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Abstract — We propose a new analytical-numerical method with an embedded
convergence control mechanism for solving nonlinear operator differential equations.
The method provides the exponential convergence rate. A numerical example confirms
the theoretical results.
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1. Introduction

There are various approaches to the construction of exponentially convergent approxima-
tions to solutions of nonlinear differential equations. The spectral methods (see [6] and the
references therein) are based on spectral expansions or a special interpolation. One can
obtain exponentially convergent methods for a wide class of differential equations with op-
erator coefficients combining an appropriate quadrature formula for the Dunford — Cauchy
representation of the operator exponential with a special interpolation of the nonlinearity
(see [12] and the references cited therein). One more alternative which seems to be very
promising is the use of the homotopy or perturbation idea (see e.g. [10,11]) which is closely
related to the Adomian decomposition method (ADM) [2–4]. One of the important elements
of this approach are Adomian’s polynomials [2–4, 33, 34]. The last decade has seen many
publications devoted to the application of the Adomian decomposition method (ADM) for
both the linear and the nonlinear operator and differential operator equations [1,7,11,19,20].
The class of problems for which these approximations provide the exponential convergence
rate is restricted by the character of nonlinearity: there are nonlinearities which do not ful-
fill the known convergence conditions and the approximation methods do not contain some
convergence control. In the present paper we propose a control mechanism which guarantees
exponential convergence for a wide class of nonlinearities. The idea of such an approach for
eigenvalue problems has been recently reported in [21].

Let us remind of the idea of an ADM that can be also interpreted as the FD-method
proposed in [20] for the Sturm — Liouville problems and is very close to the homotopy or
perturbation methods.
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Am Wartenberg 2, D-99817 Eisenach, Germany. E-mail: ipg@ba-eisenach.de

2Drogobych State Pedagogical University, I. Franka str., 34, Drogobych, Ukraine. E-mail: lazurchak@mail.ru
3Institute of Mathematics of NAS of Ukraine, 3 Tereshchenkivs’ka str., Kyiv-4, 01601, Ukraine. E-mail:

makarov@imath.kiev.ua, sytnyk@imath.kiev.ua



64 I. P. Gavrilyuk, I. I. Lazurchak, V. L. Makarov, and D. Sytnyk

If we have to solve the operator equation

u = −N(u) + F, (1.1)

then we can imbed it into the family of equations

u(t) = −tN(u(t)) + F, t ∈ [0, 1], (1.2)

and obtain explicitly
u(1) = u. (1.3)

We look for the solution of (1.1) in the form

u(t) =
∞

∑

j=0

tju(j), (1.4)

and represent

N

( ∞
∑

j=0

tju(j)

)

=

∞
∑

j=0

tjAj , (1.5)

where

Aj =
1

j!

∂jN(
∑∞

k=0 tku(k))

∂tj

∣

∣

∣

∣

t=0

. (1.6)

Substituting (1.4) into (1.1) we have

∞
∑

j=0

tju(j) = −tN

( ∞
∑

j=0

tju(j)

)

+ F. (1.7)

Applying to this equality successively the operator 1
(j+1)!

dj+1

dtj+1 and then setting t = 0, we
obtain the following recurrence formulas:

u(j+1) = −Aj

(

N ; u(0), u(1), . . . , u(j)
)

, j = 0, 1, . . . ,

A0

(

N ; u(0)
)

= N
(

u(0)
)

, u(0) = F. (1.8)

Here Aj

(

N ; u(0), u(1), . . . , u(j)
)

are Adomian polynomials with the following explicit repre-
sentation:

Aj

(

N ; u(0), u(1), . . . , u(j)
)

=
∑

α1+...+αj=j

N (α1)
(

u(0)
)

(

u(1)
)α1−α2

(α1 − α2)!
· . . . ·

(

u(j−1)
)αj−1−αj

(αj−1 − αj)!

(

u(j)
)αj

(αj)!
,

(1.9)
where the sequence of natural indices αi is not increasing, N (i)(u) is the i-th (Fréchet)
derivative of the operator N .

The solution of (1.1) can be now given (provided that the convergence radius of series
(1.4) is not less than 1) by

u = u(1) =

∞
∑

j=0

u(j) (1.10)

and the truncated sum
m
u=

m
∑

j=0

u(j) (1.11)

represents an approximation to the exact solution.
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Example 1.1. For the nonlinearity N(u) =
∑q

i=1 aiu
2i we have

A0 =

q
∑

i=1

ai

( ∞
∑

k=0

)2i∣
∣

∣

∣

t=0

=

q
∑

i=1

ai

[

u(0)
]2i

,

A1 =
1

1!

∂

∂t

q
∑

i=1

ai

( ∞
∑

k=0

tku(k)

)2i∣
∣

∣

∣

t=0

=

[ ∞
∑

k=1

k · tk−1u(k)

]

·
q

∑

i=1

(2i)ai

[ ∞
∑

k=0

tku(k)

]2i−1∣
∣

∣

∣

t=0

=

u(1) ·
q

∑

i=1

(2i)ai[u
(0)]2i−1 = u(1) · d

du(0)
A0,

A2 =
1

2!

∂2

∂t2

q
∑

i=1

ai

( ∞
∑

k=0

tku(k)

)2i∣
∣

∣

∣

t=0

=
1

2

([ ∞
∑

k=2

k(k−1)tk−2u(k)

]

·
[ q
∑

i=1

(2i)ai

( ∞
∑

k=0

tku(k)

)2i−1]

+

( ∞
∑

k=1

ktk−1u(k)

)2[ q
∑

i=1

(2i)(2i − 1)ai

( ∞
∑

k=0

tku(k)

)2i−2])
∣

∣

∣

∣

t=0

=

1

2

[

u(2) ·
q

∑

i=1

(2i)ai

(

u(0)

)2i−1

+

(

u(1)

)2

·
q

∑

i=1

(2i)(2i − 1)ai

(

u(0)

)2i−2]

=

1

2

[

u(2) d

du(0)
A0 +

(

u(1)
)2 · d2

du(0)2
A0

]

(1.12)

It is easy to see that the evaluation of the polynomial Aj for its fixed arguments needs O(qj)
multiplications.

The following theorem from [1] gives some sufficient conditions for the convergence of
(1.4) for all t ∈ [0, 1].

Theorem 1.1. Let H be a Banach space and F ∈ H. If the operator N(u) : H → H is
analytic in a ball ‖u− u0‖ < R with the center u0 and if for all n > 0 ‖N (n)(u0)‖ 6 n!Mαn

with some M > 0, α > 0, holds then the conditions
1) 4Mα 6 1, for R = ∞,
2) 5Mα 6 1, for R < ∞,

provide the convergence of (1.4) for all t ∈ [0, 1] and, therefore, the convergence of (1.10).

In the recent paper [7] the following modification of the ADM was proposed. One looks
for the summands of (1.10) in accordance with the recurrence formulas

u(j+1) = −Aj

(

u(0), u(1), . . . , u(j)
)

, j = 0, 1, . . . ,

u(0) = F, (1.13)

where Aj

(

u(0), u(1), . . . , u(j)
)

are the modified Adomian polynomials given by

Aj

(

u(0), u(1), . . . , u(j)
)

= N
(

u(0) + . . . + u(j)
)

− N
(

u(0) + . . . + u(j−1)
)

. (1.14)

In [7], for the problem

dky(t)

dtk
+ β(t)f(y(t)) = κ(t), t ∈ (0, T ),

dpy(t)

dtp
= cp, p = 0, k − 1, (1.15)
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with given cp, p = 0, k − 1, with M = max
t∈[0, T ]

‖β(t)| and with the right-hand side f(y)

satisfying the Lipschitz condition with a constant L it was shown that the modified Adomian
method converges as a geometric progression with the quotient α and with the error estimate

∣

∣

∣

∣

y(t) −
m

∑

j=0

yj(t)

∣

∣

∣

∣

6
αm

1 − α
‖y1‖∞ (1.16)

provided that

α =
LMT k

k!
< 1. (1.17)

Numerical experiments have shown that the modified ADM converges faster then the ordi-
nary one. But it was ignored in [7] that in fact the modified ADM coincides with the usual
fixed point iteration. Actually, relations (1.13), (1.14) imply

um+1 = −N(um) + F, m = 0, 1, . . . ,

u0 = F. (1.18)

Now the conclusions of [7] about the advantages of the modified ADM become understand-
able and have been well known since long ago (see, e.g., [25]).

The aim of the present paper is to construct an iteration method which converges whereas
the fixed point iteration (1.18) can be divergent. The last Section 3 contains numerical
examples which supports our theoretical results.

2. An iteration method for nonlinear problems

with controllable exponential convergence

2.1. General algorithm. In this section we give a general description of the proposed
algorithm. In order to avoid technical difficulties we justify this algorithm in the case of an
ordinary differential equation.

Let us consider a nonlinear problem of the form

A0u + N(u)u = f, (2.1)

in a Banach space B, where A0 is an unbounded linear operator with the domain D(A0) and
N(u) for each fixed u is a linear operator in B. The associated linear problem

A0v + N(u)v = f (2.2)

is supposed to have a unique solution.
Using the idea which is related to the ideas of homotopy, perturbation or FD-methods,

we imbed problem (2.1) into the parametric family

A0u(t) + N
(

PM u(t)
)

u(t) + t
[

N(u(t)) − N
(

PMu(t)
)

]

u(t) = f, 0 6 t 6 1, (2.3)

where PM : H → BM is a projector from B onto an M-dimensional subspace BM of B.
It is clear that for t = 1 we have

u(1) = u. (2.4)
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Setting t=0 in (2.3) we obtain the base problem

A0u
(0) + N(PM u(0))u(0) = f, (2.5)

which is supposed to have a unique solution.
We look for the solution of the parametric problem (2.3) in the form

u(t) =

∞
∑

j=0

tju(j). (2.6)

If this series is convergent in B with a convergence radius R > 1, then the solution of problem
(2.1) can be represented in the form

u =

∞
∑

j=0

u(j). (2.7)

Supposing additionally N(u(t)) =
∞
∑

j=0

tjAj(N ; u(0), . . . , u(j)) and substituting this expan-

sion and (2.6) into (2.3), we obtain for the coefficients u(j) the following recurrence equations:

A0u
(j+1) +N(PMu(0))u(j+1) =Aj+1(N ; PMu(0), 0, . . . , 0, PMu(j+1))u(0)−F (j+1), j = 0, 1, . . . ,

(2.8)
where

F (j+1) =

j
∑

p=1

Aj+1−p(N ; PM u(0), PM u(1), . . . , PM u(j+1−p)) u(p)+

j
∑

p=0

[

Aj−p(N ; u(0), u(1), . . . , u(j−p)) − Aj−p(N ; PM u(0), PM u(1), . . . , PM u(j−p))
]

u(p)+

Aj+1(N ; PM u(0), PM u(1), . . . , PM u(j), 0) u(p) (2.9)

and Aj(N ; v0, v1, . . . , vj) are Adomian’s operator polynomials for the nonlinearity N(v).
The approximate solution to (2.1) (of rank m or with the discreization parameter m) is

then given by

m
u =

m
∑

j=0

u(j). (2.10)

A specific feature of (2.8) is the dependence of the right-hand side on the projection
PM u(j+1) of the unknown solution u(j+1).

Example 2.1. For the nonlinearity

N(u)v =

1
∫

0

v(s)

1 + u2(s)
ds (2.11)

using formula (1.6)(or (1.9)) we obtain the following Adomian operator polynomials

A0(N ; v0)w =

1
∫

0

w(s)

1 + (v0(s))2
ds,



68 I. P. Gavrilyuk, I. I. Lazurchak, V. L. Makarov, and D. Sytnyk

A1(N ; v0, v1)w = −
1

∫

0

2v0(s)v1(s)

(1 + (v0(s))2)2
w(s) ds,

A2(N ; v0, v1, v2)w =

1
∫

0

[

4(v0(s) v1(s))
2

(

1 + (v0(s))2
)3 − (v1(s))

2

(

1 + (v0(s))2
)2 − 2v0(s)v2(s)

(

1 + (v0(s))2
)2

]

w(s)ds,

A3(N ; v0, v1, v2, v3)w =

1
∫

0

[

−8
(

v0(s) v1(s)
)3

(

1 + (v0(s))2
)4 +

4v0(s)
(

v1(s)
)3

(

1 + (v0(s))2
)3+

+
8
(

v0(s)
)2

v1(s) v2(s)
(

1 + (v0(s))2
)3 − 2v0(s)v2(s)

(

1 + (v0(s))2
)2 − 2v0(s)v3(s)

(

1 + (v0(s))2
)2

]

w(s)ds,

Example 2.2. The stationary Gross — Pitaevskii equation describes the structure of a
Bose — Einstein condensate in various external potentials V (x) (see, e.g., [24])

−△u + (V (x) + g|u(x)|2)u(x) = 0 (2.12)

and (provided by proper boundary conditions) is an example of problem 2.1 with

A0u = −△u, N(u)u = (V (x) + g|u(x)|2)u(x), (2.13)

where N(u) is of the type N(u) = a0 + a1u
2 + · · · with bounded operators a0, a1, . . . such

that a0u = V (x) · u, a1u = g|u|, ai = 0, i = 2, 3, . . .

Example 2.3. The Korteveg-de-Vries equation [22]

ut = uxxx + u2 · ux (2.14)

is of the type (2.1) with A0u = uxxx (with corresponding boundary conditions ), N(u) =
a0 + a1u

2 + · · · where the operator coefficients a0 = −∂/∂t, a1 = ∂/∂x are unbounded
operators and ai = 0, i = 2, 3, . . .

2.2. Justification of the algorithm in the case of BVP for ODE. In this section
we consider the following nonlinear model problem:

u′′(x) − N(u(x))u(x) = −f(x), x ∈ (0, 1),

u(0) = u(1) = 0, (2.15)

with a nonlinear function N(u) : R
1 → R

1 satisfying the conditions

N(u) > 0, [uN(u)]′ > 0, N ′′(u) > 0, ∀u ∈ R
1. (2.16)

Using the Green function for the differential operator defined by

D(A) = {u : u ∈ W 2
2 (0, 1) : u(0) = u(1) = 0}, Au = −d2u

dx2
, ∀u ∈ D(A), (2.17)

one can reduce problem (2.15) to the operator equation of kind (1.1). In the case where the
fixed point iteration (1.18) is divergent, we propose the following method based on the idea
of the FD-method or the homotopy method.
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We introduce a grid

ω̂ =
{

xi ∈ [0, 1], i = 1, K : 0 = x1 < x2 < . . . < xK−1 < xK = 1
}

partitioning the interval [0, 1] into subintervals [xi−1, xi], i = 1, K of length hi = xi −
xi−1, |h| = max

i
hi and imbed problem (2.15) into the parametric family of problems

∂2u(x, t)

∂x2
−

{

N(u(xi−1, t)) + t [N(u(x, t)) − N(u(xi−1, t))]
}

u(x, t) = −f(x), x ∈ (0, 1),

[u(x)]x=xi
= 0,

[

du(x)

dx

]

x=xi

= 0, i = 1, K − 1,

u(0, t) = u(1, t) = 0, t ∈ [0, 1]. (2.18)

It is clear that for t = 1 the solution of problem (2.18) coincides with the solution of problem
(2.15), i.e.,

u(x, 1) = u(x),

For t = 0 we obtain the following base problem:

d2u(0)(x)

dx2
− N

(

u(0)(xi−1)
)

u(0)(x) = −f(x), x ∈ (xi−1, xi), i = 1, K,

[u(0)(x)]x=xi
= 0,

[

du(0)(x)

dx

]

x=xi

= 0, i = 1, K − 1,

u(0)(0) = u(0)(1) = 0, (2.19)

where [v(x)]x=ξ = v(ξ + 0) − v(ξ − 0) denotes the jump of the function v(x) at the point
x = ξ.

The last problem as well as problem (2.18) are representatives of the class of boundary
value problems with a piecewise constant argument which have been the focus of attention
of many researchers for some time (see e.g. [5] and the references therein).

We look for the solution of problem (2.18) in the form

u(x, t) =

∞
∑

j=0

tju(j)(x). (2.20)

Substituting (2.20) into (2.18) and comparing the coefficients in front of the powers of t, we
obtain the following recurrence sequence of problems for u(j)(x) (with a piecewise constant
argument):

d2u(j+1)(x)

dx2
− N

(

u(0)(xi−1)
)

u(j+1)(x) = N ′
(

u(0)(xi−1)
)

u(j+1)(xi−1)u
(0)(x) + F (j+1)(x),

x ∈ (xi−1, xi), i = 1, K, (2.21)

where

F (j+1)(x) =

j
∑

p=1

Aj+1−p

(

N ; u(0)(xi−1), . . . , u
(j+1−p)(xi−1)

)

u(p)(x)+
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j
∑

p=0

[

Aj−p

(

N ; u(0)(x), . . . , u(j−p)(x)
)

− Aj−p

(

N ; u(0)(xi−1), . . . , u
(j−p)(xi−1)

)]

u(p)(x)+

Aj+1

(

N ; u(0)(xi−1), . . . , u
(j)(xi−1), 0

)

u(0)(x),

[u(j+1)(x)]x=xi
= 0,

[

du(j+1)(x)

dx

]

x=xi

= 0, i = 1, K − 1,

u(j+1)(0) = u(j+1)(1) = 0, j = 0, 1, . . . , (2.22)

Aj(N ; v0, v1, . . . , vj) are Adomian’s polynomials for the nonlinear function N(v) given by the
explicit formula (1.9). The solution of problem (2.15) is then given by

u(x) =
∞

∑

j=0

u(j)(x) (2.23)

(provided that the convergence radius of (2.20) is not less than 1) and the approximate
solution by

u(x) ≈ m
u(x) =

m
∑

j=0

u(j)(x), (2.24)

where the exponential convergence will be controlled by the parameter |h|.
Let us consider the base problem (2.19). This problem is equivalent to the system of

nonlinear equations

u(0)(xi) =

1
∫

0

G
(

xi, ξ,
−→
N (u)

)

f(ξ)dξ, i = 1, K − 1, (2.25)

where −→
N (u) =

(

N
(

u(0)(x1)
)

, . . . , N
(

u(0)(xK−1)
))

(2.26)

and G
(

xi, ξ,
−→
N

)

is the Green function of problem (2.19) provided that the vector −→u =

{u(0)(x1), u
(0)(x2), . . . , u

(0)(xK−1)} is known.

We introduce the operator

B(−→u ) =

(

1
∫

0

G
(

xi, ξ,
−→
N (u)

)

f(ξ)dξ

)K−1

i=1

(2.27)

which is continuous on a closed ball

S =

{

−→u ∈ R
K−1 : ‖−→u ‖0,∞,ω̂N

= max
16i6K−1

|u(0)(xi)| 6 r

}

with r defined by ‖f‖0,∞,[0,1] and translate the ball S into itself. Therefore, by Brower’s fixed
point theorem (see, e.g., [15] ) there exists a fixed point of this operator in S, i.e., the system
of equations (2.25) is solvable.
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Remark 2.1. The fixed point iteration for equation (2.25) is equivalent to the solution
of the sequence of the following problems:

d2u(0),n+1(x)

dx2
− N

(

u(0),n(xi−1)
)

u(0),n+1(x) = −f(x), x ∈ (xi−1, xi), i = 1, K,

u(0),n+1(0) = u(0),n+1(1) = 0, n = 0, 1, . . . , (2.28)

where
−−−→
u(0), 0 =

(

u(0), 0(xi)
)

i=1,K
is an arbitrary vector from the ball S̄. For this problem there

exists the following exact difference scheme [27]:

(

an(xi)u
(0),n+1(xi)x̄

)

x
− dn(xi)u

(0),n+1(xi) = −ϕn(xi), i = 1, K,

u(0),n+1(0) = u(0),n+1(1) = 0, (2.29)

with

an(xi) =

[

sinh(
√

µn
i hi)

hi

√
µn

i

]−1

, µn
i = N

(

u(0),n(xi−1)
)

,

dn(xi) =

√
µi

~i

tanh

√
µihi

2
+

√
µi+1

~i

tanh

√
µi+1hi+1

2
, ~i =

hi + hi+1

2
,

ϕn(xi) =
1

~i

2
∑

α=1

(−1)α

[

dW i
α(xi)

dx
− W i

α(xi)(−1)α+1
√

µn
i−1+α coth

√

µn
i−1+α hi−1+α

]

,

where W i
α(x), α = 1, 2, are solutions of the following two Cauchy problems:

d2W j
α(x)

dx2
− N

(

u(0),n(xi)
)

W j
α(x) = −f(x), xj−2+α < x < xj−1+α,

W j
α(xj+(−1)α) =

dW j
α(x)

dx

∣

∣

∣

x=xj+(−1)α
= 0, α = 1, 2. (2.30)

In order to compute the coefficients of the exact difference scheme for one iteration step, one
has to solve 2(K − 1) Cauchy problems by an IVP-solver, each on a small interval with the
length of the corresponding step-size. Then the difference scheme with a tridiagonal matrix
can be solved by the special elimination method (method of chasing, method “progonki”)
which in our case is stable [26].

Remark 2.2. Another algorithmic implementation of the fixed point iteration for (2.25)
can be done by the multiple shooting method [30] in the following way. Let u(0)(x) =

u(0)(x; xi−1, si−1, s
(1)
i−1) and d

dx
u(0)(x) = d

dx
u(0)(x; xi−1, si−1, s

(1)
i−1) be the solution and its deriva-

tive of the differential equation (2.19) on the subinterval (xi−1, xi) subject to the initial values

si−1 and s
(1)
i−1 (and obtained by some IVP-solver), i.e., we have

u(0)(xi; xi−1, si−1, s
(1)
i−1) = si,

d

dx
u(0)(xi; xi−1, si−1, s

(1)
i−1) = s

(1)
i , i = 1, . . . , K,

s0 = 0, sK = 0. (2.31)

Analogously to the multiple shooting method this system of equations can be written in the
form s = F (s) where s = (s

(1)
0 , s1, s

(1)
0 , . . . , sK−1, s

(1)
K−1, s

(1)
K )T and F (s) for an arbitrary s can
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be calculated using an IVP-solver. From the discussion above it follows that the fixed point
iteration

m+1
s = F (

m
s), m = 0, 1, . . . (2.32)

converges provided that
0
s was chosen within the corresponding ball.

Let us rewrite equations (2.21) in the form

d2u(j+1)(x)

dx2
− q(x)u(j+1)(x) = N ′

(

u(0)(xi−1)
)

[u(j+1)(xi−1)u
(0)(x) − u(j+1)(x)u(0)(xi−1)]+

F (j+1)(x), x ∈ (xi−1, xi), i = 1, K,

u(j+1)(0) = u(j+1)(1) = 0, j = 0, 1, . . . , (2.33)

with

q(x) = N
(

u(0)(xi−1)
)

+ N ′
(

u(0)(xi−1)
)

u(0)(xi−1), x ∈ [xi−1, xi), i = 1, K. (2.34)

Given u(0)(xi), i = 1, . . . , K − 1, let G(x, ξ, q(·)) be the Green function corresponding to
the operator on the left side of (2.33) with the Dirichlet boundary conditions. Then problem
(2.33) can be transformed to

u(j+1)(x) =
K

∑

p=1

xp
∫

xp−1

G (xi, ξ, q(·))
ξ

∫

xp−1

du(j+1)(η)

dη
dη u(0)(ξ) dξ N ′(u(0)(xk−1))−

−
K

∑

p=1

xp
∫

xp−1

G(xi, ξ, q(·))
ξ

∫

xp−1

du(0)(η)

dη
dη u(j+1)(ξ) dξ N ′(u(j+1)(xp−1)) −

1
∫

0

G(xi, ξ, q(·))F (j+1)(ξ) dξ,

(2.35)
where i = 1, K.

In order to estimate u(j+1)(x) we need to estimate the Green function G (x, ξ, q(·)), which
can be explicitly represented by the formula (see e.g. [26])

G (xi, ξ, q(·)) =
1

v1(1)







v1(x)v2(ξ), x 6 ξ,

v1(ξ)v2(x), ξ 6 x.

(2.36)

Here vα(x), α = 1, 2 are the so-called stencil functions which satisfy the equations

d2

dx2
vα(x) − q(x)vα(x) = 0, 0 < x < 1, α = 1, 2,

v1(0) = 0, v′
1(0) = 1, v2(1) = 0, v′

2(1) = −1, (2.37)

as well as the continuity conditions

[vα(x)]x=xi
= 0, [v′

α(x)]x=xi
= 0, α = 1, 2 i = 1, K − 1. (2.38)

These functions possess the following properties:
1◦ v1(x) is a nondecreasing, nonnegative function on [0, 1];
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2◦ v2(x) is nonincreasing, nonnegative function on [0, 1];
3◦ v1(1) = v2(0);
4◦ v′

1(x)v2(x) − v1(x)v′
2(x) ≡ v1(1) = v2(0).

These properties as well as the maximum principal imply the estimates

0 6 G(x, ξ, q(·)) 6 G(x, ξ, 0),

∣

∣

∣

∣

∂G(x, ξ, q(·))
∂x

∣

∣

∣

∣

6 1. (2.39)

Using (2.39) as well as assumptions (2.16) we obtain from (2.35)

‖u(j+1)‖1,∞,[0,1] 6 |h|‖u(0)‖1,∞,[0,1]N
′
(

‖u(0)‖1,∞,[0,1]

)

‖u(j+1)‖1,∞,[0,1] + ‖F (j+1)‖1,∞,[0,1]. (2.40)

For |h| small enough this inequality can be transformed to

‖u(j+1)‖1,∞,[0,1] 6 c1‖F (j+1)‖1,∞,[0,1] (2.41)

with
c1 =

[

1 − |h|‖u(0)‖1,∞,[0,1]N
′
(

‖u(0)‖1,∞,[0,1]

)]−1
. (2.42)

and the norms

‖v‖0,∞,[0,1] = max
x∈[0,1]

|v(x)|, ‖v‖1,∞,[0,1] = max
{

max
x∈[0,1]

|v(x)|, max
x∈[0,1]

|v′(x)|
}

.

Further we will need the following two auxiliary statements.

Lemma 2.1. Let N(u) be represented by the power series N(u) =
∑∞

i=1 aiu
2i, ai > 0,

and u(p)(x) ∈ C1[0, 1], p = 0, 1, . . . , then

‖Ak

(

N(u); u(0)(x), . . . , u(k)(x)
)

− Ak

(

N(u); u(0)(xi−1), . . . , u
(k)(xi−1)

)

‖0,∞,[0,1] 6

2h
∞

∑

i=1

iaiAk

(

N(u); ‖u(0)‖1,∞,[0,1], ‖u(1)‖1,∞,[0,1], . . . , ‖u(k)‖1,∞,[0,1]

)

=

|h|Ak

(

N ′(u); ‖u(0)‖1,∞,[0,1], ‖u(1)‖1,∞,[0,1], . . . , ‖u(k)‖1,∞,[0,1]

)

. (2.43)

Proof. Since the Adomian polynomials are linear operators with respect to the first
argument (see (1.9)), i.e.,

Ak

(

N(u); u(0)(x), . . . , u(k)(x)
)

=
∞

∑

i=1

aiAk

(

u2i; u(0)(x), . . . , u(k)(x)
)

it is sufficient to consider the case N(u) = u2i only. For this case we have

Ak

(

u2i; u(0)(x), . . . , u(k)(x)
)

=

∑

α1+...+αk=k

N (α1)
(

u(0)(x)
)

[

u(1)(x)
]α1−α2

(α1 − α2)!
· . . . ·

[

u(k−1)(x)
]αk−1−αk

(αk−1 − αk)!

[

u(k)(x)
]αk

(αk)!
=

∑

α1+...+αk=k

2i(2i−1)·. . .·(2i−α1+1)[u(0)(x)]2i−α1
[u(1)(x)]α1−α2

(α1 − α2)!
·. . .· [u

(k−1)(x)]αk−1−αk

(αk−1 − αk)!

[u(k)(x)]αk

(αk)!
,
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∥

∥Ak

(

u2i; u(0)(x), . . . , u(k)(x)
)

− Ak

(

u2i, u(0)(xi−1), . . . , u
(k)(xi−1)

)
∥

∥ 6

∑

α1+...+αk=k

2i(2i − 1) . . . (2i − α1 + 1)(2i − α1 + α1 − α2 + . . . + αk−1 − αk + αk)×

‖u(0)‖2i−α1

1,∞,[0,1]

‖u(1)‖α1−α2

1,∞,[0,1]

(α1 − α2)!
· . . . ·

‖u(k−1)‖αk−1−αk

1,∞,[0,1]

(αk−1 − αk)!

‖u(k)‖αk

1,∞,[0,1]

(αk)!
|h| =

2i|h|Ak(u
2i; ‖u(0)‖1,∞,[0,1], ‖u(1)‖1,∞,[0,1], . . . , ‖u(k)‖1,∞,[0,1]) =

|h|Ak([u
2i]′; ‖u(0)‖1,∞,[0,1], ‖u(1)‖1,∞,[0,1], . . . , ‖u(k)‖1,∞,[0,1]).

The lemma is proved. �

Lemma 2.2. Let N(u) be represented by the power series N(u) =
∑∞

j=1 aju
2j then

Aj+1(N(u); V0, . . . , Vj, 0)=
1

(j + 1)!

{

dj+1

dzj+1
[N(f(z)) − (f(z) − V0)N

′(V0)]

}

z=0

, j =0, 1, . . . ,

(2.44)
with f(z) =

∑∞
j=0 zjVj .

Proof. The proof is obvious. �

Returning to (2.41) and taking into account (2.16), (2.17) we obtain

‖u(j+1)‖1,∞ 6

c1

{ j
∑

p=1

Aj+1−p(N(u); ‖u(0)‖1,∞,[0,1], ‖u(1)‖1,∞,[0,1], . . . , ‖u(j+1−p)‖1,∞,[0,1])‖u(p)‖1,∞,[0,1]+

h

j
∑

p=0

Aj−p(N
′(u)u; ‖u(0)‖1,∞,[0,1], . . . , ‖u(j−p)‖1,∞,[0,1])‖u(p)‖1,∞,[0,1]+

1

(j + 1)!

[

dj+1

dzj+1

(

N

( ∞
∑

s=0

zs‖u(s)‖1,∞,[0,1]

)

−
∞

∑

s=1

zs‖u(s)‖1,∞,[0,1]N
′(‖u(0)‖1,∞,[0,1])

)]

z=0

}

.

(2.45)
Introducing in (2.45) the new variables by

|h|−j ‖u(j)‖1,∞ = vj , (2.46)

then changing vj to Vj and the inequality sign to the equality one, we arrive at the following
system of equations:

Vj+1 = c1

{ j
∑

p=1

Aj+1−p(N(u); V0, . . . , Vj+1−p)Vp +

j
∑

p=0

Aj−p(N
′(u)u; V0, . . . , Vj−p)Vp+

1

(j + 1)!

dj+1

dzj+1

(

N

( ∞
∑

s=0

zsVs

))

z=0

− Vj+1N
′(V0)

}

, j = 0, 1, . . . , V0 = v0 = ‖u(0)‖1,∞,[0,1],

(2.47)
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or

Vj+1 =
c1

1 + c1N ′(V0)

{ j
∑

p=1

Aj+1−p(N(u); V0, . . . , Vj+1−p)Vp+

j
∑

p=0

Aj−p(N
′(u)u; V0, . . . , Vj−p)Vp +

1

(j + 1)!

dj+1

dzj+1

(

N

( ∞
∑

s=0

zsVs

))

z=0

}

. (2.48)

The solution of this system is a majorant for the solution of (2.45), i.e. vj 6 Vj, j = 0, 1, . . .
Using the method of generating functions, we obtain from (2.48)

f(z) − V0 =
c1

1 + c1N ′(V0)
{[f(z) − V0][N(f(z)) − N(V0)]+

zf 2(z)N ′(f(z)) + N(f(z)) − N(V0)}. (2.49)

From this equation we can express z as a function of f

z =
1

f 2N ′(f)

{(

1

C̃
− N(f) + N(V0)

)

(f − V0) − N(f) + N(V0)

}

,

V0 6 f, C̃ =
c1

1 + c1N ′(V0)
, (2.50)

and then find fm, for which z arrives at its maximum zm = R. The condition

|h|V0 [N ′(V0)]
2

< 1 (2.51)

guarantees the existence of fm because under assumption (2.51) we have

z(V0) = 0, lim
f→∞

z(f) = 0,

d

df

[

z(f)f 2N ′(f)
]
∣

∣

f=V0
=

1

c̃
− N ′(V0) =

1

c1
= 1 − |h| ‖u(0)‖1,∞,[0,1]N

′(‖u(0)‖1,∞,[0,1]) > 0.

The value zm defines the convergence radius of series (2.49), i.e.,

RjVj = C
1

(j + 1)1+ε
, (2.52)

with an arbitrarily small positive ε. Returning to the old notations, we have

‖u(j)‖1,∞,[0,1] 6
C

(j + 1)1+ε

(

h

R

)j

, j = 0, 1, . . . , (2.53)

which leads to the following sufficient convergence condition for the series f(z) =
∑∞

j=0 zjVj:

h/R 6 1. (2.54)

Thus, we have proved the following assertion.

Theorem 2.1. Under the assumptions of Lemma 2.1 the method (2.24) for problem
(2.49) converges super-exponentially (converges) with the error estimate

‖u− m
u ‖1,∞,[0,1] 6

C

(1 + m)1+ε

(h/R)m+1

1 − h/R

(

6 C

∞
∑

j=m+1

1

(j + 1)1+ε

)

(2.55)

provided that
h < R (h = R). (2.56)
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3. Examples

Example 3.1. Let us consider the Dirichlet boundary value problem

u′′(x) − Mu3(x) = −f(x), x ∈ (0; 1), u(0) = u(1) = 0, (3.1)

with f(x) = π2 sin πx+M(sin πx)3 and a given constant M > 0. The exact solution of (3.1)
is

u(x) = sin πx. (3.2)

Problem (3.1) is equivalent to the following nonlinear Fredholm integral equation:

u(x) =

1
∫

0

G(x, ξ)[−Mu3(ξ) + f(ξ)] dξ, G(x, ξ) =

{

x(1 − ξ), x 6 ξ

ξ(1 − x), ξ < x.
(3.3)

This equation is of the form (1.1) with N(u) = M
∫ 1

0
G(x, ξ)u3(ξ) dξ, F =

∫ 1

0
G(x, ξ)f(ξ) dξ.

For M = 20 the usual fixed point iteration as well as the usual ADM are divergent. Due
to symmetry we apply the FD-method with two steps to the modified problem (3.1):

u′′(x) − Mu3(x) = −f(x), x ∈ (0, 0.5), u(0) = 0, u′(0.5) = 0. (3.4)

Problem (2.18) for this example has the form

∂2u(x, t)

∂x2
− M

{

u

(

1

4
, t

)2

+ t

[

u(x, t)2 − u

(

1

4
, t

)2 ]}

u(x, t) = −f(x), x ∈ (0, 0.25),

∂2u(x, t)

∂x2
− M

{

1

2

[

u(
1

4
, t) + u

(

1

2
, t

)]2

+

t

[

u(x, t)2 − 1

2

(

u(
1

4
, t) + u(

1

2
, t)

)2]}

u(x, t) = −f(x), x ∈ (0.25, 0.5),

u(0, t) = 0,
∂u(1/2, t)

∂x
= 0, [u(x, t)]x=0.25 = 0,

[

∂u(x, t)

∂x

]

x=0.25

= 0 (3.5)

The numerical results obtained with Maple are presented in Table 3.1 and Table 3.2,

where ∆m(x) = u(x) − m
u(x).

T a b l e 3.1. Two subintervals (K = 2) Ta b l e 3.2. One subinterval (K = 1)

x 0.25 0.5
∆0(x) .0109383495 .051202866
∆1(x) .0020822061 .0068667797

x 0.25 0.5
∆0(x) .02842879773388 .1384486690937460
∆1(x) .01785603134623 .0287451291955546
∆2(x) .00133217977494 .0010162058541
∆3(x) .00455624274781 .0034293443153
∆4(x) .00003810934901 .00201582469655

Example 3.2. This example goes back to Troesch (see, e.g., [32]) and represents the
well-known test problem for numerical software:

u′′ = λ sinh(λu), x ∈ (0, 1), λ > 0, u(0) = 0, u(1) = 1. (3.6)
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Due to the hyperbolic type of nonlinearity here, a moderate increase in λ leads to tremendous
variations in the derivative of the nonlinear part and therefore of the solution. The exact
solution of Troesch’s test problem can be represented in the form (see, for example, [30])

u(x, s) =
2

λ
arcsinh

(

s · sn(λx, k)

2 · cn(λx, k)

)

, k2 = 1 − s2

4
, (3.7)

where sn(λx, k), cn(λx, k) are elliptic Jacobi functions and the parameter s satisfies the
equation

2

λ
arcsinh

(

s · sn(λ, k)

2 · cn(λ, k)

)

= 1.

For example, for the parameter value λ = 10 s = 0.35833778463 · 10−3 holds. To our best
knowledge a numerical method working for the highest value of λ = 62 was presented in
[8]. Furthermore, it turns out that modern numerical software (Maple, Mathematica) have
difficulties even with a numerical solution of the above algebraic problem with respect to s
for λ > 62.

Our goal here is to illustrate the presented approach rather than improve the result
λ = 62. However, this approach in the theory allows one to treat problem (3.6) with any λ
using an appropriate number of subdivisions K.

All computations presented in Table 3.3 have been performed using the QD library with
quad-double precision (appx. 60 decimal digits of accuracy) and GSL templates for quadra-
ture formulas and matrix calculations. To eliminate the influence of quadrature errors,
we used a Runge type estimate with Eps = 10−20. The final stop criterion in (2.24) was
‖u(j+1)‖1 < 10−10.

T ab l e 3.3. Troesch test with K = 4 and K = 256

λ = 1, K = 4 λ = 10, K = 256

m ‖u−
m
u ‖1 ‖u−

m
u ‖1

0 .111608803790162471570291286e-2 .391955453562892425976436496e-1
1 .624289421129990539732878093e-4 .940937627128066975285517882e-3
2 .613274752600453001120360543e-4 .591438908394518928454089104e-4
3 .491115395175933661739635686e-7 .158072882785682348425691183e-5
4 .134193613660290576144888419e-8 .143796397730961836994428146e-5
5 .826036431341936136602905761e-11 .440376842230098521926768794e-7
7 .531844470733545661060519677e-9
8 .710761479514132417214021573e-11
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