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TWO-STEP BDF TIME DISCRETISATION OF NONLINEAR

EVOLUTION PROBLEMS GOVERNED BY MONOTONE

OPERATORS WITH STRONGLY CONTINUOUS

PERTURBATIONS

E.EMMRICH1

Abstract — The time discretisation of the initial-value problem for a first-order evo-
lution equation by the two-step backward differentiation formula (BDF) on a uniform
grid is analysed. The evolution equation is governed by a time-dependent monotone
operator that might be perturbed by a time-dependent strongly continuous operator.
Well-posedness of the numerical scheme, a priori estimates, convergence of a piecewise
polynomial prolongation, stability as well as smooth-data error estimates are provided
relying essentially on an algebraic relation that implies the G-stability of the two-step
BDF with constant time steps.
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1. Introduction

In this paper, we are concerned with the time discretisation of the initial-value problem for
a nonlinear evolution equation,

u′ + Au = f in (0, T ), u(0) = u0. (1.1)

The operator A is supposed to be the sum of Nemytskii operators A0 and B corresponding
to the families of nonlinear operators {A0(t)}t∈[0,T ] and {B(t)}t∈[0,T ], respectively. The main
assumptions are that, uniformly in t ∈ [0, T ], A(t) + κI : V → V ∗ (with V ⊆ H ⊆ V ∗ being
a Gelfand triple and I being the identity) is coercive for some κ > 0, A0(t) + κI : V → V ∗

is hemicontinuous and monotone, and B(t) : V → V ∗ is strongly continuous, has range in
H , and fulfills a local Lipschitz-type condition. Moreover, A0(t) and B(t) are supposed to
fulfill a growth condition.

The time discretisation under consideration is a two-step backward differentiation formula
(BDF) with constant time steps ∆t = T/N (N ∈ N) for the computation of un ≈ u(tn)
(n = 2, 3, . . . , N, tn = n∆t),

1

∆t

(
3

2
un − 2un−1 +

1

2
un−2

)
+ A(tn)un = fn, n = 2, 3, . . . , N, (1.2)
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with given approximation {fn}N
n=1 of the right-hand side f and starting values u0 ≈ u0, u1 ≈

u(∆t).

Nonlinear evolution equations of first order are well known for the mathematical de-
scription of many time-dependent real-world phenomena, and so there is a vast literature
on their analysis as well as approximate solution (cf. the monographs of Barbu [5], Brézis
[7], Dautray and Lions [10], Fujita et al. [15], Gajewski et al. [16], Henry [26], Kačur [29],
Lions [33], Lunardi [37], Martin [38], Pazy [42], Rektorys [43], Roub́ıček [44], Sell and You
[45], Showalter [46], Tanabe [50], Temam [53], Zeidler [55], and the references therein). Our
framework follows essentially Emmrich [14], Gajewski et al. [16], Roub́ıček [44], and Zeidler
[55].

For the time discretisation of linear evolution problems, we refer to the standard text of
Thomée [54]. Many authors have analysed the backward Euler method for the time discreti-
sation of particular nonlinear partial differential equations and abstract evolution equations.
There is, however, comparatively little knowledge about the stability, convergence, and er-
ror estimates for other schemes, especially as applied to rather general classes of nonlinear
evolution problems.

The approximation of semilinear evolution equations by means of single-step methods
was considered, e.g., by Crouzeix and Thomée [9], Slodička [47, 48], Lubich and Ostermann
[36], and by means of linear multistep methods, e.g., by Hill and Süli [27]. Calvo and
Palencia [8] studied explicit multistep exponential integrators. Implicit-explicit multistep
methods were considered by Akrivis et al. [1–3].

The time discretisation for a certain class of quasi-linear evolution problems by explicit
multistep schemes was studied by Hass and Kreth [25]. Zlámal [56] has analysed A-stable
two- and one-step methods for quasi-linear parabolic problems of second order, and Le Roux
[32] analysed A(θ)-stable multistep methods for abstract quasi-linear evolution equations.
For the analysis of Runge — Kutta methods applied to quasi-linear evolution equations, we
refer to González and Palencia [19] and Lubich and Ostermann [34].

Linearisation was used by Lubich and Ostermann [35] in order to prove stability and error
estimates for linearly implicit one-step methods applied to nonlinear evolution equations
posed in a Gelfand triple. The backward Euler and strongly A(θ)-stable Runge — Kutta
discretisations of fully nonlinear problems, which are governed by a densely defined nonlinear
mapping in a Banach space whose first Fréchet derivative is sectorial, have been dealt with,
again by linearisation, Ostermann and Thalhammer [40] (see also [18] for a similar approach).
Within the same analytical framework, stability of linear multistep methods has been studied
in [41].

Axelsson and Gololobov [4] have derived stability and error estimates for the θ-scheme
applied to an evolution equation governed by a strongly monotone operator. Evolution
equations governed by maximal monotone operators and their approximation by Runge —
Kutta as well as linear multistep methods (including the two-step BDF) have been studied
by Hansen [22–24].

Among the abundance of methods, the backward differentiation formulae (BDF) seem
to be of particular interest as they are favourable for the integration of stiff problems. For
analysis of the BDF applied to ordinary differential equations, we refer in particular to the
monographs of Hairer et al. [20, 21] and Stuart and Humphnes [49].

Error estimates for the two-step BDF with constant time steps applied to the semilinear
incompressible Navier — Stokes problem have been considered, e.g., by Girault and Raviart
[17], Le Roux [32], Hill and Süli [28], and Emmrich [12], whereas the convergence of a
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piecewise polynomial prolongation of the discrete solution has been shown in [13]. In [39],
singly implicit Runge — Kutta methods and also BDF have been applied to a class of quasi-
linear parabolic problems. Emmrich [11] has studied the two-step BDF with variable time
steps for a class of mildly semilinear evolution equations. Kreth [30, 31] has studied the
two-step BDF with constant time steps applied to a nonlinear evolution problem governed
by a family of time-dependent, continuous, strongly monotone operators mapping a Hilbert
space into itself.

In this paper, we prove, for a large class of nonlinear evolution problems, the convergence
of piecewise polynomial prolongations of the discrete numerical solution towards a weak
solution to the nonlinear initial-value problem (1.1). A priori estimates for the numerical
solution are the essential prerequisite for the convergence. Moreover, we show stability of
the numerical solution with respect to the data. Stability estimates uniform in ∆t then allow
to derive a priori error estimates for sufficiently regular solutions.

All results rely upon the theory of monotone operators and compactness arguments
together with algebraic relations describing the properties of the temporal discretisation.
Possible extensions and restrictions of the results are exemplified for the incompressible
Navier — Stokes problem for which A0 is linear.

It should be noted that results analogous to those obtained here for the two-step BDF
can similarly, although somewhat more easily, be derived for the implicit Euler method (cf.
also corresponding results in [44, Ch. 8.2]). For evolution equations governed by a monotone
potential operator, Roub́ıček [44, Rem. 8.20] postulates convergence results for the two-step
BDF relying upon an algebraic relation that is different from those employed here.

Unlike other work, we allow explicitly time depending operators and perturbations of the
monotone main part. Moreover, our results do not rely upon linearisation and, therefore,
do not require differentiability of the nonlinear operator A. Finally, the operator A is not
supposed to be a potential operator. Note, however, that our assumptions imply global
well-posedness of the original problem (1.1) which is different from the approach in, e.g.,
[40], [18], and [41].

The paper is organized as follows: In Section 2, we describe the analytical framework and
assumptions on the nonlinear operator A. Moreover, we collect some results concerning the
well-posedness of the original problem (1.1). The discretisation and its main properties are
discussed in Section 3. A priori estimates and the main convergence result are then proven
in Section 4. Finally, in Section 5, stability and error estimates are derived.

2. Time continuous problem

Let V ⊆ H ⊆ V ∗ be a Gelfand triple with a reflexive, separable, real Banach space (V, ‖ · ‖)
which is dense and continuously embedded in the Hilbert space (H, (·, ·), | · |). The dual V ∗

of V is equipped with the usual norm ‖f‖∗ := supv∈V \{0}〈f, v〉/‖v‖, where 〈·, ·〉 denotes the
dual pairing. Sometimes we emphasise the spaces by a subscript as in 〈·, ·〉V ∗×V .

For a Banach space X and the time interval [0, T ], let Lr(0, T ; X) (r ∈ [1,∞]) be the
usual space of Bochner integrable (for r = ∞ Bochner measurable and essentially bounded)
abstract functions. The discrete counterpart for functions defined on a time grid will be
denoted by lr(0, T ; X). In the following, let p ∈ (1,∞) and let q = p/(p−1) be the conjugated
exponent. The dual pairing between Lp(0, T ; V ) and Lq(0, T ; V ∗) = (Lp(0, T ; V ))∗ is given
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by

〈f, v〉Lq(0,T ;V ∗)×Lp(0,T ;V ) =

T∫

0

〈f(t), v(t)〉V ∗×V dt.

Similarly we have (L1(0, T ; H))
∗

= L∞(0, T ; H) and

〈f, v〉L∞(0,T ;H)×L1(0,T ;H) =

T∫

0

(f(t), v(t))dt.

The inner product in L2(0, T ; H) is denoted by (·, ·)L2(0,T ;H).
The space

X := Lp(0, T ; V ) ∩ L2(0, T ; H), ‖v‖X := ‖v‖Lp(0,T ;V ) + ‖v‖L2(0,T ;H),

is a reflexive, separable Banach space. The dual space X∗ can be identified with Lq(0, T ; V ∗)+
L2(0, T ; H), equipped with the norm

‖f‖X∗ := inf
f1∈Lq(0,T ;V ∗), f2∈L2(0,T ;H)

f=f1+f2

max
(
‖f1‖Lq(0,T ;V ∗), ‖f2‖L2(0,T ;H)

)
.

If f possesses the representation f = f1 + f2 with f1 ∈ Lq(0, T ; V ∗), f2 ∈ L2(0, T ; H) then
the dual pairing between f ∈ X∗ and v ∈ X is given by

〈f, v〉X∗×X =

T∫

0

(〈f1(t), v(t)〉V ∗×V + (f2(t), v(t))) dt =

T∫

0

〈f(t), v(t)〉V ∗×V dt

(see also [16] for more details). Note that X ⊆ L2(0, T ; H) ⊆ X∗ forms a Gelfand triple.
If p > 2, then X = Lp(0, T ; V ), X∗ = Lq(0, T ; V ∗), and we work with the standard norms
‖v‖X := ‖v‖Lp(0,T ;V ), ‖f‖X∗ := ‖f‖Lq(0,T ;V ∗).

By v′, we denote the time derivative of v in the distributional sense. We remember that
for p ∈ (1,∞) the Banach space

W := {v ∈ X : v′ ∈ X
∗}, ‖v‖W := ‖v‖X + ‖v′‖X∗ ,

is continuously embedded in C([0, T ]; H), the space of uniformly continuous functions with
values in H . Due to the compactness theorem by Aubin and Lions (see Lions [33, Thm. 5.2
in Ch. 1]) and the continuous embeddings X →֒ Lp(0, T ; V ), X

∗ →֒ Lmin(q,2)(0, T ; V ∗), we

also have W
c→֒ Lp(0, T ; H) if V

c→֒ H . A sequence that is bounded in W thus possesses
a subsequence that is strongly convergent in Lp(0, T ; H). Because of the boundedness in
L∞(0, T ; H) (remember that W →֒ C([0, T ]; H)), there is only one in Lr(0, T ; H) for any

r ∈ [1,∞) follows. Therefore, W
c→֒ Lr(0, T ; H) for all r ∈ [1,∞) if V

c→֒ H .
Let {A0(t)}t∈[0,T ] and {B(t)}t∈[0,T ] be two families of operators A0(t) : V → V ∗ and

B(t) : V → V ∗. We set A(t) := A0(t) + B(t) (t ∈ [0, T ]) and associate the Nemytskii op-
erators A0, B, A acting on abstract functions via (A0v)(t) := A0(t)v(t), (Bv)(t) = B(t)v(t),
(Av)(t) = A(t)v(t) (t ∈ [0, T ]) for the function v : [0, T ] → V . If B 6= 0, then V is assumed
to be compactly embedded in H . Each result in this paper relies upon one or more of the
following structural assumptions, where κ > 0 and p ∈ (1,∞) are suitable numbers:
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(H1) The mappings t 7→ A0(t) and t 7→ B(t) are weakly measurable on (0, T ), i.e., for all
v, w ∈ V , t 7→ 〈A0(t)v, w〉 and t 7→ 〈B(t)v, w〉 are Lebesgue measurable on (0, T ).

(H2) The operators A0(t) + κI : V → V ∗ (t ∈ [0, T ]), where I denotes the identity, are
hemicontinuous and monotone.

(H3) The operators B(t) (t ∈ [0, T ]) map V into H . There is some δ ∈ (0, p] and for any
R > 0 there is some β = β(R) > 0 such that for all t ∈ [0, T ] and v, w ∈ V with
max(|v|, |w|) 6 R

|B(t)v − B(t)w| 6 β(R)
(
1 + ‖v‖p−δ + ‖w‖p−δ

)
|v − w|.

(H4) For any R > 0 there is some α = α(R) > 0 such that for all t ∈ [0, T ] and v ∈ V with
|v| 6 R

‖A(t)v‖∗ 6 ‖A0(t)v‖∗ + ‖B(t)v‖∗ 6 α(R)
(
1 + ‖v‖p−1

)
.

(H5) There are constants µ > 0 and λ > 0 such that for all t ∈ [0, T ] and v ∈ V

〈(A(t) + κI)v, v〉 > µ‖v‖p − λ.

For B(t) (t ∈ [0, T ]), the growth condition (H4) already follows from (H3) if δ > 1 and
t 7→ |B(t)0| is bounded. Besides (H1), we sometimes need the following stronger assumption

(H1′) For all v ∈ V , the mappings t 7→ A0(t)v and t 7→ B(t)v with values in V ∗ are
continuous a.e. in (0, T ).

Instead of (H2), we also work with the assumption

(H2′) The operators A0(t) + κI : V → V ∗ (t ∈ [0, T ]) are hemicontinuous and there is a
constant µ0 > 0 such that for all t ∈ [0, T ] and v, w ∈ V

〈(A0(t) + κI)v − (A0(t) + κI)w, v − w〉 > µ0‖v − w‖p.

With (H2′), we have to suppose that p > 2 because there is no monotone operator
fulfilling the property above with p ∈ [1, 2). Note that (H2′) is stronger than (H2) and
implies uniform monotonicity and thus coercivity of A0(t) + κI.

In order to obtain stability and error estimates, we may rely upon the following assump-
tion instead of (H3) if (H2′) holds true:

(H3′) The operators B(t) : V → V ∗ (t ∈ [0, T ]) are strongly continuous.

Let p = 2. There is some δ ∈ (0, 2] and s ∈ (0, 1], and for any R > 0 there exists
β = β(R) > 0 such that for all t ∈ [0, T ] and v, w ∈ V with max(|v|, |w|) 6 R

〈B(t)v − B(t)w, v − w〉 > −β(R)
(
1 + ‖v‖2−δ + ‖w‖2−δ

)s |v − w|s‖v − w‖2−s.

Let p > 2. There is some δ ∈ (0, p] and for any R > 0 there exists β = β(R) > 0 such
that for all t ∈ [0, T ] and v, w ∈ V with max(|v|, |w|) 6 R

〈B(t)v − B(t)w, v − w〉 > −β(R)
(
1 + ‖v‖p−δ + ‖w‖p−δ

)
|v − w|2. (2.1)
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Obviously, there is a gap between the two cases p = 2 and p > 2 as the condition for p = 2
is much weaker than that for p > 2. However, we were not able to prove reasonable stability
or error estimates in the case p > 2 with an assumption that is weaker than condition (2.1)
and allows a potency of ‖v − w‖.

Assumption (H3′) for p > 2 immediately follows from (H3). Moreover, (H3′) for p = 2
follows from either of the following two continuity assumptions (the first one leads to s = 1):

(H3′′p=2) The operators B(t) : V → V ∗ (t ∈ [0, T ]) are strongly continuous and their range
is in H . There is some δ ∈ (0, 2] and for any R > 0 there exists β = β(R) > 0 such
that for all t ∈ [0, T ] and v, w ∈ V with max(|v|, |w|) 6 R

|B(t)v − B(t)w| 6 β(R)
(
1 + ‖v‖2−δ + ‖w‖2−δ

)
‖v − w‖.

(H3′′′p=2) There is some δ ∈ (0, 2] and s ∈ (0, 1], and for any R > 0 there exists β = β(R) > 0
such that for all t ∈ [0, T ] and v, w ∈ V with max(|v|, |w|) 6 R

‖B(t)v − B(t)w‖∗ 6 β(R)
(
1 + ‖v‖2−δ + ‖w‖2−δ

)s |v − w|s‖v − w‖1−s.

In applications, (H3′′′p=2) will be weaker than (H3′′p=2) and s will be small. The growth
condition (H4) follows for B(t) (t ∈ [0, T ]) already from (H3′′′p=2) if δ > 1 and t 7→ ‖B(t)0‖∗
is bounded. If V

c→֒ H , then (H3), as well as (H3′′′p=2), this is a fixed term of B(t) : V → V ∗

(t ∈ [0, T ]). We remark that, for obtaining convergence and error estimates, the continuity
assumptions on B(t) (t ∈ [0, T ]) can be further relaxed as we will discuss later.

Finally, the coercivity assumption (H5) can, at least for some of the results, be replaced
by the semicoercivity of A(t) + κI (t ∈ [0, T ]): Let ||| · ||| be a seminorm on V and let there
be a constant c > 0 such that for all v ∈ V

‖v‖ 6 c (|||v||| + |v|) .

Then A(t) + κI (t ∈ [0, T ]) is said to be semicoercive (see Roubiček [44, p. 202]) if for all
v ∈ V

〈(A(t) + κI)v, v〉 > µ|||v|||p − λ.

Indeed, with
(a + b)r 6 2r−1(ar + br), a, b > 0, r > 1, (2.2)

it can easily be shown that then

〈(A(t) + (κ + µ)I)v, v〉 > µ
(
|||v|||p + |v|2

)
− λ > µ

(
|||v|||min(p,2) + |v|min(p,2) − 2

)
− λ >

21−min(p,2)µ (|||v||| + |v|)min(p,2) − 2µ − λ > 21−min(p,2)c−min(p,2)µ‖v‖min(p,2) − 2µ − λ,

and so (H5) follows with p := min(p, 2), κ := κ + µ, λ := 2µ + λ, µ := 21−min(p,2)c−min(p,2)µ.
A typical example for the functional setting above is given by the initial-boundary value

problem for the nonlinear differential equation for u = u(x, t)

∂tu −∇ ·
(
ϕ(x, t, |∇u|p−1)|∇u|p−2∇u

)
+ a0(x, t, u,∇u) + b(x, t, u,∇u) = f

with p > 2 in a bounded, sufficiently smooth domain Ω ⊂ R
d, supplemented by, e.g., ho-

mogeneous Dirichlet boundary conditions. The bounded function ϕ : Ω × [0, T ] × R
+
0 → R

with a positive lower bound is supposed to fulfill the Carathéodory condition. Moreover,
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y 7→ ϕ(·, ·, y)y is assumed to be monotonically increasing and Lipschitz continuous. Under
suitable assumptions on the Carathéodory functions a0 and b and taking V = W 1,p

0 (Ω),
H = L2(Ω), the main part of the spatial differential operator and the semilinearity corre-
sponding to a0 may be collected within the operator A0, whereas the semilinearity corre-
sponding to b determines the operator B. Some simple concrete examples for the case p = 2
are a0(x, t, u,∇u) = c(x, t) · ∇u with ∇ · c(x, t) 6 2κ a.e. in Ω × (0, T ) for some κ > 0,
a0(x, t, u,∇u) = u|u|γ with γ < 4/d for d > 2, b(x, t, u,∇u) = sin u. See also [16, pp. 68 ff.,
215 ff.], [44, pp. 232 ff.], and [55, pp. 567 ff., 590 ff., 779 ff.] for applications.

Some essential properties of the Nemytskii operators A0, B, A are collected in the follow-
ing proposition.

Proposition 2.1. Under assumptions (H1) and (H4), the operators A0, B, and A =
A0 + B map Lp(0, T ; V ) ∩ L∞(0, T ; H) into (Lp(0, T ; V ))∗ = Lq(0, T ; V ∗) and are bounded.

If, in addition, (H5) holds true, then A + κI fulfills for all v ∈ Lp(0, T ; V )∩L∞(0, T ; H)

〈(A + κI)v, v〉Lq(0,T ;V ∗)×Lp(0,T ;V ) > µ‖v‖p
Lp(0,T ;V ) − λT.

Moreover, (H2) implies that A0+κI : Lp(0, T ; V )∩L∞(0, T ; H) ⊂ Lp(0, T ; V ) → Lq(0, T ; V ∗)
is hemicontinuous and monotone. With (H2′) instead of (H2), A0 + κI is in addition uni-
formly monotone such that for all v, w ∈ Lp(0, T ; V ) ∩ L∞(0, T ; H)

〈(A0 + κI)v − (A0 + κI)w, v − w〉Lq(0,T ;V ∗)×Lp(0,T ;V ) > µ0‖v − w‖p
Lp(0,T ;V ).

With (H3), B is a strongly continuous mapping from W into Lr(0, T ; H) for all r ∈
[1, p/(p − δ)). With (H3′′p=2) and δ ∈ [1, 2], B is a continuous mapping from L2(0, T ; V ) ∩
L∞(0, T ; H) into Lr(0, T ; H) for all r ∈ [1, 2/(3 − δ)]. With (H3 ′′′

p=2), B is a strongly
continuous mapping from W(0, T ) into Lr(0, T ; V ∗) with r ∈ [1, 2/(1 − (δ − 1)s)).

The proof of the first assertions follows arguments similar to those given in [14, Lemma
8.4.4] and is omitted here. We only note that the Bochner measurability of the images results
from Pettis’ theorem together with Carathéodory properties that are fulfilled in particular
due to the monotonicity and continuity of A0(t) + κI and B(t) (t ∈ [0, T ]), respectively.
The proof of the continuity statements for B relies upon the compact embedding of W into
Lr(0, T ; H) for arbitrary r ∈ [1,∞) and Hölder’s inequality.

The following theorem summarises the results on the well-posedness of (1.1) under our
structural assumptions.

Theorem 2.1. If (H1), (H2), (H3) or (H3′′′p=2), (H4), (H5) hold true, then, for any
u0 ∈ H and f ∈ X∗, there is a unique solution u ∈ W to the initial-value problem (1.1) such
that (1.1) holds in X∗.

Let f = f1 + f2 with f1 ∈ Lq(0, T ; V ∗), f2 ∈ L2(0, T ; H). The solution then satisfies for
all t ∈ [0, T ] the a priori estimates

|u(t)|2 +

t∫

0

‖u(s)‖pds 6 c

(
|u0|2 +

t∫

0

(
‖f1(s)‖q

∗ + |f2(s)|2
)
ds + λt

)
=: M,

t∫

0

‖u′(s) − f2(s)‖q
∗ds +

t∫

0

‖A(s)u(s)‖q
∗ds 6 M ′, (2.3)

where M ′ depends on M and is bounded on bounded subsets.
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Moreover, the following stability estimates are fulfilled for solutions u, v ∈ W with initial
data u0, v0 ∈ H and right-hand sides f, g: Let f, g ∈ L2(0, T ; H), then

|u(t) − v(t)|2 6 c

(
|u0 − v0|2 +

t∫

0

|f(s) − g(s)|2ds

)
,

where c > 0 depends on the a priori bounds for u and v. Let f, g ∈ Lq(0, T ; V ∗) and assume,
in addition, (H2′) and (H3′). Then

|u(t) − v(t)|2 +

t∫

0

‖u(s) − v(s)‖pds 6 c

(
|u0 − v0|2 +

t∫

0

‖f(s) − g(s)‖q
∗ds

)
,

where c > 0 again depends on the a priori bounds for u and v.

Proof. The existence proof can be carried out by means of a Galerkin approximation or
the Rothe method but the existence of a solution also follows from Theorem 4.1 below (with
somewhat stronger assumptions). Uniqueness immediately follows from (2.4) below. The
proof of the a priori estimates follows standard arguments.

For the first stability estimate, we subtract the equations for u and v and test with u−v.
With the monotonicity assumption (H2) and the continuity assumption (H3), we find

1

2

d

dt
|u(t) − v(t)|2 − κ|u(t) − v(t)|2 − β(M)

(
1 + ‖u(t)‖p−δ + ‖v(t)‖p−δ

)
|u(t) − v(t)|2 =

〈f(t)− g(t), u(t)− v(t)〉 6 |f(t)− g(t)||u(t)− v(t)| 6 1

2
|f(t)− g(t)|2 +

1

2
|u(t)− v(t)|2, (2.4)

where M denotes the maximum of the two a priori bounds from (2.3) for u0, f and v0, g.
With

d

dt

(
e−

R t

0 Λ(s)ds|u(t) − v(t)|2
)

= e−
R t

0 Λ(s)ds

(
d

dt
|u(t) − v(t)|2 − Λ(t)|u(t) − v(t)|2

)
,

Λ(t) :=
(
1 + 2κ + 2β(M)

(
1 + ‖u(t)‖p−δ + ‖v(t)‖p−δ

))
,

we obtain

|u(t) − v(t)|2 6 e
R t

0
Λ(s)ds

(
|u0 − v0|2 +

t∫

0

|f(s) − g(s)|2ds

)
.

This proves, together with (2.3), the stability estimate since

T∫

0

Λ(s)ds 6 (1 + 2κ + 2β(M))T + 2β(M)

T∫

0

(
‖u(s)‖p−δ + ‖v(s)‖p−δ

)
ds.

Assuming (H3′′′p=2) instead of (H3), the estimate can be derived in a similar way by employ-
ing Young’s inequality. Assuming (H2′) and (H3′), the second stability estimate is proven
analogously. �

Analogous a priori and stability estimates will later be derived for the time-discrete
problem.
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For B ≡ 0 and with a growth condition more restrictive than (H4) (independent on R),
the existence and uniqueness are also shown in, e.g.,[5, Thm. 4.2 on p. 167] and [55, Thm.
30.A]. Roubiček [44, Thm. 8.28] provides existence results for a larger class of evolution
problems, including the case B 6≡ 0. The case B 6≡ 0 is also considered in [14, Satz 8.4.2]
but under more restrictive assumptions. Regularity results for evolution equations governed
by a monotone operator are provided, e.g., in [16, pp. 217 ff.] and [44, Thm. 8.16, 8.18].

3. Time discrete problem

For N ∈ N, let ∆t := T/N , tn := n∆t (n = 0, 1, . . . , N). For a grid function {un}N
n=n0

(n0 ∈ {0, 1, . . . , N}) with values in a Banach space (X, ‖·‖X), we write {un}N
n=n0

∈ lr(0, T ; X)
(r ∈ [1,∞]) if

∆t

N∑

n=n0

‖un‖r
X (r ∈ [1,∞)) and max

n=n0,...,N
‖un‖X (r = ∞),

respectively, is bounded independently of ∆t. Moreover, we define the divided differences

D1u
n :=

un − un−1

∆t
,

D2u
n :=

3

2
D1u

n − 1

2
D1u

n−1 =
1

∆t

(
3

2
un − 2un−1 +

1

2
un−2

)
,

D2un :=
un+1 − 2un + un−1

(∆t)2
,

and the extrapolation
Eun := 2un−1 − un−2.

For a Bochner integrable function f , we define the natural restrictions

Rn
1f :=

1

∆t

tn∫

tn−1

f(t) dt, Rn
2f :=

3

2
Rn

1f − 1

2
Rn−1

1 f.

For a smooth function u, we have Rn
ku

′ = Dku(tn) = u′(tn) + O
(
(∆t)k

)
(k ∈ {1, 2}),

D2u(tn) = u′′(tn) + O ((∆t)2) as well as Eu(tn) = u(tn) + O ((∆t)2). Let f = f1 + f2 with
f1 ∈ Lq(0, T ; V ∗), f2 ∈ L2(0, T ; H). By standard arguments, it can be shown that for
k ∈ {1, 2}, n = k, k + 1, . . . , N ,

∆t

n∑

j=k

‖Rj
kf1‖q

∗ 6 c

tn∫

0

‖f1(t)‖q
∗dt, ∆t

n∑

j=k

|Rj
kf2|2 6 c

tn∫

0

|f2(t)|2dt,

and so {Rn
kf}N

n=k ∈ lq(0, T ; V ∗) + l2(0, T ; H). Here and in the following, we denote by c a
generic positive constant that is independent of ∆t.

The G-stability of the two-step BDF on an equidistant time grid follows from the algebraic
identity

4

(
3

2
a − 2b +

1

2
c

)
a = a2 + (2a − b)2 − b2 − (2b − c)2 + (a − 2b + c)2, a, b, c ∈ R,
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which immediately proves for {un}N
n=2 ⊂ H the important relation

4(D2u
n, un) = D1

(
|un|2 + |Eun+1|2

)
+ (∆t)3|D2un−1|2, n = 2, 3, . . . , N, (3.1)

which will be frequently used in what follows.
The temporal approximation (1.2) of (1.1) we wish to study now reads as

D2u
n + A(tn)un = fn, n = 2, 3, . . . , N, (3.2)

with given approximations fn (n = 2, 3, . . . , N) for the right-hand side f and initial values
u0 ≈ u0, u1 ≈ u(t1). The value u1 can be computed from u0 by means of the implicit Euler
step

D1u
1 + A(t1)u

1 = f 1. (3.3)

Theorem 3.1. Assume (H2), (H5) and let B(t) : V → V ∗ (t ∈ [0, T ]) be strongly
continuous. For any u0, u1 ∈ H and {fn}N

n=2 ⊂ V ∗ there is at least one solution {un}N
n=2 ⊂ V

to (3.2) if ∆t 6 3/(2κ). The solution is unique if ∆t < 3/(2κ) and B ≡ 0.

Proof. In each time step, (3.2) is equivalent to the operator equation

3

2∆t
un + A0(tn)un + B(tn)un = fn +

2

∆t
un−1 − 1

2∆t
un−2

with the right-hand side in V ∗ since V ⊆ H ⊆ V ∗. Its solvability follows from Brézis’ theorem
on pseudomonotone operators (see e.g. Zeidler [55, Thm. 27.A]) since for each time level tn
the operator 3

2∆t
I + A0(tn) : V → V ∗ is hemicontinuous and monotone if ∆t 6 3/(2κ), the

operator B(tn) : V → V ∗ is strongly continuous, and the sum of these operators is coercive
if ∆t 6 3/(2κ). The uniqueness in the case B ≡ 0 follows from the strict monotonicity of

3
2∆t

I + A0(tn) : V → V ∗ if ∆t < 3/(2κ). �

Uniqueness for B 6= 0 will follow from the stability results in Section 5 (see Remark 5.1).

4. A priori estimates and convergence

Proposition 4.1. Assume (H5) and let ∆t 6 τ < 1/(4κ) for some τ < T . If u0, u1 ∈ H
and fn = fn

1 + fn
2 (n = 2, 3, . . . , N) with {fn

1 }N
n=2 ∈ lq(0, T ; V ∗), {fn

2 }N
n=2 ∈ l2(0, T ; H) then

any solution {un}N
n=2 to (3.2) is in l∞(0, T ; H) ∩ lp(0, T ; V ) and satisfies the estimate

max
j=2,...,N

|uj|2 + (∆t)4

N∑

j=2

|D2uj−1|2 + ∆t

N∑

j=2

‖uj‖p 6

c

(
|u0|2 + |u1|2 + ∆t

N∑

j=2

(‖f j
1‖q

∗ + |f j
2 |2) + λT

)
=: M.

Assume, in addition, (H4). Then {A(tn)un}N
n=2 ∈ lq(0, T ; V ∗), {D2u

n}N
n=2 ∈ lq(0, T ; V ∗) +

l2(0, T ; H), and the estimate

∆t
N∑

j=2

‖D2u
j − f j

2‖q
∗ + ∆t

N∑

j=2

‖A(tj)u
j‖q

∗ 6 M ′

holds true, where M ′ depends on M and is bounded on bounded subsets.
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Proof. Testing (3.2) by un, employing (3.1) and the coercivity condition (H5) as well as
Young’s inequality leads to

1

4
D1

(
|un|2 + |Eun+1|2

)
+

(∆t)3

4
|D2un−1|2 + µ‖un‖p − λ − κ|un|2 6

c‖fn
1 ‖q

∗ +
µ

2
‖un‖p + c|fn

2 |2 + ε|un|2,

where ε > 0 is supposed to be sufficiently small such that 4(κ + ε)τ < 1. The first assertion
follows from summing up upon noting that for any grid function {an} and ν > 0 with
ν∆t < 1

D1 ((1 − ν∆t)nan) = (1 − ν∆t)n−1 (D1a
n − νan) . (4.1)

We take here an := |un|2 + |Eun+1|2 and ν = 4(κ + ε). Note also that (1 − ν∆t)−n 6

(1 − ν∆t)−N 6 (1 − ντ)−T/τ 6 exp (νT/(1 − ντ)) (n = 1, 2, . . . , N).
For n = 2, 3, . . . , N , the growth condition (H4) yields with (p − 1)q = p

∆t

n∑

j=2

‖A(tj)u
j‖q

∗ 6 cα(
√

M)q

(
T + ∆t

n∑

j=2

‖uj‖p

)
.

Moreover, we have
D2u

n = fn
1 + fn

2 − A(tn)un

and

∆t

n∑

j=2

‖D2u
j − f j

2‖q
∗ = ∆t

n∑

j=2

‖f j
1 − A(tj)u

j‖q
∗ 6 c∆t

n∑

j=2

‖f j
1‖q

∗ + c∆t

n∑

j=2

‖A(tj)u
j‖q

∗.

This, together with the first estimate, proves the second assertion. �

From the discrete solution {un}N
n=0 of (3.2) corresponding to the partition of [0, T ] with

the step size ∆t, we now construct functions U∆t and V∆t defined on [0, T ]. We then study
the convergence of U∆t and V∆t towards the exact solution as ∆t → 0.

Let

U∆t(t) :=

{
u1, if t ∈ [0, t1],

un, if t ∈ (tn−1, tn] (n = 2, 3, . . . , N);

V∆t(t) :=

{
1
2
(u1 + Eu2) + D1u

1 (t − t1), if t ∈ [0, t1],
1
2
(un + Eun+1) + D2u

n (t − tn), if t ∈ (tn−1, tn] (n = 2, 3, . . . , N).

The construction of V∆t reflects the choice of the method: The value u1 is thought to be
computed by the implicit Euler method (3.3); if another method is used, then the definition
above has to be modified appropriately. The slope of V∆t in (tn−1, tn] is D2u

n for n =
2, 3, . . . , N , and the function is continuous. However, V∆t does not interpolate as V∆t(tn) =
3
2
un − 1

2
un−1 for n = 2, 3, . . . , N .

There are other possible prolongations that we will not consider here, e.g., the interpolat-
ing linear spline, the discontinuous interpolating piecewise linear function with slope D2u

n

in (tn−1, tn] (n = 2, 3, . . . , N), or a continuous piecewise quadratic interpolation. Results for
such prolongations, however, rely upon the functions U∆t and V∆t above.

For a null sequence {(∆t)k} of time steps (∆t)k := T/Nk ({Nk} ⊂ N with Nk → ∞
as k → ∞) and corresponding problems (3.2) with initial values u0

(∆t)k
, u1

(∆t)k
, we always
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assume u0
(∆t)k

, u1
(∆t)k

∈ V . Moreover, we suppose that the right-hand side of (3.2), (3.3) is
given such that the representation

fn
(∆t)k

= fn
1,(∆t)k

+ fn
2,(∆t)k

(n = 1, 2, . . . , Nk) (4.2)

with {fn
1,(∆t)k

}Nk

n=1 ∈ lq(0, T ; V ∗), {fn
2,(∆t)k

}Nk

n=1 ∈ l2(0, T ; H) holds true. Finally, we assume
that

|u0
(∆t)k

|2 + |u1
(∆t)k

|2 + (∆t)k‖u0
(∆t)k

‖p + (∆t)k‖u1
(∆t)k

‖p + (∆t)k‖D1u
1
(∆t)k

− f 1
2,(∆t)k

‖q
∗ 6 c,

(∆t)k|D1u
1
(∆t)k

| → 0. (4.3)

The first part of assumption (4.3) is fulfilled if u0
(∆t)k

:= u0 ∈ V and u1
(∆t)k

∈ V is

computed from (3.3). The proof is analogous to the one of Proposition 4.1 and relies upon
the algebraic identity

2(a − b)a = a2 − b2 + (a − b)2, a, b, c ∈ R,

which gives
2∆t(D1u

1, u1) = |u1|2 − |u0|2 + |u1 − u0|2.
In view of the stability estimates for the continuous problem (see Theorem 2.1), the assump-
tion u0 ∈ V is not a restriction as we can always approximate u0 ∈ H by an element of V .
The second part of assumption (4.3) then follows from the first part if (∆t)k|f 1

(∆t)k
|2 → 0.

This can be seen by testing (3.3) with u1 − u0 and employing the coercivity of A(t1) + κI
and the growth condition for A(t1). The condition on f 1

(∆t)k
is fulfilled if f 1

(∆t)k
is, e.g., the

natural restriction R1
1f of f ∈ L2(0, T ; H) on (0, (∆t)k). If (H2′) and (H3′) are fulfilled,

then only u0 ∈ V and (∆t)k‖f 1
(∆t)k

‖q
∗ → 0 is required in order to ensure the second part of

assumption (4.3). The condition on f 1
(∆t)k

is fulfilled if f 1
(∆t)k

is, e.g., the natural restriction

of f ∈ Lq(0, T ; V ∗) on (0, (∆t)k).

Proposition 4.2. Let {(∆t)k} be a null sequence of time steps. Under the assumptions
of Proposition 4.1 and if (4.2), (4.3) are fulfilled, there is a subsequence {(∆t)k′} and an
element U ∈ W such that

U(∆t)k′
⇀ U in Lp(0, T ; V ), U(∆t)k′

∗
⇀ U in L∞(0, T ; H),

V(∆t)k′
⇀ U in Lp(0, T ; V ), V(∆t)k′

∗
⇀ U in L∞(0, T ; H),

V ′
(∆t)k′

⇀ U ′ in X
∗ = Lq(0, T ; V ∗) + L2(0, T ; H).

If, in addition, V
c→֒ H, then {V(∆t)k′

} also converges strongly in Lr(0, T ; H) towards U for
all r ∈ [1,∞).

Proof. From the definition of {U(∆t)k
} and {V(∆t)k

} and with Proposition 4.1 together
with (4.3), it follows that {U(∆t)k

} and {V(∆t)k
} are bounded in L∞(0, T ; H) and Lp(0, T ; V ).

Moreover, the sequence of derivatives {V ′
(∆t)k

} is bounded in X∗. The existence of a weakly*

in L∞(0, T ; H) and weakly in Lp(0, T ; V ) convergent subsequence of {U(∆t)k
} and {V(∆t)k

},
respectively, follows now from standard compactness arguments (see [6, Thm. III.26 f.]).
Moreover, there exists a subsequence of {V ′

(∆t)k
} that converges weakly in X∗.

Let {(∆t)k′} be a suitable subsequence of {(∆t)k} and let U ∈ Lp(0, T ; V )∩L∞(0, T ; H)
be the (weak and weak*) limit of {U(∆t)k′

}, whereas the limit of {V(∆t)k′
} is denoted by
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Ũ ∈ Lp(0, T ; V ) ∩ L∞(0, T ; H). It can easily be shown that Ũ ′ ∈ X∗ is the weak limit of

{V ′
(∆t)k′

} and thus Ũ ∈ W.

We show that U = Ũ in Lp(0, T ; V )∩L∞(0, T ; H). In what follows, we omit the subscripts
k and k′. Since

V∆t(t) − U∆t(t) =

{
D1u

1
(
t − t1 + ∆t

2

)
, if t ∈ [0, t1],

∆t
2

D1u
n + D2u

n (t − tn), if t ∈ (tn−1, tn] (n = 2, 3, . . . , N),

and since

D1u
n = D2u

n − ∆t

2
D2un−1,

we find (remember representation (4.2))

V∆t(t) − U∆t(t) =





(D1u
1 − f 1

2 )
(
t − t1 + ∆t

2

)
+ f 1

2

(
t − t1 + ∆t

2

)
, if t∈ [0, t1],

(D2u
n − fn

2 )
(
t − tn + ∆t

2

)
− (∆t)2

4
D2un−1+

fn
2

(
t − tn + ∆t

2

)
, if t∈(tn−1, tn], n=2, 3, . . . , N.

(4.4)

It follows that

‖V∆t − U∆t‖X∗ 6 c max

((
(∆t)q+1‖D1u

1 − f 1
2‖q

∗ + (∆t)q+1
N∑

j=2

‖D2u
j − f j

2‖q
∗+

(∆t)2q+1

N∑

j=2

‖D2uj−1‖q
∗

)1/q

,

(
(∆t)3

N∑

j=1

|f j
2 |2

)1/2)
. (4.5)

By assumption, (∆t)3
∑N

j=1 |f
j
2 |2 tends to zero as ∆t → 0. In view of (4.3) and Proposi-

tion 4.1, also (∆t)q+1‖D1u
1 − f 1

2‖q
∗ and (∆t)q+1

∑N
j=2 ‖D2u

j − f j
2‖q

∗ tend to zero as ∆t → 0.
For the remaining term, we observe with H →֒ V ∗ and Hölder’s inequality that

(∆t)2q+1

N∑

j=2

‖D2uj−1‖q
∗ 6 c(∆t)2q+1

N∑

j=2

|D2uj−1|q 6

c





(∆t)2q+1 max
j=0,...,N

|(∆t)−2uj|q−2
N∑

j=2

|D2uj−1|2, if p < 2,

(∆t)5
N∑

j=2

|D2uj−1|2, if p = 2,

(∆t)2q+1(∆t)−1+q/2

(
N∑

j=2

|D2uj−1|2
)q/2

, if p > 2,

=

c






(∆t)5
N∑

j=2

|D2uj−1|2 max
j=0,...,N

|uj|q−2, if p < 2,

(∆t)5
N∑

j=2

|D2uj−1|2, if p = 2,

(
(∆t)5

N∑
j=2

|D2uj−1|2
)q/2

, if p > 2.
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So, because of the a priori estimate in Proposition 4.1, also this term converges towards
zero as ∆t → 0. This shows that the difference V∆t − U∆t converges strongly in X∗ to-
wards zero as ∆t → 0. Because of U∆t ⇀ U , V∆t ⇀ Ũ in Lp(0, T ; V ) and U∆t

∗
⇀ U ,

V∆t
∗
⇀ Ũ in L∞(0, T ; H), we also have U∆t ⇀ U , V∆t ⇀ Ũ in Lmin(p,q)(0, T ; V ∗) =(

Lmax(p,q)(0, T ; V )
)∗

. Since X∗ →֒ Lmin(p,q)(0, T ; V ∗), the limits U and Ũ are equal at least as

elements of Lmin(p,q)(0, T ; V ∗). However, Lmax(p,q)(0, T ; V ) is dense in Lq(0, T ; V ∗) as well as in

L1(0, T ; H) and so we find U = Ũ in Lp(0, T ; V )∩L∞(0, T ; H)=(Lq(0, T ; V ∗)+L1(0, T ; H))∗.

If V
c→֒ H , the strong convergence of a subsequence of {V(∆t)k

} in Lp(0, T ; H) follows

since {V(∆t)k
} is bounded in W

c→֒ Lp(0, T ; H). The boundedness in L∞(0, T ; H) then implies
convergence in Lr(0, T ; H) for all r < ∞. �

Theorem 4.1. Assume (H1′), (H2), (H3) with δ > min(1, p/2) or (H3′′′p=2) with δ > 1,
(H4), (H5). If B 6= 0 or κ 6= 0, then assume that V is compactly embedded in H. Let u0 ∈ H
and f ∈ X∗ be given. For a null sequence {(∆t)k} of time steps, consider the corresponding
sequence of problems (3.2), (3.3) with u0

(∆t)k
, u1

(∆t)k
∈ V fulfilling (4.3) as well as

1

2
(u1

(∆t)k
+ u0

(∆t)k
) → u0 in H (4.6)

and the right-hand side {fn
(∆t)k

}Nk

n=1 being given by the natural restrictions of f . Then the

limit U ∈ W from Proposition 4.2 is a solution to the initial-value problem (1.1) such that
(1.1) holds in X

∗ and both {U(∆t)k
} and {V(∆t)k

} converge weakly in Lp(0, T ; V ) and weakly*
in L∞(0, T ; H) towards U .

Proof. In what follows, we omit the subscripts k and k′ for a suitable subsequence. With
the aid of the functions U∆t and V∆t, the numerical scheme (3.2), (3.3) can be rewritten as
the differential equation

V ′
∆t + A∆tU∆t = f∆t , 0 < t 6 T, (4.7)

where f∆t : [0, T ] → V ∗ is defined via f∆t(t) := Rn
2f for t ∈ (tn−1, tn] (n = 2, 3, . . . , N) and

f∆t(t) := Rn
1f for t ∈ [0, t1], A∆t := A0,∆t + B∆t with A0,∆t being piecewise constant such

that A0,∆t(t) = A0(tn) for t ∈ (tn−1, tn] (n = 1, 3, . . . , N) and B∆t being defined analogously.
The properties of the Nemytskii operator A0,∆t and B∆t are analogous to those of A0 and
B, respectively, as stated in Proposition 2.1. In particular, A0,∆t and B∆t are well-defined
on Lp(0, T ; V ) ∩ L∞(0, T ; H) with range in X∗.

By standard arguments, we find the strong convergence f∆t → f in X∗.
Because of assumption (H4), (4.3), and Proposition 4.1, we know that {A∆tU∆t} is

bounded in Lq(0, T ; V ∗). So, we can extract a subsequence of time steps such that we
have the convergence results from Proposition 4.2 as well as

A∆tU∆t ⇀ b in Lq(0, T ; V ∗) (4.8)

for some b ∈ Lq(0, T ; V ∗). With Proposition 4.2, we then obtain

0 = V ′
∆t + A∆tU∆t − f∆t ⇀ U ′ + b − f in X

∗

and thus
U ′ + b = f in X

∗. (4.9)

In what follows, we show that U ∈ W fulfills the initial condition and that b = AU . This,
finally, proves that U is a weak solution to the initial-value problem (1.1).
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Since {V∆t} is bounded in W →֒ C([0, T ]; H), for any t ∈ [0, T ], the sequence {V∆t(t)} is
bounded in H and (together with (4.6)) we have for a suitable subsequence

V∆t(0) =
1

2
(u1

∆t + u0
∆t) → u0 in H

as well as

V∆t(T ) =
3

2
uN

∆t −
1

2
uN−1

∆t ⇀ θ in H

for some θ ∈ H . Since U, V∆t ∈ W, we can employ integration by parts and obtain for all
v ∈ V and φ ∈ C1([0, T ])

(U(T ), v)φ(T ) − (U(0), v)φ(0) =

T∫

0

(
〈U ′(t), v〉φ(t) + 〈U(t), v〉φ′(t)

)
dt =

T∫

0

(
〈f(t) − b(t), v〉φ(t) + 〈U(t), v〉φ′(t)

)
dt =

T∫

0

(
〈f(t) − f∆t(t) + V ′

∆t(t) + A∆t(t)U∆t(t) − b(t), v〉φ(t) + 〈U(t), v〉φ′(t)
)
dt =

T∫

0

(
〈f(t) − f∆t(t) + A∆t(t)U∆t(t) − b(t), v〉φ(t) + 〈U(t) − V∆t(t), v〉φ′(t)

)
dt+

(V∆t(T ), v)φ(T )− (V∆t(0), v)φ(0).

Taking the limit on the right-hand side, we come up with

(U(T ), v)φ(T ) − (U(0), v)φ(0) = (θ, v)φ(T ) − (u0, v)φ(0).

Choosing φ(T ) = 0 and φ(0) = 0, respectively, we find that U(0) = u0 and U(T ) = θ in H
since V ∋ v is dense in H .

The method for proving b = AU is similar to Minty’s well-known monotonicity trick.
Let us show that B∆tU∆t → BU in X∗. So, let B 6= 0. We then have additionally the

compact embedding V
c→֒ H at hand. We firstly show that U∆t → U in Lr(0, T ; H) for all

r ∈ [1,∞) (remember that already V∆t → U in Lr(0, T ; H) for all r ∈ [1,∞)). Since {U∆t}
is bounded in L∞(0, T ; H) and U ∈ L∞(0, T ; H), it suffices to show U∆t → U in L2(0, T ; H).

Because of U∆t
∗
⇀ U in L∞(0, T ; H), we already know that U∆t ⇀ U in L2(0, T ; H) and it

remains to show ‖U∆t‖L2(0,T ;H) → ‖U‖L2(0,T ;H) as L2(0, T ; H) is a Hilbert space. We observe

∣∣∣‖U∆t‖2
L2(0,T ;H) − ‖U‖2

L2(0,T ;H)

∣∣∣ =
∣∣∣(U∆t, U∆t)L2(0,T ;H) − (U, U)L2(0,T ;H)

∣∣∣ =

∣∣∣(U∆t − V∆t, U∆t)L2(0,T ;H) + (V∆t − U, U∆t)L2(0,T ;H) + (U∆t − U, U)L2(0,T ;H)

∣∣∣ 6

‖U∆t − V∆t‖X∗‖U∆t‖X + ‖V∆t − U‖L2(0,T ;H)‖U∆t‖L2(0,T ;H) +
∣∣∣(U∆t − U, U)L2(0,T ;H)

∣∣∣ .
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Each of the terms on the right-hand side converges towards zero as ∆t → 0 since U∆t−V∆t →
0 in X∗ (see estimate (4.5) and the according arguments), V∆t → U in L2(0, T ; H) if V

c→֒ H ,
U∆t ⇀ U in L2(0, T ; H), and {U∆t} is bounded in Lp(0, T ; V ) and L2(0, T ; H).

With (H3) and the boundedness of {U∆t} in Lp(0, T ; V ), we obtain B∆tU∆t−B∆tU → 0 in
Lr(0, T ; H) for all r ∈ [1, p/(p−δ)) and thus in Lq(0, T ; V ∗) if δ > 1 as well as in L2(0, T ; H)
if δ > p/2. Hence, B∆tU∆t − B∆tU → 0 in X∗ if δ > min(1, p/2). With (H3′′′p=2) instead
of (H3) and δ > 1, it immediately follows B∆tU∆t − B∆tU → 0 in L2(0, T ; V ∗). In view of
(H1′), we have for almost all t ∈ (0, T )

‖B∆t(t)U(t) − B(t)U(t)‖∗ → 0.

Since also (see the growth condition (H4)) where the right-hand side is integrable, we find
by Lebesgue’s theorem that B∆tU → BU in Lq(0, T ; V ∗).

It follows B∆tU∆t → BU in X∗ and thus (because of U∆t ⇀ U in X)

〈B∆tU∆t, U∆t〉 → 〈BU, U〉, (4.10)

where here and in the following 〈·, ·〉 is the dual pairing between X
∗ and X.

Since U, V∆t ∈ W, we find with integration by parts

〈U ′, U〉 =
1

2

(
|U(T )|2 − |U(0)|2

)
=

1

2

(
|U(T )|2 − |u0|2

)

as well as

〈V ′
∆t, V∆t〉 =

1

2

(
|V∆t(T )|2 − |V∆t(0)|2

)

and hence (remember V∆t(T ) ⇀ U(T ), V∆t(0) → u0 in H)

〈U ′, U〉 6 lim inf〈V ′
∆t, V∆t〉.

Together with f∆t → f in X∗ and U∆t ⇀ U in X, we obtain from (4.9), (4.10), and (4.7)

〈b − BU, U〉 = 〈f − U ′ − BU, U〉 >

lim sup
(
〈f∆t − V ′

∆t − B∆tU∆t, U∆t〉 + 〈V ′
∆t, U∆t − V∆t〉

)
=

lim sup
(
〈A0,∆tU∆t, U∆t〉 + 〈V ′

∆t, U∆t − V∆t〉
)
. (4.11)

The monotonicity of A0(t)+κI : V → V ∗ (t ∈ [0, T ]) implies the monotonicity of A0,∆t+κI :
Lp(0, T ; V ) ∩ L∞(0, T ; H) ⊂ X → X∗ and shows for all w ∈ Lp(0, T ; V ) ∩ L∞(0, T ; H)

〈A0,∆tU∆t, U∆t〉 > 〈A0,∆tU∆t, U∆t〉 − 〈A0,∆tU∆t − A0,∆tw, U∆t − w〉 − κ‖U∆t − w‖2
L2(0,T ;H) =

〈A0,∆tU∆t, w〉 + 〈A0,∆tw, U∆t − w〉 − κ‖U∆t − w‖2
L2(0,T ;H). (4.12)

We then observe that

〈A0,∆tU∆t, w〉 = 〈A∆tU∆t, w〉 − 〈B∆tU∆t, w〉 → 〈b, w〉 − 〈BU, w〉 = 〈b − BU, w〉.

With (H1′), we also have A0,∆tw → A0w in Lq(0, T ; V ∗) (as was shown for B∆t above) and
thus U∆t ⇀ U in X implies

〈A0,∆tw, U∆t − w〉 → 〈A0w, U − w〉.
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Since U∆t → U in L2(0, T ; H) if V
c→֒ H , we also have

‖U∆t − w‖L2(0,T ;H) → ‖U − w‖L2(0,T ;H). (4.13)

Altogether, we find from (4.12)

lim sup〈A0,∆tU∆t, U∆t〉 > 〈b − BU, w〉 + 〈A0w, U − w〉 − κ‖U − w‖2
L2(0,T ;H). (4.14)

It remains to analyse 〈V ′
∆t, U∆t − V∆t〉. A straightforward calculation shows that

(
3

2
a − 2b +

1

2
c

)
(a − 2b + c) =

3

2
(a − b)2 − 2(a − b)(b − c) +

1

2
(b − c)2 >

1

2
(a − b)2 − 1

2
(b − c)2, a, b, c ∈ R.

With the definition of V∆t and (4.4), we thus obtain

〈V ′
∆t, U∆t − V∆t〉 =

N∑

n=1

tn∫

tn−1

〈V ′
∆t(t), U∆t(t) − V∆t(t)〉dt =

−
t1∫

0

(
t−t1 +

∆t

2

)
dt|D1u

1
∆t|2 −

N∑

n=2

tn∫

tn−1

(
t−tn +

∆t

2

)
dt|D2u

n
∆t|2 +

(∆t)3

4

N∑

n=2

(
D2u

n
∆t, D

2un
∆t

)
=

1

4

N∑

n=2

(3

2
un

∆t − 2un−1
∆t +

1

2
un−2

∆t , un
∆t − 2un−1

∆t + un−2
∆t

)
=

1

4

N∑

n=2

(3

2
|un

∆t − un−1
∆t |2 − 2(un

∆t − un−1
∆t , un−1

∆t − un−2
∆t ) +

1

2
|un−1

∆t − un−2
∆t |2

)
>

1

8

N∑

n=2

(
|un

∆t − un−1
∆t |2 − |un−1

∆t − un−2
∆t |2

)
> −1

8
|u1

∆t − u0
∆t|2,

which converges by assumption (4.3) towards zero.
From (4.11) and (4.14), we now obtain for all w ∈ Lp(0, T ; V ) ∩ L∞(0, T ; H)

〈b − BU, U〉 > 〈b − BU, w〉 + 〈A0w, U − w〉 − κ‖U − w‖2
L2(0,T ;H)

and thus
〈b − BU, U − w〉 > 〈A0w, U − w〉 − κ‖U − w‖2

L2(0,T ;H).

With w = U ± sv (v ∈ Lp(0, T ; V ) ∩ L∞(0, T ; H)) and s → 0+, the hemicontinuity of A0

proves
〈b − BU, v〉 = 〈A0U, v〉

and thus, by density, b = AU in Lq(0, T ; V ∗). So, U ∈ W is a weak solution to (1.1).
By contradiction, we can show that the whole sequences {V∆t} and {U∆t} converge

towards U since a solution to (1.1) is unique in W. �

Note that assumption (4.6) follows from (4.3) if u0
(∆t)k

→ u0 in H . The compact embed-

ding V
c→֒ H is also employed if B ≡ 0 but κ 6= 0 in order to have (4.13).

Assumption (H3) with δ > min(1, p/2) or (H3′′′p=2) with δ > 1 on B(t) (t ∈ [0, T ]) can
often be relaxed: As one can infer from the proof above, we only need that U∆t ⇀ U in
Lp(0, T ; V ), U∆t

∗
⇀ U in L∞(0, T ; H), and U∆t → U in Lr(0, T ; H) (r ∈ [1,∞)) imply

〈BU, U〉 6 lim inf〈B∆tU∆t, U∆t〉.
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Remark 4.1. The statement of Theorem 4.1 remains true under assumption (H3) with
δ > 0 instead of δ > min(1, p/2) if t 7→ B(t)v is, as a mapping with values in H , demicon-
tinuous a.e. in (0, T ) for all v ∈ V , i.e., if t 7→ (B(t)v, w) is continuous a.e. in (0, T ) for all
v ∈ V, w ∈ H .

The remark above can be seen as follows: Since B(t) (t ∈ [0, T ]) has range in H , we find
with the demicontinuity, Lebesgue’s theorem, and the growth condition (H4) that B∆tU ⇀
BU in Lr′(0, T ; H) for all r′ ∈ [1, q]. We already know from the original proof that B∆tU∆t−
B∆tU → 0 in Lr′(0, T ; H) for all r′ ∈ [1, p/(p − δ)). Taking a suitable exponent r′ > 1 with
the conjugated exponent r > 1 and remembering that U∆t → U in Lr(0, T ; H), it follows

〈B∆tU∆t, U∆t〉Lq(0,T ;V ∗)×Lp(0,T ;V ) = 〈B∆tU∆t, U∆t〉Lr′(0,T ;H)×Lr(0,T ;H) →

〈BU, U〉Lr′(0,T ;H)×Lr(0,T ;H) = 〈BU, U〉Lq(0,T ;V ∗)×Lp(0,T ;V ),

which gives (4.10).

Remark 4.2. Let the operators A0(t) : V → V ∗ (t ∈ [0, T ]) be linear and assume
(H2′) (i.e., the operators fulfill, uniformly in t, a G̊arding inequality). Instead of (H1′), let
t 7→ A0(t)

∗v (with A0(t)
∗ : V → V ∗ denoting the dual operator of A(t)) be continuous and

let t 7→ A0(t)v, t 7→ B(t)v be demicontinuous, as mappings with values in V ∗, a.e. on (0, T )
for all v ∈ V . Then the statement of Theorem 4.1 remains true if (H3′′′p=2) holds for arbitrary
δ ∈ (0, 2].

The remark above is based upon the following observations: Because of the linearity,
we can consider the dual operators A∗

0,∆t : L2(0, T ; V ) → L2(0, T ; V ∗) that are bounded
uniformly with respect to ∆t. It can be shown that A∗

0,∆tv −A∗
0v → 0 in L2(0, T ; V ∗) for all

v ∈ L2(0, T ; V ). Since U∆t ⇀ U in L2(0, T ; V ), we find for all v ∈ L2(0, T ; V )

〈A0,∆tU∆t − A0,∆tU, v〉 = 〈A∗
0,∆tv, U∆t − U〉 → 0

such that A0,∆tU∆t−A0,∆tU ⇀ 0 in L2(0, T ; V ∗). Because of the demicontinuity property, we
have A0,∆tU ⇀ A0U in L2(0, T ; V ∗). So, we come up with A0,∆tU∆t ⇀ A0U in L2(0, T ; V ∗).
But then, in view of (4.8), it remains to show b − A0U = BU , i.e. B∆tU∆t ⇀ BU in
L2(0, T ; V ∗). The demicontinuity property for B shows that B∆tU ⇀ BU in L2(0, T ; V ∗).
Moreover, (a subsequence of) {B∆tU∆t − B∆tU} converges weakly in L2(0, T ; V ∗) (the se-
quence is bounded because of the growth condition (H4)). The limit can only be 0 since from
(H3′′′p=2) (with arbitrary δ ∈ (0, 2]), we also know that B∆tU∆t−B∆tU → 0 in Lr′(0, T ; V ∗) for
some 1 < r′ < 2 (depending on δ and s) but the dual space Lr(0, T ; V ) with the conjugated
exponent r is dense in L2(0, T ; V ).

As an example, let us consider the semilinear incompressible Navier-Stokes problem in
a bounded, sufficiently smooth, two-dimensional domain Ω described by the differential
equation

∂tu − Re−1∆u + (u · ∇)u + ∇p = f, ∇ · u = 0,

subject to homogeneous Dirichlet boundary conditions, where Re > 0 denotes the Reynolds
number. With V = {v ∈ H1

0 (Ω)2 : ∇ · v = 0} and H = {v ∈ L2(Ω)2 : ∇ · v = 0, γnv = 0}
(γn denotes the trace in the normal direction), the existence and uniqueness of the velocity
u ∈ W with p = 2 that fulfills the corresponding evolution equation (1.1) in L2(0, T ; V ∗) is
wellknown (see [51, Thm. 3.1 on p. 282, Thm. 3.2 on p. 294]). For the time-independent
semilinearity B with

〈Bu, v〉 :=

∫

Ω

(u · ∇)u · vdx, (4.15)
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it can be shown that

‖Bv − Bw‖∗ 6 c
(
|v|1/2‖v‖1/2 + |w|1/2‖w‖1/2

)
|v − w|1/2‖v − w‖1/2, v, w ∈ V,

which implies (H3′′′p=2) with δ = 1 and s = 1/2.
The three-dimensional Navier — Stokes problem requires, however, a more refined tech-

nique since the existence of a velocity u ∈ L2(0, T ; V )∩L∞(0, T ; H) with u′ ∈ L4/3(0, T ; V ∗)
can be shown but not the existence in a space W. Nevertheless, a convergence result analo-
gous to Theorem 4.1 has been shown by the author in [13].

Let us finally remark that the convergence of the two-step BDF was already postulated
in a remark in [44, Rem. 8.20] for an evolution problem with A0, B being independent of
time and A0 being a monotone potential operator such that A0v = Φ′(v). Here, Φ : V → R

is a convex functional such that for all v ∈ V

Φ(v) > µ‖v‖p
V − κ|v|2.

The proof of convergence shall then rely upon the testing of the discrete equation (3.2) by
un − un−1, the algebraic relation

(
3

2
a − 2b +

1

2
c

)
(a − b) =

3

2
(a − b)2 − 1

2
(a − b)(b − c) >

(a − b)2 − 1

8
(b − c)2, a, b, c ∈ R,

which gives for n = 2, 3, . . . , N

∆t(D2u
n, un − un−1) > |un − un−1|2 − 1

8
|un−1 − un−2|2,

and the convexity of Φ, which gives for all u, v ∈ V

〈Φ′(u), u − v〉 > Φ(u) − Φ(v) .

This technique, however, does not apply to the more general case considered here.

5. Stability and error estimates

For brevity, we write in the following only {vn} instead of {vn}N
n=n0

for a grid function.

Proposition 5.1. Assume (H2), (H3), and (H5). Let ∆t 6 τ with τ < T being suffi-
ciently small. Let {un} and {vn} be a solution to (3.2) with right-hand side {fn} ∈ l2(0, T ; H)
and {gn} ∈ l2(0, T ; H) as well as initial values u0, u1 ∈ H and v0, v1 ∈ H, respectively. Then

max
n=2,...,N

|un − vn|2 + (∆t)4
N∑

j=2

|D2(uj−1 − vj−1)|2 6

c
(
1 − c1∆t − c2(∆t)δ/p

)−T/∆t
(
|u0 − v0|2 + |u1 − v1|2 + ∆t

N∑

j=2

|f j − gj|2
)

,

where c, c1, c2 are positive constants not depending on ∆t.
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Proof. We subtract the equations for {un} and {vn} and test by un − vn. In view of the
monotonicity assumption (H2), we find

(D2(u
n − vn), un − vn) − κ|un − vn|2 + (B(tn)un − B(tn)vn, un − vn) 6 (fn − gn, un − vn).

Identity (3.1) together with (H3), the Cauchy — Schwarz and the Young inequality gives

1

4
D1

(
|un − vn|2 + |E(un+1 − vn+1)|2

)
+

(∆t)3

4
|D2(un−1 − vn−1)|2 − κ|un − vn|2−

β(M)
(
1 + ‖un‖p−δ + ‖vn‖p−δ

)
|un − vn|2 6 |fn − gn|2 +

1

4
|un − vn|2.

Here, M is the maximum of the two a priori bounds from Proposition 4.1 corresponding to
either of the two sets of initial values and right-hand sides.

From Proposition 4.1, we also infer with inequality (2.2) that for n = 2, 3, . . . , N

‖un‖p−δ + ‖vn‖p−δ 6 2δ/p

( N∑

j=2

(
‖uj‖p + ‖uj‖p

))(p−δ)/p

6 2δ/p

(
2M

∆t

)(p−δ)/p

= 2

(
M

∆t

)(p−δ)/p

.

So, we come up with

D1

(
|un − vn|2 + |E(un+1 − vn+1)|2

)
+ (∆t)3|D2(un−1 − vn−1)|2−

∆t

(
1 + 4κ + 4β(M)

(
1 + 2

(
M

∆t

)(p−δ)/p ))
|un − vn|2 6 4|fn − gn|2.

Let
∆t 6 τ < min

(
(2(1 + 4κ + 4β(M)))−1,

(
16β(M)M (p−δ)/p

)−δ/p
)

.

Then

∆t ν(∆t) := ∆t

(
1 + 4κ + 4β(M)

(
1 + 2

(
M

∆t

)(p−δ)/p ))
6 τ ν(τ) <

1

2
+

1

2
= 1,

and we can apply (4.1). The assertion now follows from (4.1) and summing up, which leads
on the right-hand side to the factor

(1 − ∆t ν(∆t))−T/∆t =
(
1 − c1∆t − c2(∆t)δ/p

)−T/∆t
,

c1 = 1 + 4κ + 4β(M), c2 = 8β(M)M (p−δ)/p.
�

For the following proposition, note again that assumption (H2′) implies p > 2 and so
l2(0, T ; H) ⊆ lq(0, T ; V ∗).

Proposition 5.2. Assume (H2′), (H3′), and (H5). Let ∆t 6 τ with τ < T being suf-
ficiently small. Let {un} and {vn} be a solution to (3.2) with the right-hand side {fn} ∈
lq(0, T ; V ∗) and {gn} ∈ lq(0, T ; V ∗), as well as the initial values u0, u1 ∈ H and v0, v1 ∈ H,
respectively. Then

max
n=2,...,N

|un − vn|2 + (∆t)4

N∑

j=2

|D2(uj−1 − vj−1)|2 + ∆t

N∑

j=2

‖uj − vj‖p 6

c
(
1 − c1∆t − c2(∆t)δ/p

)−T/∆t
(
|u0 − v0|2 + |u1 − v1|2 + ∆t

N∑

j=2

‖f j − gj‖q
∗

)
,

where c, c1, c2 are positive constants not depending on ∆t.
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Proof. We subtract the equations for {un} and {vn} and test by un − vn. In view of the
monotonicity assumption (H2′), we find

(D2(u
n − vn), un − vn) + µ0‖un − vn‖p − κ|un − vn|2+

〈B(tn)un − B(tn)vn, un − vn〉 6 〈fn − gn, un − vn〉.

For p > 2, assumption (H3′) together with (3.1) and Young inequality gives

1

4
D1

(
|un − vn|2 + |E(un+1 − vn+1)|2

)
+

(∆t)3

4
|D2(un−1 − vn−1)|2 + µ0‖un − vn‖p−

κ|un − vn|2 − β(M)
(
1 + ‖un‖p−δ + ‖vn‖p−δ

)
|un − vn|2 6 c‖fn − gn‖q

∗ +
µ0

2
‖un − vn‖p,

where M is the maximum of the two a priori bounds from Proposition 4.1 corresponding to
either of the two sets of initial values and right-hand sides. Let

∆t 6 τ < min
{

(8(κ + β(M)))−1,
(
16β(M)M (p−δ)/p

)−δ/p
}

.

The rest of the proof then is as in the proof of Proposition 5.1 with c1 = 4(κ + β(M)) and
the same c2.

For p = 2, we observe that

1

4
D1

(
|un − vn|2 + |E(un+1 − vn+1)|2

)
+

(∆t)3

4
|D2(un−1 − vn−1)|2 + µ0‖un − vn‖2−

κ|un − vn|2 − β(M)
(
1 + ‖un‖2−δ + ‖vn‖2−δ

)s |un − vn|s‖un − vn‖2−s 6

c‖fn − gn‖2
∗ +

µ0

4
‖un − vn‖2.

With Young’s inequality, we find

β(M)
(
1 + ‖un‖2−δ + ‖vn‖2−δ

)s |un − vn|s‖un − vn‖2−s 6

C(µ0, s)β(M)2/s
(
1 + ‖un‖2−δ + ‖vn‖2−δ

)
|un − vn|2 +

µ0

2
‖un − vn‖2,

where

C(µ0, s) =
s

2

(
2 − s

µ0

)(2−s)/s

,

and the proof can be finished as before with β(M) being replaced by C(µ0, s)β(M)2/s. �

Remark 5.1. The propositions above show stability with respect to the right-hand side
and the initial values for sufficiently small but fixed ∆t; the stability estimates are in general
not uniform in ∆t. However, if δ = p in (H3) and (H3′), respectively, then the stability
constant is bounded for ∆t → 0 since then

(
1 − c1∆t − c2(∆t)δ/p

)−T/∆t
= (1 − (c1 + c2)∆t)−T/∆t

6 exp

(
(c1 + c2)T

1 − (c1 + c2)τ

)
.

Moreover, uniqueness of a solution to (3.2) can immediately be inferred from the proofs
of Propositions 5.1 and 5.2.

Stability estimates for the discrete derivative D2(u
n−vn) can be obtained if the operators

A(t) (t ∈ [0, T ]) fulfill some Hölder-type condition.
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Proposition 5.3. In addition to the assumptions of Proposition 5.2 assume that there
is some r ∈ (0, 1] and for any R > 0 there exists γ(R) > 0 such that for all t ∈ [0, T ] and
v, w ∈ V with max(|v|, |w|) 6 R

‖A(t)v − A(t)w‖∗ 6 γ(R)(1 + ‖v‖ + ‖w‖)p−1−r‖v − w‖r.

Then

∆t
N∑

j=2

‖D2(u
j − vj)‖q

∗ 6 c∆t
N∑

j=2

‖f j − gj‖q
∗ + c

(
1 − c1∆t − c2(∆t)δ/p

)−T/∆t·r/(p−1) ×

(
|u0 − v0|2 + |u1 − v1|2 + ∆t

N∑

j=2

‖f j − gj‖q
∗

)r/(p−1)

,

where c, c1, c2 are positive constants not depending on ∆t.

Proof. From (3.2), we immediately get

∆t
N∑

j=2

‖D2(u
j − vj)‖q

∗ 6 c∆t
N∑

j=2

‖f j − gj‖q
∗ + c∆t

N∑

j=2

‖A(tj)u
j − A(tj)v

j‖q
∗.

Hölder’s inequality yields (with ∆t = (∆t)(p−1−r)q/p(∆t)rq/p)

∆t
N∑

j=2

‖A(tj)u
j − A(tj)v

j‖q
∗ 6 γ(M)q∆t

N∑

j=2

(1 + ‖uj‖ + ‖vj‖)(p−1−r)q‖uj − vj‖rq 6

cγ(M)q

(
∆t

N∑

j=2

(1 + ‖uj‖ + ‖vj‖)p

)(p−1−r)q/p(
∆t

N∑

j=2

‖uj − vj‖p

)rq/p

6

cγ(M)q(T + 2M)(p−1−r)q/p

(
∆t

N∑

j=2

‖uj − vj‖p

)rq/p

.

Here, M is again the a priori bound for solutions to (3.2). The assertion now follows from
Proposition 5.2 since q = p/(p − 1). �

Estimates for the error u(tn)−un (n = 2, 3, . . . , N) between the exact and the numerical
solution easily follow from stability estimates that are uniform in ∆t because of the error
equation

D2(u(tn) − un) + A(tn)u(tn) − A(tn)un = ρn := D2u(tn) − u′(tn) + f(tn) − fn. (5.1)

Proposition 5.4. Let f ′′ − u′′′ ∈ L2(0, T ; H). Then

∆t

N∑

j=2

|ρj|2 6 c(∆t)4‖f ′′ − u′′′‖2
L2(0,T ;H) + c∆t

N∑

j=2

|Rj
2f − f j|2.

Let f ′′ − u′′′ ∈ Lq(0, T ; V ∗) (q ∈ [1,∞)). Then

∆t
N∑

j=2

‖ρj‖q
∗ 6 c(∆t)2q‖f ′′ − u′′′‖q

Lq(0,T ;V ∗) + c∆t
N∑

j=2

‖Rj
2f − f j‖q

∗.
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Proof. Integration by parts shows that

ρ̂n := ρn + fn − Rn
2f = D2u(tn) − u′(tn) + f(tn) − Rn

2f =

1

4∆t

( tn∫

tn−1

(tn − t)(tn + 3t − 4tn−1)(f
′′(t) − u′′′(t))dt +

tn−1∫

tn−2

(t − tn−2)
2(f ′′(t) − u′′′(t))dt

)
.

By standard arguments, we find

∆t
N∑

j=2

|ρ̂j |2 6 c(∆t)4

T∫

0

|f ′′(t) − u′′′(t)|2dt

as well as

∆t
N∑

j=2

‖ρ̂j‖q
∗ 6 c(∆t)2p/(p−1)

T∫

0

‖f ′′(t) − u′′′(t)‖q
∗dt.

Upon noting that q = p/(p − 1), the assertion follows. �

The proposition above shows that the consistency error, measured in the discrete
l2(0, T ; H)- and lq(0, T ; V ∗)-norm, respectively, is of second order if {fn} is an appropriate ap-
proximation. It might be worth to mention that one obtains first-order consistency (and cor-
responding error estimates) if only t(f ′′−u′′′) ∈ L2(0, T ; H) and t(f ′′−u′′′) ∈ Lq(0, T ; V ∗), re-
spectively. Moreover, order two can generically not be exceeded even if f ′′−u′′′ ∈ L∞(0, T ; H)
and f ′′ − u′′′ ∈ L∞(0, T ; V ∗), respectively.

The stability results from Propositions 5.1 and 5.2 together with the error equation (5.1)
and Proposition 5.4 now immediately prove the following theorem.

Theorem 5.1. Let u ∈ W be the solution to (1.1) with u0 ∈ H and f ∈ X∗, and let
∆t 6 τ with τ < T being sufficiently small.

Assume (H2), (H3) with δ = p, (H5), and let f, f ′′ − u′′′ ∈ L2(0, T ; H), u0, u1 ∈ H,
{fn} ∈ l2(0, T ; H). The discrete solution {un} to (3.2) then satisfies the error estimate

max
n=2,...,N

|u(tn)−un|2 6c

(
|u0−u0|2+ |u(t1)−u1|2+(∆t)4‖f ′′−u′′′‖2

L2(0,T ;H)+∆t
N∑

j=2

|Rj
2f−f j |2

)
.

Assume (H2′), (H3′) with δ = p, (H5), and let f, f ′′ − u′′′ ∈ Lq(0, T ; V ∗), u0, u1 ∈ H,
{fn} ∈ lq(0, T ; V ∗). The discrete solution {un} to (3.2) then satisfies the error estimate

max
n=2,...,N

|u(tn) − un|2 + ∆t

N∑

j=2

‖u(tj) − uj‖p
6 c

(
|u0 − u0|2 + |u(t1) − u1|2+

(∆t)2q‖f ′′ − u′′′‖q
Lq(0,T ;V ∗) + ∆t

N∑

j=2

‖Rj
2f − f j‖q

∗

)
.

The first part of the theorem shows convergence of optimal order O((∆t)2) in the discrete
l2(0, T ; H)-norm if the initial approximations and if {Rn

2f − fn}, measured in the discrete
l2(0, T ; H)-norm, are of second order. The second part shows — under weaker assumptions
on the right-hand side and the regularity of the exact solution — convergence of order
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O((∆t)p/(p−1)) in the discrete l2(0, T ; H)-norm and of order O((∆t)2/(p−1)) in the discrete
lp(0, T ; V )-norm, respectively, if {Rn

2f − fn} is of corresponding order. If p = 2 then the
order is always O((∆t)2). With respect to the initial approximation, we remark that u1 might
be computed by means of an implicit Euler step giving a local error of the corresponding
order as one can show similarly to the results above for the two-step BDF: Let f ′ − u′′ ∈
L∞(0, T ; H), which is the case if f ′ − u′′, f ′′ − u′′′ ∈ L2(0, T ; H) or if f ′ − u′′ ∈ Lp(0, T ; V ),
f ′′ − u′′′ ∈ Lq(0, T ; V ∗), then |u(t1) − u1| can be shown to be of order O((∆t)2). Note here
that one only needs one step and no summation is carried out.

In particular situations, the assumptions on B can again be relaxed. The semilinearity
(4.15) of the Navier — Stokes problem, for instance, satisfies for solenoidal functions v, w ∈ V
the relation

〈Bv − Bw, v − w〉 =

∫

Ω

(
(v − w) · ∇

)
v · (v − w)dx.

The Hölder’s and the Young inequality, embedding arguments, and interpolatory inequalities,
then allow (with spatial dimension d ∈ {2, 3}) to estimate for sufficiently smooth v

|〈Bv − Bw, v − w〉| 6 c‖v‖2,2|v − w|3/2‖v − w‖1/2 6 c‖v‖4/3
2,2 |v − w|2 +

µ0

4
‖v − w‖2,

where ‖ · ‖2,2 denotes the H2(Ω)d-norm. With v = u(tn) and w = un, error estimates can
be obtained as far as the exact solution possesses more spatial regularity. Note, however,
that higher-order error estimates for the Navier — Stokes problem require a more refined
analysis since a higher regularity of the exact solution is equivalent to certain compatibility
conditions on the initial data (over-determined Neumann problem for the initial pressure)
that are hard to fulfill (see, e.g., [52]). The estimates then rely upon the parabolic smoothing
property and duality arguments (see, e.g., [12]).
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16. H. Gajewski, K. Gröger, and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferen-
tialgleichungen, Akademie-Verlag, Berlin, 1974.

17. V. Girault and P.-A. Raviart, Finite element approximation of the Navier — Stokes equations , Lec-
ture Notes in Mathematics, vol. 749, Springer, Berlin, 1981.
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