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A DEFECT CORRECTION METHOD FOR THE

EVOLUTIONARY CONVECTION — DIFFUSION PROBLEM

WITH INCREASED TIME ACCURACY

A.LABOVSKY1

Abstract — This work extends the results of [2] by presenting a defect correction
method with increased time accuracy. The desired time accuracy is attained with
no extra computational cost. The method is applied to the evolutionary transport
problem, and is proven to be unconditionally stable. In the defect step, the artificial
viscosity parameter is added to the Peclet number as a stability factor, and the system is
antidiffused in the correction step. The time accuracy is also increased in the correction
step by modifying the right hand side. Hence, we solve the transport problem twice,
using the Crank-Nicolson scheme (with the artificial viscosity parameter added), and
obtain the accuracy of O(h2 + k4). Computational results verifying the claimed space
and time accuracy of the approximate solution are presented.
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1. Introduction

Consider the evolutionary convection diffusion problem: find u : Ω × [0, T ] → R
d (d = 2, 3)

such that
ut − ǫ∆u + b · ∇u + gu = f for x ∈ Ω, 0 < t 6 T,

u = 0 on ∂Ω for 0 < t 6 T, (1.1)

where u is the velocity field, ǫ is a diffusion coefficient, g is an absorbtion/reaction coefficient,
and f is a forcing function.

In problems with a high Peclet number (i.e., ǫ ≪ 1), some iterative solvers fail to converge
to a solution of (1.1). We propose a certain Defect Correction Method (DCM), that is
stable, computes a solution to (1.1) for any ǫ with high space and time accuracy, and is
computationally attractive.

The general theory of Defect Correction Methods was presented, e.g., by Böhmer, Hemker,
Stetter [1]. In the late 1970s, Hemker (Böhmer, Stetter, Heinrichs, and others) discovered
that the DCM, when properly interpreted, is also good for nearly singular problems. Exam-
ples, for which this has been successful, include equilibrium Euler equations (Koren, Lalle-
mand [12]), high Reynolds number problems (Layton, Lee, Peterson [13]), and viscoelastic
problems (Ervin, Lee [11]).
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There has been an extensive study and development of DC methods for equilibrium flow
problems (see, e.g., Hemker[14], Koren[16], Heinrichs[15], Layton, Lee, Peterson[13], Ervin,
Lee[11]). On the other hand, there is a parallel development of DCMs, for initial value
problems in which no spacial stabilization is used, but the DCM is used to increase the
accuracy of the time discretization. This work contains no reports of instabilities (see, e.g.,
Heywood, Rannacher[10], Hemker, Shishkin[6], Minion[17], Bourlioux, Layton, Minion [3]).

It was shown in [2] that the natural idea of time stepping combined with the DCM in
space for the associated quasi-equilibrium problem gives an oscillatory computed solution of
poor quality. Another DC method was introduced for an evolutionary PDE that was proven
to be stable and accurate.

The method presented in this paper is a modification (aiming at higher a accuracy in
time) of the DCM for the evolutionary PDEs presented in [2]. Compared to the method in
[2], the right hand side of the system has been modified in the correction step resulting in
higher time accuracy with no extra computational cost.

The method proceeds as follows: first we compute the artificial viscosity (AV) approxi-
mation uh

1 ∈ Xh via
Lh

ǫ+h(u
h
1) = f ,

where
Lh

ǫ+h(u
h) = uh

t − (h + ǫ)∆uh + b · ∇uh + guh.

The accuracy of the approximation is then increased by the correction step: compute uh
2 ∈

Xh satisfying
Lh

ǫ+h(u
h
2) − Lh

ǫ+h(u
h
1) = f − Lh

ǫ (u
h
1) + B(uh

1).

Here B(·) is the time difference operator that increases the accuracy of the discrete time
difference for ut.

The Crank — Nicolson time discretization combined with the two-step defect correction
method in space leads to the following system of equations for u

h,n+1
1 ,uh,n+1

2 ∈ Xh, ∀vh ∈ Xh

at t = tn+1, n > 0, with k := ∆t = ti+1 − ti:

(
u

h,n+1
1 − u

h,n
1

k
,vh) + (h + ǫ)(∇(

u
h,n+1
1 + u

h,n
1

2
),∇vh) + (b · ∇(

u
h,n+1
1 + u

h,n
1

2
),vh)+

g(
u

h,n+1
1 + u

h,n
1

2
,vh) = (f(tn+1/2),v

h), (1.2a)

(
u

h,n+1
2 − u

h,n
2

k
,vh) + (h + ǫ)(∇(

u
h,n+1
2 + u

h,n
2

2
),∇vh) + (b · ∇(

u
h,n+1
2 + u

h,n
2

2
),vh)+

g(
u

h,n+1
2 + u

h,n
2

2
,vh) = (f(tn+1/2),v

h) + h(∇(
u

h,n+1
1 + u

h,n
1

2
),∇vh) + Bn(uh

1 ,v
h), (1.2b)

where

B0(u, v) =
1

12
k2

(

u4−5u3+9u2−7u1+2u0

k3
, v

)

− 1

16
k2

(

f(t3)−5f(t2)+7f(t1)−3f(t0)

k2
, v

)

,

(1.3a)

Bn(u, v) = − 1

12
k2

(

un+2 − 3un+1 + 3un − un−1

k3
, v

)

+

1

16
k2

(

f(tn+2) − f(tn+1) − f(tn) + f(tn−1)

k2
, v

)

, for n = 1, . . . , N − 2, (1.3b)
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BN−1(u, v) = − 1

12
k2

(

2uN − 7uN−1 + 9uN−2 − 5uN−3 + uN−4

k3
, v

)

+

1

16
k2

(

3f(tN) − 7f(tN−1) + 5f(tN−2) − f(tN−3)

k2
, v

)

. (1.3c)

Depending on the current time level, we vary the templates - this demonstrates the
resilience of the method. However, the condition N > 4 needs to be satisfied, where N = T/k
is the number of time levels.

Note that the operator B is chosen so that for any n the true solution u satisfies

(
u(tn+1) − u(tn)

k
,vh) + (h + ǫ)(∇(

u(tn+1) + u(tn)

2
),∇vh) + (b · ∇(

u(tn+1) + u(tn)

2
),vh)+

g(
u(tn+1) + u(tn)

2
,vh) = (f(tn+1/2),v

h) + h(∇(
u(tn+1) + u(tn)

2
),∇vh)+

Bn(u,vh) + k4(u(5)(tn+θ),v
h),

for some θ ∈]0, 1[.
Also, the only extra computational cost for the correction step is due to the storage of

a few vectors u
h,i
1 . The Crank-Nicolson scheme is used for computing both uh

1 and uh
2 , but

the time accuracy of the approximate solution uh
2 is increased to be O(k4).

The method is proven to be unconditionally stable over the finite time; it is also stable
over all time under the assumption g − (1/2)∇ · b > β > 0.

In section 2, we briefly describe the notation used and a few established results. Stability
of the method is proven in Section 3. We conclude with the numerical results proving the
error estimates for the method - this is presented in Section 4.

2. Notation and preliminaries

In this section, we present a few definitions, assumptions, and forms used. The variational
formulation of (1.1) is naturally stated in

X := H1
0 (Ω)d = {v : Ω → R

d,v ∈ L2(Ω)d,∇v ∈ L2(Ω)d,v = 0 on ∂Ω}.

We use the standard L2 norm, ‖·‖, and the usual norm on the Sobolev space Hk,
namely ‖·‖k.

We make several common assumptions.

Assumption 2.1. There exists a constant β such that

g − 1

2
∇ · b > β > 0.

The method is proven to be stable over a finite time even if Assumption 2.1 does not
hold. If it does, the method is stable over all time.

We shall assume that the velocity finite element spaces Xh ⊂ X are conforming and have
typical approximation properties of finite element spaces commonly in use. Namely, we take
Xh to be spaces of continuous piecewise polynomials of degree m, with m > 1.

The interpolating properties of Xh are given by the following assumption.
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Assumption 2.2. For any function u ∈ X

inf
χ∈Xh

{

‖u− χ‖ + h‖∇(u− χ)‖
}

6 chr+1‖u‖r+1, 1 6 r 6 m.

We conclude the preliminaries by formulating the discrete Gronwall’s lemma (see, e.g.,
[10]).

Lemma 2.1. Let k, B, and aµ, bµ, cµ, γµ, for integers µ > 0 be nonnegative numbers such

that

an + k
n

∑

µ=0

bµ 6 k
n

∑

µ=0

γµaµ + k
n

∑

µ=0

cµ + B for n > 0.

Suppose that kγµ < 1 for all µ, and set σµ = (1 − kγµ)
−1. Then

an + k
n

∑

µ=0

bµ 6 ek
Pn

µ=0
σµγµ

[

k
n

∑

µ=0

cµ + B

]

.

3. Stability of the method

In this section, we prove the unconditional stability of the discrete artificial viscosity ap-
proximation uh

1 and use this result to prove stability of the higher order approximation uh
2 .

The approximations uh
1 and uh

2 are shown to be bounded uniformly in ǫ.

Theorem 3.1. Let f ∈ L2(0, T ; L2(Ω)). Let g − (1/2)∇ · b > β > −∞. If β < 0, let

the length of the time step satisfy k|β| < 1/4. Then the approximation uh
1 satisfying (1.2a)

is stable over the finite time T < ∞. Specifically, there exist positive constants C1, C2 such

that for any n 6 N − 1

‖uh,n+1
1 ‖2 + k

n
∑

i=0

(h + ǫ)‖∇(
u

h,i+1
1 + u

h,i
1

2
)‖2 6 eC1T

(

‖uh,0
1 ‖2 +

1

C2

k
n

∑

i=0

‖f(ti+1/2)‖2

)

. (3.1)

If Assumption 2.1 is satisfied, then uh
1 is stable over all time and

‖uh,n+1
1 ‖2 + βk

n
∑

i=0

‖u
h,i+1
1 + u

h,i
1

2
‖2 + k

n
∑

i=0

(h + ǫ)‖∇(
u

h,i+1
1 + u

h,i
1

2
)‖2 6

‖uh,0
1 ‖2 +

1

β
k

n
∑

i=0

‖f(ti+1/2)‖2. (3.2)

Proof. Take vh = (uh,n+1
1 +u

h,n
1 )/2 ∈ Xh in (1.2a). Apply Green’s theorem to the last two

terms on the left hand side (with uh
1 = 0 on ∂Ω) and use the assumption g− (1/2)∇·b > β.

The Cauchy-Schwartz and Young inequalities, applied to the left hand side yield

‖uh,n+1
1 ‖2 − ‖uh,n

1 ‖2

2k
+ (h + ǫ)

∥

∥

∥

∥

∇(
u

h,n+1
1 + u

h,n
1

2
)

∥

∥

∥

∥

2

+

β

∥

∥

∥

∥

u
h,n+1
1 + u

h,n
1

2

∥

∥

∥

∥

2

6

(

f(tn+1/2),
u

h,n+1
1 + u

h,n
1

2

)

. (3.3)
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If Assumption 2.1 is satisfied, we bound the right hand side of (3.3) by
∣

∣

∣

∣

(f(tn+1/2),
u

h,n+1
1 + u

h,n
1

2
)

∣

∣

∣

∣

6
1

2β
‖f(tn+1/2)‖2 +

β

2

∥

∥

∥

∥

u
h,n+1
1 + u

h,n
1

2

∥

∥

∥

∥

2

. (3.4)

Multiply (3.3) by 2k and sum over the time levels i = 0, . . . , n + 1. Using (3.4), we obtain

‖uh,n+1
1 ‖2 + k

n
∑

i=0

2(h + ǫ)

∥

∥

∥

∥

∇(
u

h,i+1
1 + u

h,i
1

2
)

∥

∥

∥

∥

2

+ k
n

∑

i=0

β

∥

∥

∥

∥

u
h,i+1
1 + u

h,i
1

2

∥

∥

∥

∥

2

6

‖uh,0
1 ‖2 + k

n
∑

i=0

1

β
‖f(ti+1/2)‖2, (3.5)

which proves stability over all time (provided that Assumption 2.1 is satisfied).
If g − (1/2)∇ · b > β with −∞ < β < 0, then we bound the right hand side of (3.3) by

∣

∣

∣

∣

(f(tn+1/2),
u

h,n+1
1 + u

h,n
1

2
)

∣

∣

∣

∣

6
1

4|β|‖f(tn+1/2)‖2 + |β|
∥

∥

∥

∥

u
h,n+1
1 + u

h,n
1

2

∥

∥

∥

∥

2

. (3.6)

It follows from (3.3), (3.6) and the triangle inequality that

‖uh,n+1
1 ‖2 − ‖uh,n

1 ‖2

2k
+ (h + ǫ)

∥

∥

∥

∥

∇(
u

h,n+1
1 + u

h,n
1

2
)

∥

∥

∥

∥

2

6

1

4|β|‖f(tn+1/2)‖2 + |β|(‖uh,n+1
1 ‖2 + ‖uh,n

1 ‖2). (3.7)

Multiply (3.7) by 2k and sum over the time levels i = 0, .., n + 1. Under the condition
k|β| < 1/4 the discrete Gronwall’s lemma yields

‖uh,n+1
1 ‖2 + k

n
∑

i=0

2(h + ǫ)

∥

∥

∥

∥

∇(
u

h,i+1
1 + u

h,i
1

2
)

∥

∥

∥

∥

2

6 ecT

(

‖uh,0
1 ‖2 + k

n
∑

i=0

1

2|β|‖f(ti+1/2)‖2

)

,

with c > 0. �

We now proceed to the proof of stability of uh
2 . It follows from (1.3) that |Bi(u

h
1 ,v

h)| 6

C‖vh‖ for any vh ∈ Xh, provided that the time difference (uh,i+1
1 − u

h,i
1 )/k is bounded for

any i = 0, . . . , N − 1. Hence, we begin by establishing the bound for (uh,i+1
1 − u

h,i
1 )/k.

Lemma 3.1. Let u
h,0
1 ∈ H2(Ω), ft ∈ L2(0, T ; L2(Ω)). Let g − (1/2)∇ · b > β > −∞. If

β < 0, let the length of the time step satisfy k|β| < 1/4. Then (uh,n+1
1 − u

h,n
1 )/k is bounded

for the finite time T < ∞. Specifically, there exist positive constants c, C = C(b, g, f ,uh,0
1 )

such that
∥

∥

∥

∥

u
h,n+1
1 − u

h,n
1

k

∥

∥

∥

∥

2

+ k
n

∑

i=1

1

2
(h + ǫ)

∥

∥

∥

∥

∇(
u

h,i+1
1 − u

h,i−1
1

k
)

∥

∥

∥

∥

2

6

ecT

(

C + k

n
∑

i=1

1

2β

∥

∥

∥

∥

f(ti+1/2) − f(ti−1/2)

k

∥

∥

∥

∥

2)

.

If Assumption 2.1 is satisfied, then (uh,n+1
1 −u

h,n
1 )/k is bounded over all time: there exists

C = C(b, g, f ,uh,0
1 ) such that

∥

∥

∥

∥

u
h,n+1
1 − u

h,n
1

k

∥

∥

∥

∥

2

+ k

n
∑

i=1

1

2
(h + ǫ)

∥

∥

∥

∥

∇(
u

h,i+1
1 − u

h,i−1
1

k
)

∥

∥

∥

∥

2

+ k

n
∑

i=1

1

4
β

∥

∥

∥

∥

u
h,i+1
1 − u

h,i−1
1

k

∥

∥

∥

∥

2

6
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C + k
n

∑

i=1

1

β

∥

∥

∥

∥

f(ti+1/2) − f(ti−1/2)

k

∥

∥

∥

∥

2

.

Proof. Consider (1.2a) at any time level n > 1. Take vh = (uh,n+1
1 − u

h,n−1
1 )/k and

make the same choice for vh in (1.2a) at the previous time level. Subtracting the resulting
equations leads to

(

u
h,n+1
1 − 2uh,n

1 + u
h,n−1
1

k
,
u

h,n+1
1 − u

h,n−1
1

k

)

+
1

2
(h + ǫ)k

∥

∥

∥

∥

∇(
u

h,n+1
1 − u

h,n−1
1

k
)

∥

∥

∥

∥

2

+

1

2
k

(

b · ∇
(

u
h,n+1
1 − u

h,n−1
1

k

)

,
u

h,n+1
1 − u

h,n−1
1

k

)

+
1

2
kg

∥

∥

∥

∥

u
h,n+1
1 − u

h,n−1
1

k

∥

∥

∥

∥

2

=

k

(

f(tn+1/2) − f(tn−1/2)

k
,
u

h,n+1
1 − u

h,n−1
1

k

)

.

Apply Green’s theorem to the last two terms on the left hand side (with (uh,n+1
1 −

u
h,n−1
1 )/k = 0 on ∂Ω) and use the assumption g − (1/2)∇ · b > β. Rewrite the first term on

the left hand side, using the identity
(

u
h,n+1
1 − 2uh,n

1 + u
h,n−1
1

k
,
u

h,n+1
1 − u

h,n−1
1

k

)

=

∥

∥

∥

∥

u
h,n+1
1 − u

h,n
1

k

∥

∥

∥

∥

2

−
∥

∥

∥

∥

u
h,n
1 − u

h,n−1
1

k

∥

∥

∥

∥

2

.

This yields
∥

∥

∥

∥

u
h,n+1
1 − u

h,n
1

k
‖2 − ‖u

h,n
1 − u

h,n−1
1

k

∥

∥

∥

∥

2

+
1

2
(h + ǫ)k

∥

∥

∥

∥

∇(
u

h,n+1
1 − u

h,n−1
1

k
)

∥

∥

∥

∥

2

+

1

2
kβ

∥

∥

∥

∥

u
h,n+1
1 − u

h,n−1
1

k

∥

∥

∥

∥

2

6 k

(

f(tn+1/2) − f(tn−1/2)

k
,
u

h,n+1
1 − u

h,n−1
1

k

)

. (3.8)

Sum (3.8) over all time levels i = 1, . . . , n and consider the cases β > 0 and −∞ < β < 0
separately, as in the proof of Theorem 3.1. If the Assumption 2.1 holds, this yields

∥

∥

∥

∥

u
h,n+1
1 − u

h,n
1

k

∥

∥

∥

∥

2

+ k
n

∑

i=1

1

2
(h + ǫ)‖∇

(

u
h,i+1
1 − u

h,i−1
1

k

)
∥

∥

∥

∥

2

+

k
n

∑

i=1

1

4
β

∥

∥

∥

∥

u
h,i+1
1 − u

h,i−1
1

k

∥

∥

∥

∥

2

6

∥

∥

∥

∥

u
h,1
1 − u

h,0
1

k

∥

∥

∥

∥

2

+ k
n

∑

i=1

1

β

∥

∥

∥

∥

f(ti+1/2) − f(ti−1/2)

k

∥

∥

∥

∥

2

. (3.9)

If −∞ < β < 0 and k|β| < 1/4, it follows from the discrete Gronwall’s lemma that

∥

∥

∥

∥

u
h,n+1
1 − u

h,n
1

k

∥

∥

∥

∥

2

+ k
n

∑

i=1

1

2
(h + ǫ)

∥

∥

∥

∥

∇
(

u
h,i+1
1 − u

h,i−1
1

k

)
∥

∥

∥

∥

2

6

ecT

(
∥

∥

∥

∥

u
h,1
1 − u

h,0
1

k

∥

∥

∥

∥

2

+ k

n
∑

i=1

1

2β

∥

∥

∥

∥

f(ti+1/2) − f(ti−1/2)

k

∥

∥

∥

∥

2)

. (3.10)

To complete the proof, we need a bound on ‖(uh,1
1 −u

h,0
1 )/k‖2. Consider (1.2a) at n = 0

and take vh = (uh,1
1 − u

h,0
1 )/k. This gives

∥

∥

∥

∥

u
h,1
1 − u

h,0
1

k

∥

∥

∥

∥

2

+ (h + ǫ)

(

∇
(

u
h,1
1 + u

h,0
1

2

)

,∇
(

u
h,1
1 − u

h,0
1

k

))

+
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(

b · ∇
(

u
h,1
1 + u

h,0
1

2

)

,
u

h,1
1 − u

h,0
1

k

)

+ g

(

u
h,1
1 + u

h,0
1

2
,
u

h,1
1 − u

h,0
1

k

)

=

(

f(t1/2),
u

h,1
1 − u

h,0
1

k

)

.

(3.11)
Using the identity (uh,1

1 + u
h,0
1 )/2 = (uh,1

1 − u
h,0
1 )/2 + u

h,0
1 , we can rewrite the last three

terms on the left hand side of (3.11). Applying Green’s theorem as in the proofs above yields
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1 − u
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1
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)

6
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1
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)

.

The Cauchy — Schwartz and Young inequalities give
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6 C,

where C = ‖b · ∇u
h,0
1 ‖2 + 2g2‖uh,0

1 ‖2 + 2(h + ǫ)2‖∆u
h,0
1 ‖2 + ‖f(t1/2)‖2 < ∞. Hence, if

Assumption 2.1 is satisfied or if −∞ < β < 0 and k|β| < 1/4, we obtain the bound
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∥

2

6 C < ∞. (3.12)

Inserting the bound on ‖(uh,1
1 − u

h,0
1 )/k‖2 into (3.9) and (3.10) completes the proof. �

The unconditional stability of uh
2 (uniform in ǫ) follows from Theorem 3.1 and Lemma 3.1.

The last term in the right hand side of (1.2b) is bounded by means of Lemma 3.1.

Theorem 3.2. Let the assumptions of Theorem 3.1 and Lemma 3.1 be satisfied.

Let g− (1/2)∇·b > β > −∞. If β < 0, let the length of the time step satisfy k|β| < 1/4.
Then the approximation uh

2 satisfying (1.2b) is stable over the finite time T < ∞. Specifically,

there exist positive constants c1, C2, C3 such that for any n 6 N − 1
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.

If Assumption 2.1 is satisfied, then uh
1 is stable over all time and
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β
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with C = C(b, g, f ,uh,0
1 ).
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Proof. The proof resembles that of Theorem 3.1. Take vh = (uh,n+1
2 + u

h,n
2 )/2 ∈ Xh in

(1.2b). Apply Green’s theorem to the last two terms on the left hand side. This gives

‖uh,n+1
2 ‖2 − ‖uh,n

2 ‖2

2k
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u
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2 + u

h,n
2

2

)

. (3.13)

It is easy to verify that for any n

∣
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where
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It also follows from Lemma 3.1 that this constant is finite, C < ∞.
Using Cauchy — Schwartz and Young inequalities gives
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2
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. (3.15)

Multiply (3.13) by 2k, sum over the time levels and use (3.14), (3.15). Theorem 3.1 gives
the bound on k

∑n
i=0(h + ǫ)‖∇((uh,i+1

1 + u
h,i
1 )/2)‖2. The cases where Assumption 2.1 holds

and where −∞ < β < 0, k|β| < 1/4 are treated as in the proof of Theorem 3.1. �

Thus, the method is unconditionally stable for all time, provided that Assumption 2.1
is satisfied. The approximate solutions uh

1 and uh
2 are bounded uniformly in h and ǫ. If the

condition g − (1/2)∇ ·b > β is satisfied with −∞ < β < 0, then the assumption k|β| < 1/4
is needed to conclude the stability and uniform boundedness of the approximate solutions
over a finite time.

4. Computational results

Based on the results of [2] (and the general theory of Defect Correction Methods), we are
expecting to obtain the following error estimates:

‖u− uh
1‖L2(0,T ;L2(Ω)) 6 C(h + k2),

‖u− uh
2‖L2(0,T ;L2(Ω)) 6 C(h‖u− uh

1‖L2(0,T ;L2(Ω)) + k4) 6 C(h2 + hk2 + k4).

Consider the following transport problem in Ω = [0, 1]× [0, 1]: find u satisfying (1.1) with
ǫ = 10−5, b = (1, 1)⊤, g = 1 and f = [(2 + 2ǫπ2) sin(πx) sin(πy) + π sin(πx + πy)]et. This
problem has a solution u = sin(πx) sin(πy)et.
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The results presented in the following tables 4.1 and 4.2 are obtained by using the
FreeFEM + + software [18]. In order to draw conclusions about the convergence rate,
we take k = h and k =

√
h. Note that the method needs the number of time steps N > 4.

We have chosen to take k = h and k =
√

h for the following reason. We are looking
for constants α, β such that the error is bounded by O(hα + kβ). Specifically, we are trying
to show that for the approximation u1 one obtains α > 1, β > 2. For the approximation
u2 we want α > 2, β > 4. In Table 4.1 we took k = h; therefore, the ”rate” column gives
min(α, β) = 1 for ‖u − uh

1‖ and min(α, β) = 1.6 for ‖u − uh
2‖. Similarly, from Table 4.2 we

obtain that min(α, β/2) = 1 for ‖u − uh
1‖ and min(α, β/2) = 1.6 for ‖u − uh

2‖. This yields
the result α > 1, β > 2 for the approximation uh

1 . However, for the approximation uh
2 the

results from Tables 4.1, 4.2 only yield α > 3/2, β > 3. The reason for the lower convergence
rate is the error in the boundary layer.

Ta b l e 4.1. Error estimates, ǫ = 10−5, T = 1, k = h

h ‖u− uh
1‖L2(0,T ;L2(Ω)) rate ‖u− uh

2‖L2(0,T ;L2(Ω)) rate

1/4 0.648482 0.36992
1/8 0.406708 0.6731 0.159371 1.2148
1/16 0.233742 0.7991 0.0590029 1.4335
1/32 0.126373 0.8872 0.0202292 1.5443

T ab l e 4.2. Error estimates, ǫ = 10−5, T = 1, k =
√

h

h ‖u− uh
1‖L2(0,T ;L2(Ω)) rate ‖u− uh

2‖L2(0,T ;L2(Ω)) rate

1/16 0.267117 0.059804
1/64 0.0717964 0.9477 0.00712605 1.5345
1/256 0.0179559 0.9997 0.00076384 1.6109

The defect correction methods are known to not resolve the problem of oscillations in the
boundary layer; however, we were able to demonstrate that for our method the oscillations
do not spread beyond the boundary layer. This is verified by the figure plots of the computed
solution uh

2 , as the mesh size and the time step are decreased.
The nonphysical oscillations in the upper right corner of Figs 4.1–4.3 are shown to be

restricted to the boundary layer — they decrease in size as the mesh size h decreases. Hence,
we compute the approximation error away from the boundary layer, namely in (0, 0.75) ×
(0, 0.75), in order to verify the true convergence rates of the method.

Fig. 4.1. Computed solution uh
2 ,

k = h = 1/8
Fig. 4.2. Computed solution uh

2 ,
k = h = 1/16

Fig. 4.3. Computed solution uh
2 ,

k = h = 1/32
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The first “rate” columns in tables 4.3, 4.4 show that we obtain α > 1, β > 2 for the first
approximation u1 and, therefore, we have ‖u−uh

1‖L2(0,T ;L2(Ω)) 6 C(h+ k2). We obtain from
the second “rate” columns that α > 2, β > 4, and thus ‖u−uh

2‖L2(0,T ;L2(Ω)) 6 C(h2+hk2+k4).

T ab l e 4.3. Error estimates in (0, 0.75) × (0, 0.75), ǫ = 10−5, k = h

h ‖u− uh
1‖L2(0,T ;L2(Ω)) rate ‖u− uh

2‖L2(0,T ;L2(Ω)) rate

1/4 0.545619 0.26598
1/8 0.32111 0.7648 0.0844715 1.6548
1/16 0.172327 0.8979 0.02094 2.0122

T ab l e 4.4. Error estimates in (0, 0.75) × (0, 0.75), ǫ = 10−5, k =
√

h

h ‖u− uh
1‖L2(0,T ;L2(Ω)) rate ‖u− uh

2‖L2(0,T ;L2(Ω)) rate

1/16 0.197961 0.0186758
1/64 0.0491873 1.0044 0.0016107 1.7677
1/256 0.0120236 1.0162 0.000112279 1.9213

Hence, the computational results verify the claimed accuracy of the method away from
boundaries. Also, the oscillations of the computed solution do not spread outside the bound-
ary layer.
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