO DE DIOS, S. C. BRENNER, AND L.-Y SUNG

ME

2 =

N∑

i=1

R
T
i (DE

i )−1
Ri + R

T
0 S−1

0 R0,

ME

3 =
N∑

i=1

RT
i (DE

i )−1Ri + RT
0 (S∗

0)
−1R0,

applied to the original symmetric (preconditioned) systems of equations (6). In
the first set of experiments we have considered a coarse space constructed from
piecewise linear discontinuous elements. The condition number estimates to-
gether with the corresponding iteration counts needed to reach convergence (be-

Preconditioner ME

1

H ↓ h → h0 h0/2 h0/4 h0/8

H0 5.1815 (23) 5.9422 (25) 9.0724 (33) 17.1532 (45)
H0/2 - 5.2452 (23) 5.9113 (26) 8.9409 (33)
H0/4 - - 5.3608 (23) 5.9822 (26)
H0/8 - - - 5.4379 (23)

Preconditioner ME

2

H ↓ h → h0 h0/2 h0/4 h0/8

H0 6.6250 (27) 7.6977 (30) 11.6106 (37) 21.7983 (49)
H0/2 - 7.5231 (29) 8.0398 (31) 11.9791 (39)
H0/4 - - 7.9609 (30) 8.3793 (32)
H0/8 - - - 8.2273 (31)

Preconditioner ME

3

H ↓ h → h0 h0/2 h0/4 h0/8

H0 6.6459 (27) 7.7096 (30) 11.6134 (37) 21.7993 (49)
H0/2 - 7.5603 (29) 8.0511 (31) 11.9826 (39)
H0/4 - - 7.9947 (30) 8.3903 (32)
H0/8 - - - 8.2664 (31)

B
−1/2

h AhB
−1/2

h 1.2229e+2 ( 52) 4.7212e+2 (100) 1.8726e+3 (202) 7.4752e+3 ( 410)

Ah 2.5173e+4 (115) 3.9949e+5 (229) 6.3800e+6 (486) 1.0309e+8 (1040)

Table 2. Preconditioners ME

1, ME

2 and ME

3 (N = 16, α = 1):
condition number estimates and iteration counts. Piecewise linear
discontinuous coarse space.

tween parenthesis) for all the considered preconditioners are reported in Table 2
on a partition with 16 subdomains. For the sake of comparison, we also re-
port (last but one row of Table 2) the condition number estimate of the matrix

B
−1/2
h AhB

−1/2
h together with the iteration counts needed for the solution of the lin-

ear system of equations (6). The last row of Table 2 shows the condition number
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and the corresponding iteration counts of the original unpreconditioned system
of equations Ahx = f. The numerical results confirm the theoretical estimates
provided in Theorem 4.1: the condition number of the preconditioned system
behaves asymptotically as H/h, and, consequently, the iteration counts behaves

asymptotically as
√
H/h. By a comparison with the computed condition number

of the matrix Ah it is clear that the application of all the preconditioners drasti-
cally reduce the condition number of the system, and consequently, the iteration
counts needed for convergence.

Next, we investigate the scalability of the preconditioners, i.e., the indepen-
dence of the performance on the number of subdomains. To this end we repeated
the same set of experiments decreasing the number of subdomains from N = 16
to N = 4: the results are reported in Table 3. As predicted from our theoretical
estimates, the condition number of the preconditioned system is independent of
the number of subdomains.

Preconditioner ME

1

H ↓ h → h0 h0/2 h0/4 h0/8

H0 4.8722 (21) 5.7042 (24) 8.9088 (30) 16.5838 (40)
H0/2 - 5.0710 (22) 5.8873 (25) 9.0200 (32)
H0/4 - - 5.3561 (23) 5.9792 (26)
H0/8 - - - 5.4471 (23)

Preconditioner ME

2

H ↓ h → h0 h0/2 h0/4 h0/8

H0 6.8843 (27) 7.7219 (29) 11.8249 (37) 21.5324 (50)
H0/2 - 7.4641 (29) 8.2226 (31) 12.1736 (38)
H0/4 - - 8.0459 (30) 8.4641 (32)
H0/8 - - - 8.2667 (31)

Preconditioner ME

3

H ↓ h → h0 h0/2 h0/4 h0/8

H0 6.9179 (27) 7.7294 (29) 11.8275 (37) 21.5322 (50)
H0/2 - 7.5241 (29) 8.2336 (31) 12.1763 (38)
H0/4 - - 8.0865 (30) 8.4768 (32)
H0/8 - - - 8.3095 (31)

B
−1/2

h AhB
−1/2

h 1.2229e+2 ( 52) 4.7212e+2 (100) 1.8726e+3 (202) 7.4752e+3 ( 410)

Ah 2.5173e+4 (115) 3.9949e+5 (229) 6.3800e+6 (486) 1.0309e+8 (1040)

Table 3. Preconditioners ME

1, ME

2 and ME

3 (N = 4, α = 1): con-
dition number estimates and iteration counts. Piecewise linear dis-
continuous coarse space.

Next, we investigate the effect of the coarse space on the performance of our
preconditioners. To this end, we ran the same set of experiments as before (on
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a partition with 16 subdomains) employing a piecewise constant coarse space.
Table 4 reports the condition number estimates and the corresponding iteration
counts. Note that whenever we employ a piecewise constant coarse space the
bilinear forms Sh(·, ·) and S∗

h(·, ·) turn out to be identical, and therefore the
preconditioners ME

2 and ME

3 coincide. For this reason, in Table 4 we only report
the results obtained with the preconditioners ME

1 and ME

2. We observe that the
performance of the preconditioners are consistently poorer. On the other hand
with this choice of coarse space only one degree of freedom per coarse element is
required.

Preconditioner ME

1

H ↓ h → h0 h0/2 h0/4 h0/8

H0 9.1821 (27) 19.1929 (38) 39.5807 (50) 80.6716 (70)
H0/2 - 10.6855 (31) 22.1790 (44) 45.2087 (64)
H0/4 - - 11.8751 (36) 24.4631 (50)
H0/8 - - - 12.7832 (38)

Preconditioner ME

2

H ↓ h → h0 h0/2 h0/4 h0/8

H0 9.4006 (29) 20.2353 (40) 42.7406 (54) 88.3442 (76)
H0/2 - 11.6003 (35) 23.9082 (48) 49.1192 (68)
H0/4 - - 13.2304 (38) 26.8473 (55)
H0/8 - - - 14.4078 (41)

B
−1/2

h AhB
−1/2

h 1.2229e+2 ( 52) 4.7212e+2 (100) 1.8726e+3 (202) 7.4752e+3 ( 410)

Ah 2.5173e+4 (115) 3.9949e+5 (229) 6.3800e+6 (486) 1.0309e+8 (1040)

Table 4. Preconditioners ME

1 and ME

2 (N = 16, α = 1): condi-
tion number estimates and iteration counts. Piecewise constant
discontinuous coarse space.

5.2. Inexact local solvers. In this section we test the performance of the
Schwarz preconditioners (with inexact local solvers)

MI

1 =

N∑

i=1

RT
i (AI

i )
−1Ri + RT

0 D−1
0 R0,

MI

2 =
N∑

i=1

RT
i (AI

i )
−1Ri + RT

0 S−1
0 R0,

MI

3 =

N∑

i=1

RT
i (AI

i )
−1Ri + RT

0 (S∗
0)

−1R0,

applied to the original symmetric (preconditioned) systems of equations (6).
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Preconditioner MI

1

H ↓ h → h0 h0/2 h0/4 h0/8

H0 4.2990 (21) 7.3572 (28) 14.3928 (40) 29.5718 (57)
H0/2 - 4.7076 (22) 7.7532 (30) 14.4282 (41)
H0/4 - - 4.9095 (23) 8.1509 (30)
H0/8 - - - 5.0121 (23)

Preconditioner MI

2

H ↓ h → h0 h0/2 h0/4 h0/8

H0 5.5549 (25) 9.4431 (32) 18.7975 (45) 38.8577 (64)
H0/2 - 6.2441 (26) 10.1556 (34) 18.7271 (47)
H0/4 - - 6.5799 (28) 10.6361 (35)
H0/8 - - - 6.6286 (29)

Preconditioner MI

3

H ↓ h → h0 h0/2 h0/4 h0/8

H0 5.5855 (25) 9.4545 (32) 18.8013 (45) 38.8591 (64)
H0/2 - 6.2788 (27) 10.1688 (35) 18.7303 (47)
H0/4 - - 6.6139 (28) 10.6507 (35)
H0/8 - - - 6.6689 (29)

B
−1/2

h AhB
−1/2

h 1.2229e+2 ( 52) 4.7212e+2 (100) 1.8726e+3 (202) 7.4752e+3 ( 410)

Ah 2.5173e+4 (115) 3.9949e+5 (229) 6.3800e+6 (486) 1.0309e+8 (1040)

Table 5. Preconditioners MI

1, MI

2 and MI

3 (N = 16, α = 1):
condition number estimates and iteration counts. Piecewise linear
discontinuous coarse space.

We ran the same set of experiments as before. More precisely, in Table 5 and
Table 6 we compare the condition number estimates and the iteration counts
obtained on a subdomain partition made of N = 16 and N = 4 subdomains,
respectively, employing a piecewise linear discontinuous coarse space. As ex-
pected, the preconditioners with inexact local solvers are also scalable, and the
condition number estimates of the preconditioned system are in agreement with
Theorem 4.1: the computed condition number seems to behave as O(H/h).

Finally, we test again the performance of the preconditioners where the coarse
spaces are constructed from piecewise constant polynomials. The computed con-
dition number estimates and the corresponding iteration counts obtained by em-
ploying the preconditioners MI

1 and MI

2 are shown in Table 7. By comparing
the results with the analogous ones presented in the previous Section 5.1 it can
been inferred that employing exact local solvers improves the performance of the
preconditioner slightly.
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Preconditioner MI

1

H ↓ h → h0 h0/2 h0/4 h0/8

H0 4.4817 (20) 7.3013 (26) 13.8371 (36) 27.7972 (51)
H0/2 - 4.7381 (21) 7.8524 (28) 14.4631 (38)
H0/4 - - 4.7748 (22) 8.1640 (29)
H0/8 - - - 4.9653 (23)

Preconditioner MI

2

H ↓ h → h0 h0/2 h0/4 h0/8

H0 5.9734 (24) 9.7880 (31) 18.2750 (42) 36.4445 (58)
H0/2 - 6.4031 (26) 10.4022 (34) 18.9555 (45)
H0/4 - - 6.6069 (28) 10.7379 (35)
H0/8 - - - 6.5152 (28)

Preconditioner MI

3

H ↓ h → h0 h0/2 h0/4 h0/8

H0 6.0084 (24) 9.8017 (31) 18.2784 (42) 36.4448 (58)
H0/2 - 6.4362 (27) 10.4172 (34) 18.9593 (45)
H0/4 - - 6.6491 (28) 10.7544 (34)
H0/8 - - - 6.5739 (28)

B
−1/2

h AhB
−1/2

h 1.2229e+2 ( 52) 4.7212e+2 (100) 1.8726e+3 (202) 7.4752e+3 ( 410)

Ah 2.5173e+4 (115) 3.9949e+5 (229) 6.3800e+6 (486) 1.0309e+8 (1040)

Table 6. Preconditioners MI

1, MI

2 and MI

3 (N =4, α=1): condi-
tion number estimates and iteration counts. Piecewise linear dis-
continuous coarse space.

Preconditioner M
I

1

H ↓ h → h0 h0/2 h0/4 h0/8

H0 10.6099 (29) 24.6977(43) 54.5351 (63) 114.8625 (91)
H0/2 - 12.2398 (34) 26.7205 (49) 56.2146 (71)
H0/4 - - 13.2809 (37) 28.0078 (51)
H0/8 - - - 14.0256 (38)

Preconditioner M
I

2

H ↓ h → h0 h0/2 h0/4 h0/8

H0 12.0117 (31) 28.4619 (46) 62.7619 (67) 132.3684 (95)
H0/2 - 14.0306 (36) 30.7275 (52) 64.7140 (74)
H0/4 - - 15.1082 (40) 31.8235 (55)
H0/8 - - - 15.8052 (42)

B
−1/2

h AhB
−1/2

h 1.2229e+2 ( 52) 4.7212e+2 (100) 1.8726e+3 (202) 7.4752e+3 ( 410)

Ah 2.5173e+4 (115) 3.9949e+5 (229) 6.3800e+6 (486) 1.0309e+8 (1040)

Table 7. Preconditioners MI

1 and MI

2 (N = 16, α = 1): condi-
tion number estimates and iteration counts. Piecewise constant
discontinuous coarse space.
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5.3. Variable penalty parameter. The aim of this section is to validate the in-
dependence on the penalty parameter α of the estimates for the condition number
of the preconditioned system proved in Theorem 4.1.

For the sake of brevity we focus only on the performance of the preconditioners
ME

1 and MI

1, additionally throughout this section we employ a piecewise constant
coarse solver. In Figure 5.3 we report the condition number estimates of the
preconditioned system for different values of α. Although our theory requires
α ≥ 1 for the sake of completeness we report here the results obtained with
α = 10−2, . . . , 104, and different mesh configurations. Results obtained with
exact local solvers, i.e., the preconditioner ME

1, are shown in Figure 3(a), whereas
Figure 3(b) shows the analogous results obtained with inexact local solvers, i.e.,
the preconditioner MI

1. As expected, our preconditioner is fairly insensitive on
the choice of the penalization constant.

(a) Preconditioner ME

1
(exact local solvers)

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

 

 

h
0
/4, H

0

h
0
/4, H

0
/2

h
0
/4, H

0
/4

κ(B
h
−1/2A

h
 B

h
−1/2)

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

 

 

h
0
/8, H

0

h
0
/8, H

0
/2

h
0
/8, H

0
/4

h
0
/8, H

0
/8

κ(B
h
−1/2A

h
 B

h
−1/2)

(b) Preconditioner MI
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Figure 4. Preconditioners ME

1 and MI

1 (N = 16): condition num-
ber estimates as a function of the penalty parameter α. Piecewise
constant coarse solver.
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Appendix A. Appendix

The aim of this section is to show Lemma 2.1. For that purpose, we first recall
a result that provides a natural splitting of the DG linear functions.

Proposition A.1. [5, Proposition 3.1] For any u ∈ Vh there exist a unique
v ∈ V CR

h and a unique z ∈ Zh such that u = v + z. That is: Vh = V CR

h ⊕ Zh,
where V CR

h is the classical Crouziex-Raviart space defined by

V CR

h :=
{
v ∈ L2(Ω) : v|T ∈ P1(T ) ∀T ∈ Th and Π0

e([[v]]) = 0 ∀ e ∈ E◦
h

}
.

and the space Zh is defined by:

Zh :=
{
v ∈ L2(Ω) : v|T ∈ P1(T ) ∀T ∈ Th and Π0

e({{v}}) = 0 ∀ e ∈ E◦
h

}
.

A natural set of basis functions associated to midpoints of edges can be given
for both spaces V CR

h and Zh, i.e.,

(58) V CR
h = span{ϕCR

e }e∈E◦

h
Zh = span{ψZh

e,T}e∈E◦

h
⊕ span{ψZh

e,T}e∈E∂
h
.

Therefore, an edgewise ordering of the dofs of any u ∈ Vh facilitates the use of
the above splitting.

For any u ∈ Vh, let v ∈ V CR
h and z ∈ Zh such that u = v + z. Now, we fix an

interior edge e = ∂T+ ∩ ∂T−, e ∈ E◦
h and, we denote by ve (resp. ze) the vector

containing the degrees of freedom of v|e∩T+ and v|e∩T− (resp. z|e∩T+ and z|e∩T−).
Using the definition of the spaces V CR

h and Zh, it follows that,

ve =

[
ve

ve

]
, ze =

[
|ze|
−|ze|

]
, ue =

[
u+

u−

]
=

[
ve + |ze|
ve − |ze|

]
= ve + ze.

Therefore, we have that

(Be
h)

−1/2ue =

[
ve + βe|ze|
ve − βe|ze|

]
= ve + βeze ∀e ∈ E◦

h,

where βe is defined as in (8). Therefore, with such a decomposition the action of
the operator (Be

h)
−1/2 can be read as the one that, on each interior edge, leaves

untouched the Crouziex-Raviart part of the DG function and acts only on its
highly oscillatory component z. Analogously, on each boundary edge e ∈ E∂

h , we
have

(Be
h)

−1/2QT ue = β∂
e ze ∀e ∈ E∂

h ,
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where, following [5], we have assigned the dofs corresponding to the boundary
edges (of the Dirichlet problem) in Zh (or, analogously, the Dirichlet boundary
conditions with Crouzeix-Raviart elements are imposed strongly). Summarizing,
we have

(59) (Be
h)

−1/2ue =

{
ve + βeze if e ∈ E◦

h,

βeze if e ∈ E∂
h ,

where βe is defined in (8).
We also recall the following result from [5]. We report the proof for the sake

of completeness.

Lemma A.2. For any z ∈ Zh it holds that

(60)
∑

T∈Th

‖∇z‖2
0,T ≤ C2

t

∑

e∈Eh

1

he
‖Πe

0([[z]])‖2
0,e ,

where Ct is the constant in the trace inequality (and so depends only on the shape
regularity of the mesh).

Proof. Integrating by parts, recalling that since z ∈ Zh is piecewise linear then
∆z = 0 on each T ∈ Th, and the definition (4) of the operator Πe

0(·) yield

∑

T∈Th

‖∇z‖2
0,T = (∇z,∇z)0,T

= −
∑

T∈Th

∫

T

∆zz dx+
∑

e∈Eh

∫

e

{{∇z}} · [[z]] ds+
∑

e∈E◦

h

∫

e

[[∇z]] · {{z}} ds

=
∑

e∈Eh

∫

e

{{∇z}} · Πe
0([[z]]) ds+

∑

e∈E◦

h

∫

e

[[∇z]] · Πe
0({{z}}) ds

=
∑

e∈Eh

∫

e

{{∇z}} · Πe
0([[z]]) ds

≤
∑

e∈Eh

h1/2
e ‖ {{∇z}} ‖0,e h

−1/2
e ‖Πe

0([[z]])‖0,e.

The thesis follows by employing the standard trace inequality. �

Finally, we are ready to prove Lemma 2.1.

Proof of Lemma 2.1. From the decomposition of the space Vh given in Proposi-
tion A.1, any u ∈ Vh can be decomposed uniquely as u = ucr+uz, with ucr ∈ V CR

h

and uz ∈ Zh. Recalling now that B
−1/2
h u = ucr + βuz, with β|e = βe defined as in
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(8), we find
∑

e∈Eh

α

h3
e

‖Π0([[B
−1/2
h u]])‖2

0,e =
∑

e∈Eh

α

h3
e

‖Π0([[ucr + βeu
z]])‖2

0,e =
∑

e∈Eh

β2
e

α

h3
e

‖Π0([[uz]])‖2
0,e

≤
∑

e∈Eh

1

he
‖Π0([[u]])‖2

0,e,

where the last bound follows from estimate (9). We now show the continuity (16).
For any u, w ∈ Vh, we write u = ucr + uz and w = wcr +wz with ucr , wcr ∈ V CR

h

and uz, wz ∈ Zh. Then, the Cauchy-Schwarz inequality and the above inequality,
gives

Dh(u, w) ≤
(
∑

T∈Th

‖∇(ucr + βuz)‖2
0,T

)1/2(∑

T∈Th

‖∇(wcr + βwz)‖2
0,T

)1/2

(61)

+

(
∑

e∈Eh

1

he
‖Π0([[u]])‖2

0,e

)1/2(∑

e∈Eh

1

he
‖Π0([[w]])‖2

0,e

)1/2

.

We now estimate each term on the right hand side separately (it is enough to do
this for u = ucr+uz). The triangle inequality, the arithmetic-geometric inequality
together with Lemma A.2, and the definition (8) of β yield the estimate
∑

T∈Th

‖∇(ucr + βuz)‖2
0,T .

∑

T∈Th

(
‖∇ucr‖2

0,T + β2‖∇uz‖2
0,T

)

=
∑

T∈Th

(
‖∇(ucr + uz − uz)‖2

0,T + β2‖∇uz‖2
0,T

)

.
∑

T∈Th

‖∇(ucr + uz)‖2
0,T +

∑

e∈Eh

(1 + β2
e )

he

‖Πe
0([[u

z]])‖2
0,e

.
∑

T∈Th

‖∇u‖2
0,T +

∑

e∈Eh

1

he
‖Πe

0([[u]])‖2
0,e.(62)

which yields (16).

We now prove the coercivity. Cauchy-Schwarz inequality, the arithmetic-
geometric inequality and estimate (60) from Lemma A.2 imply

2

∣∣∣∣
∫

Ω

β∇hu
cr · ∇hu

z dx

∣∣∣∣ ≤ 2‖β∇hu
cr‖0,Ω‖∇hu

z‖0,Ω

≤ 8C2
t β

2‖∇hu
cr‖2

0,Ω +
1

8C2
t

‖∇hu
z‖2

0,Ω ,

≤ 8C2
t β

2‖∇hu
cr‖2

0,Ω +
1

8

∑

e∈Eh

1

he
‖Π0([[u

z]])‖2
0,e ,
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where Ct denotes the constant for the trace inequality. The above estimate to-
gether with the scaling of βe given in (9) and the assumption α ≥ 1 yield

1

he
≥ β2

e

α

h3
e

=
α

he

(
1

kα + h2
e

)
≥ α

he

(
1

kα + 1

)
≥ 1

2khe
≥ 1

4he
,

with k = 1 if e ∈ E◦
h and k = 2 if e ∈ E∂

h . The above observations together with
Lemma A.2 finally give

Dh(u, u) ≥ ‖∇hu
cr‖2

0,Ω + β2‖∇hu
z‖2

0,Ω

+
∑

e∈Eh

β2
e

α

h3
e

‖Π0([[uz]])‖2
0,e − 2β

∣∣∣∣
∫

Ω

∇hu
cr · ∇hu

z dx

∣∣∣∣

&
(
1 − 8C2

t β
2
)
‖∇hu

cr‖2
0,Ω + β2‖∇hu

z‖2
0,Ω

+

(
1

4
− 1

8

)∑

e∈Eh

1

he

‖Π0([[u
z]])‖2

0,e

&
(
1 − 8C2

t β
2
)
‖∇hu

cr‖2
0,Ω + β2‖∇hu

z‖2
0,Ω +

∑

e∈Eh

1

8he
‖Π0([[u]])‖2

0,e,

Hence, by taking h so that 1 − 8C2
t β

2 ≥ 1/2 > 0, we have

Dh(u, u) ≥
1

2
‖∇hu

cr‖2
0,Ω + β2|uz|21,h +

∑

e∈Eh

1

8he
‖Π0([[u]])‖2

0,e,

and therefore, discarding the low order terms we finally obtain (because of line-
break Lemma A.2)

Dh(u, u) & ‖∇hu
cr‖2

0,Ω +
∑

e∈Eh

1

8he

‖Π0([[u]])‖2
0,e & ‖u‖2

DG

for all h ≤
√

2α
16C2

t −1
and the proof is complete. �
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