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ERROR ESTIMATES ON ARBITRARY GRIDS

FOR A 2ND-ORDER MIMETIC DISCRETIZATION

OF BOUNDARY-VALUE PROBLEMS FOR LINEAR ODES

J. P. ZINGANO1 AND S.L. STEINBERG2

Abstract — We obtain sharp pointwise 2nd-order estimates for both solution and
derivative errors on arbitrary grids for a mimetic finite-difference approximation to
solutions of one-dimensional linear boundary-value problems with separated boundary
conditions. Although the scheme considered is formally inconsistent with the differen-
tial equation, it turns out to possess nice convergence properties which make it a good
alternative to more standard, consistent discretizations of similar arithmetic complex-
ity, particularly with respect to derivative errors.
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1. Introduction

In this work we derive detailed error estimates for a mimetic finite difference method con-
sidered in [13, 14, 18, 19, 22] for the numerical approximation of smooth solutions to one-
dimensional boundary-value problems of the form

− d

dx

(

K(x)
du

dx

)

+ q(x)u(x) = f(x), a < x < b, (1.1a)

α0 u(a) − α1K(a) u′(a) = Γa, β0 u(b) + β1K(b) u′(b) = Γb , (1.1b)

where α0, α1, β0, β1, Γa, Γb are given constants satisfying

α0, α1, β0, β1 > 0, α0 + α1 > 0, β0 + β1 > 0, α0 + β0 > 0, (1.1c)

and where K, q, f denote certain known (smooth) functions, with K(x) > 0 and q(x) > 0
everywhere on [ a, b ].

Under these conditions, it is well known that problem (1.1) admits a unique solution u,
which cannot in general be obtained in closed, exact form. Hence, some sort of approximation
must be used to compute u, such as that provided by discrete methods like finite difference
or finite element formulae.
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Precise convergence results like those obtained here, especially when they are extended
to multiple dimension, are important because mimetic and related methods are now seeing
extensive applications and are undergoing rapid theoretical development. An idea of recent
developments in mimetic finite difference methods can be found in [2,4,5,16,21]. An overview
of related ideas for finite elements can be found in [1, 3] and for applications to electromag-
netics in [9, 10, 12]. There has also been extensive development and applications of discrete
differential forms [7, 8, 11], including the construction of an extensive programming library
[6].

For the discretization of (1.1), we set up some grid on the interval [ a, b ], picking N + 1
points a = x0 < x1 < · · · < xN−1 < xN = b, called nodes, which divide [ a, b ] into N

subintervals [ xi−1, xi], or cells, with lengths Li−1/2 = xi − xi−1, whose central points will be
denoted by xi−1/2, 1 6 i 6 N . (Here, we follow notation in [14,18].) It will prove convenient
to set x−1/2 ≡ x0, L−1/2 ≡ 0, xN+1/2 ≡ xN , LN+1/2 ≡ 0, and define, for each node, the nodal
length hi given by hi := xi+1/2 − xi−1/2, i.e.,

hi :=
Li−1/2 + Li+1/2

2
, 0 6 i 6 N (L−1/2 ≡ 0, LN+1/2 ≡ 0). (1.2)

These quantities are illustrated in the figure 1.1.

- x
x0

a x1/2

-�

h0

-�

L1/2

x1

-�

h1

-�

L3/2

x2 · · · xi−1

xi−1/2

-�

hi−1

-�

Li−1/2

xi

xi+1/2

-�

hi

-�

Li+1/2

xi+1

-�

hi+1

· · · xN−1

xN−1/2

xN

b

-�

hN

-�

LN−1/2

F i g. 1.1. Nodal points xi, 0 6 i 6 N , cell centers xi−1/2, 1 6 i 6 N , and cell and nodal lengths Li−1/2, hi

The mimetic scheme to be considered here can then be written in the form

−D(K · Gvh) + q · vh = f, (1.3a)

α0 v0 − α1K0 · ( Gvh)0 = Γa, β0 vN + β1KN · ( Gvh)N = Γb , (1.3b)

for appropriate difference operators D (“discrete divergence”), G (“discrete gradient”) and
discrete functions K, q, f (or, in fuller notation, Kh, qh, fh, where superscript h refers to the
grid) that represent (project) K, q, f on appropriate grid points [13]; solving (1.3) for vh

gives the approximation sought for the exact values uh. In our case, D, G are defined by

( Dw )i−1/2 =
wi − wi−1

Li−1/2
, 1 6 i 6 N, (1.4a)

( Gz)i =
zi+1/2 − zi−1/2

hi
, 0 6 i 6 N, (1.4b)

for (arbitrary) discrete functions w, z defined at the grid points xi, xi−1/2, respectively. Thus,
(1.3a) reads

− Ki−1

hi−1

vi−3/2 +

(

Ki−1

hi−1

+
Ki

hi

+ qi−1/2Li−1/2

)

vi−1/2 −
Ki

hi

vi+1/2 = Li−1/2fi−1/2 (1.5)
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for 1 6 i 6 N , where Ki = K(xi), Ki−1 = K(xi−1), qi−1/2 = q(xi−1/2), and so forth.
Our goal is to investigate the errors eh := vh − uh (solution error), Eh := Gvh − ( u′)h

(derivative or gradient error), which are related to τh (truncation error) defined by

−D(K · Guh) + q · uh = f + τh (1.6a)

at the cell centers, and

α0 u0 − α1K0 · ( Guh)0 = Γa + τ
0
, β0 uN + β1KN · ( Guh)N = Γb + τ

N
(1.6b)

at the endpoints x0 = a, xN = b. The relevance of τh can be seen from the equations

−D(K · Geh) + q · eh = − τh (1.7a)

α0 e0 − α1K0 · ( Geh)0 = − τ
0
, β0 eN + β1KN · ( Geh)N = − τ

N
(1.7b)

relating τh to eh. Likewise, similar steps can be given for discrete methods in general, and
it is a fundamental result that, as the grid is infinitely refined (“h → 0”), condition τh → 0
(“consistency”) turns out to be sufficient1 to assure eh → 0 (“convergence”), although this
is by no means necessary [14, 18, 22]. This is the case of our scheme (1.3), (1.4), for which2

τi−1/2 = Ki−1/2 u′′

i−1/2

(

1 − hi + hi−1

2 Li−1/2

)

− 1

6
Ki−1/2 u′′′

i−1/2

h2
i − h2

i−1

Li−1/2

(1.8)

− 1

4
K ′

i−1/2 u′′

i−1/2 ( hi − hi−1) + O(L2
i−3/2) + O(L2

i−1/2) + O(L2
i+1/2)

for 1 6 i 6 N : not only τh may fail to vanish uniformly as h → 0, it may even grow
unboundedly! And yet, as it will be shown in the sequel, the mimetic method happens to
have some nice convergence properties, with 2

ei−1/2 = −1

8
u′′(xi−1/2) L2

i−1/2 + O(ℏ2), 1 6 i 6 N (1.9a)

e0 = O(ℏ2), eN = O(ℏ2) (1.9b)

Ei = O(ℏ2), 0 6 i 6 N (1.9c)

uniformly in i, where ℏ is the global grid spacing measure [17, 20] given by

ℏ =

√

√

√

√

N
∑

j = 1

L3
j−1/2 . (1.10)

Insight into the estimator ℏ can be gained by noting that for uniform grids on [ a, b ]
with cells of length h, ℏ =

√
b − a h, and if one mimimizes ℏ given in equation (1.10) with

respect to the Lj−1/2’s with the constraint L1/2 + . . .+LN−1/2 = b−a, one obtains a uniform
grid with h = (b − a)/N . A common way of generating a grid [15] is to choose a smooth

1One must note that, in our present setting, consistency is also sufficient for zero-stability [22].
2Expressions (1.8), (1.9) are valid provided that K ∈ C3([ a, b ]), u ∈ C4([ a, b ]). If K, u are less smooth,

then these must be changed accordingly.
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monotone function Φ = Φ(ξ) that maps [0,1] to [a, b] and then set h = 1/N and xi = Φ(i h).
In this case,

ℏ ≈ h

(

1
∫

0

Φ′(ξ)3 dξ

)1/2

for small h. For generating functions of the form Φ(ξ) = (b − a) ξp + a, p > 0, convergence
is second order in h for p > 2/3, that is, convergence is still second order in 1/N for such
singular grids where Φ′(ξ) is unbounded.

By (1.9), the error ei−1/2 = vi−1/2−ui−1/2 at the i-th cell is made of two components: one

local, with size O(L2
i−1/2), and a global component εglobi−1/2 = ei−1/2 + 1/8 u′′

i−1/2L
2
i−1/2 whose

size depends on the entire grid. At the endpoints x0 = a, xN = b, however, eh behaves
globally (to second order accuracy), as do the derivative errors Ei = (Gvh)i −u′

i everywhere.
This is precisely the behavior observed in numerical experiments [13, 18, 22], including the
case of negative or sign-changing q, as illustrated in Figures 1.2 and 1.3 below.

2. Error analysis for q = 0

We first derive (1.9) in the fundamental case q = 0, and then extend the results to more
general q in Section 3. It will be sufficient to consider the boundary conditions to be, say,
of Dirichlet type at one end and Robin or Neumann type at the other, since the other cases
can be handled in an entirely similar way. Thus, we set

u(a) = Γa, β u(b) + K(b) u′(b) = Γb (2.1)

for some given β, Γa, Γb ∈ R, with β > 0.1 In particular, we take v0 = Γa, and so e0 = 0.
The key point to determine the other errors is to obtain the quantity Geh first [14,22], which
is achieved in (2.13) below. To do this, we observe that

Ki(Geh)i = KN (Geh)N −
N

∑

j = i + 1

Lj−1/2 (D(K · Geh))j−1/2 (2.2)

for all 0 6 i 6 N , so that we obtain, by (1.7a) and recalling that q = 0,

Ki(Geh)i = KN (Geh)N −
N

∑

j = i+ 1

Lj−1/2 τj−1/2, 0 6 i 6 N . (2.3)

Now, from (1.8), we get

N
∑

j = i + 1

Lj−1/2 τj−1/2 = O(ℏ2) +
N

∑

j = i+ 1

Kj−1/2 u′′

j−1/2

(

Lj−1/2 − hj−1 + hj

2

)

−

− 1

4

N
∑

j = i +1

K ′

j−1/2 u′′

j−1/2 Lj−1/2 ( hj − hj−1) − 1

6

N
∑

j = i + 1

Kj−1/2 u′′′

j−1/2 ( h2
j − h2

j−1) (2.4)

1Actually, as will be clear in the analysis below, we need only assume β > −
(

b
∫

a

K(x)−1dx

)

−1

.
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i for the Dirichlet problem (1.1) on [0, 1] with

K(x) = 2 + sinx, q(x) = −ex/10, u(x) = 1 + coshx and grid points x0 = 0, xi = xi−1 + H/(1001 − i)3/4,
1 6 i 6 1000, xi = xi−1 + H/(i − 1000)3/4, 1001 6 i 6 2000, H = 0.262e-1; for this grid, ℏ = 0.726e-2. The

values of eh are shown divided by a factor of 10 to fit the picture
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i for five successively refined grids in the case of problem (1.1) on [0, 1] with K(x) =

2+sinx, q(x) = −ex/10, u(x) = 1+coshx and boundary conditions of Robin type −2u(0) + K(0)u′(0) = Γ
0
,

u(1) + K(1)u′(1) = Γ
1
, showing the O(ℏ2) behavior as these errors are halved each time ℏ

2 is halved. Grid

points are x0 = 0, xi = xi−1+H
N

/(1001−i)3/4, 1 6 i 6 N/2, xi = xi−1+H
N

/(i−1000)3/4, N/2+1 6 i 6 N ,
with N = 444, 926, 2000, 4440 and 10064, corresponding to ℏ = 1.452e-2. 1.028 e-2, 0.726e-2, 0.513e-2 and

0.363e-2, respectively
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and we proceed by estimating the sums on the right hand side of (2.4). For the first sum,
setting w(x) := K(x)u′′(x), we have

N
∑

j = i+ 1

Kj−1/2 u′′

j−1/2

(

Lj−1/2 − hj−1 + hj

2

)

=

− 1

4

N
∑

j = i + 1

wj−1/2

{

( Lj+1/2 − Lj−1/2 ) − ( Lj−1/2 − Lj−3/2 )
}

=

− 1

4

N
∑

j = i+ 1

{

wj ( Lj+1/2 − Lj−1/2 ) − wj−1 ( Lj−1/2 − Lj−3/2 )
}

+

1

4

N
∑

j = i + 1

{

( wj − wj−1/2 ) ( Lj+1/2 − Lj−1/2 ) − ( wj−1 − wj−3/2 ) ( Lj−1/2 − Lj−3/2 )
}

+

1

4

N
∑

j = i + 1

( wj−1/2 − wj−3/2 ) ( Lj−1/2 − Lj−3/2 ) =

1

4
wN−1/2LN−1/2 +

1

4
wi−1/2(Li+1/2 − Li−1/2) +

1

8

N
∑

j=i+1

w′

j−1(L
2
j−1/2 − L2

j−3/2) + O(ℏ2) =

1

4
wN−1/2LN−1/2 +

1

8
w′

N−1/2L
2
N−1/2 +

1

4
wi−1/2(Li+1/2 − Li−1/2) −

1

8
w′

iL
2
i−1/2 + O(ℏ2) =

1

4
wN LN−1/2 +

1

4
wi(Li+1/2 − Li−1/2) − 1

8
w′

i Li−1/2Li+1/2 + O(ℏ2),

so that we obtain

N
∑

j = i + 1

Kj−1/2u
′′

j−1/2(Lj−1/2 −
hj−1 + hj

2
) =

1

4
KNu′′

N
LN−1/2 +

1

4
Kiu

′′

i (Li+1/2 − Li−1/2)−

1

8
K ′

i u
′′

i Li−1/2 Li+1/2 − 1

8
Ki u

′′′

i Li−1/2 Li+1/2 + O(ℏ2). (2.5a)

In a similar way, for the second sum in (2.4), setting w̃(x) := K′(x)u′′(x), we get

N
∑

j=i+1

K ′

j−1/2u
′′

j−1/2Lj−1/2(hj − hj−1) = −1

4

N
∑

j=i+1

{

w̃jLj−1/2hj − w̃j−1Lj−1/2hj−1

}

+ O(ℏ2) =

w̃N LN−1/2 hN − w̃i Li−1/2 hi −
N

∑

j = i +1

w̃j−1 ( Lj−1/2 − Lj−3/2 ) hj−1 + O(ℏ2) =

w̃N LN−1/2 hN − w̃i Li−1/2 hi −
1

2

N
∑

j = i +1

(

w̃j L2
j−1/2 − w̃j−1 L2

j−3/2

)

+ O(ℏ2) =

= −1

2
w̃i Li−1/2 Li+1/2 + O(ℏ2),
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N
∑

j = i + 1

K ′

j−1/2 u′′

j−1/2 Lj−1/2 ( hj − hj−1 ) = − 1

2
K ′

i u
′′

i Li−1/2 Li+1/2 + O(ℏ2). (2.5b)

Finally, for the third sum in (2.4), we obtain

N
∑

j = i +1

Kj−1/2 u′′′

j−1/2 ( h2
j − h2

j−1 ) =
1

4
KN−1/2 u′′′

N−1/2 L2
N−1/2 − Ki u

′′′

i h2
i + O(ℏ2). (2.5c)

Hence, from (2.4) and (2.5a)–(2.5c), we get

N
∑

j = i +1

Lj−1/2 τj−1/2 =
1

4
KN u′′

N
LN−1/2 − 1

24
KN u′′′

N
L2

N−1/2 +
1

4
Ki u

′′

i ( Li+1/2 − Li−1/2 ) −

1

8
Ki u

′′′

i Li−1/2 Li+1/2 +
1

6
Ki u

′′′

i h2
i + O(ℏ2).

Now, for (2.3) to be useful, there still remains to estimate (Geh)N =
(

eN − eN−1/2

)

/hN .

By (1.7b)1, we have KN (Geh)N = − τN − βeN , where τN is the truncation error at xN = b,

τN = − 1

4
KN u′′

N
LN−1/2 +

1

24
KN u′′′

N
L2

N−1/2 + O(L3
N−1/2); (2.7)

thus, (Geh)N is easily obtained when β = 0. For general β > 0, the following procedure can
be used: solving (1.7a), (1.7b) for eN , we obtain

eN = −
(

τN +
c

N
θ

[0]
N−1cN−1

c
N

+ θ
[0]
N−1cN−1

N
∑

j =1

1

θ
[0]
j−1cj−1

Lj−1/2 τj−1/2

)

/
(

θ
[0]
N c

N
+ β

)

(2.8a)

where

ci =
Ki

hi
, θ

[0]
i =

hi

Ki

(

i
∑

ℓ = 0

hℓ

Kℓ

)

−1

, 0 6 i 6 N . (2.8b)

Setting

Ii :=
i

∑

ℓ= 0

hℓ

Kℓ
, 0 6 i 6 N , (2.9)

so that, in particular, IN =
∫ b

a
1

K(x)
dx + O(ℏ2), (2.8a) reduces to

eN = −
(

τN +
1

IN

N
∑

j = 1

Ij−1 Lj−1/2 τj−1/2

)

/
(

β +
1

IN

)

. (2.10)

Similarly to (2.5a)− (2.5c) above, we can show

N
∑

j = 1

Ij−1 Kj−1/2 u′′

j−1/2

(

Lj−1/2 − hj−1 + hj

2

)

=
1

4
IN KN u′′

N
LN−1/2 + O(ℏ2),

1Here, by (2.1), one has α0 = 1, α1 = 0, τ0 = 0, β0 = β, β1 = 1 in equation (1.7b).
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N
∑

j = 1

Ij−1 K ′

j−1/2 u′′

j−1/2 Lj−1/2 ( hj − hj−1 ) = O(ℏ2),

N
∑

j = 1

Ij−1 Kj−1/2 u′′′

j−1/2 ( h2
j − h2

j−1 ) =
1

4
IN KN u′′′

N
L2

N−1/2 + O(ℏ2),

so that we have

N
∑

j =1

Ij−1 Lj−1/2 τj−1/2 =
1

4
IN KN u′′

N
LN−1/2 − 1

24
IN KN u′′′

N
L2

N−1/2 + O(ℏ2). (2.11)

Hence, by (2.7), (2.10) and (2.11), we obtain

eN = O(ℏ2), (2.12)

and so KN ( Geh)N = − τN − βeN gives

( Geh)N =
1

4
u′′

N
LN−1/2 − 1

24
u′′′

N
L2

N−1/2 + O(ℏ2). (2.13a)

Recalling (2.3) and (2.6), this yields the fundamental estimate

( Geh)i = − 1

4
u′′

i ( Li+1/2 − Li−1/2 ) − 1

24
u′′′

i ( L2
i−1/2 − Li−1/2Li+1/2 + L2

i+1/2 ) + O(ℏ2)

(2.13b)
for all 0 6 i 6 N .

Once Geh and one of the errors e0 or eN have been estimated, it becomes simple to obtain
the errors eh, Eh by the following procedure [14, 22]. Starting with Eh, we note that

Ei = (Geh)i + (Guh)i − u′

i = (Geh)i +
1

4
u′′

i (Li+1/2 − Li−1/2) +
1

48
u′′′

i

L3
i−1/2 + L3

i+1/2

hi
+ O(ℏ2),

so that we obtain, by (2.13),

Ei = O(ℏ2), 0 6 i 6 N . (2.14)

Now, given 0 6 i 6 N , we have, by definition of Eh,

vi−1/2 = vN −
N

∑

j = i

hjEj −
N

∑

j = i

hju
′

j,

while, by the trapezoidal quadrature rule,

ui−1/2 = uN +
1

8
u′′

i−1/2L
2
i−1/2 −

N
∑

j = i

hju
′

j + O(ℏ2).

Therefore, for 0 6 i 6 N ,1

ei−1/2 = eN − 1

8
u′′

i−1/2L
2
i−1/2 −

N
∑

j = i

hjEj + O(ℏ2), (2.15)

and we obtain (1.9a), (1.9b) from (2.12), (2.14) and (2.15), concluding the argument. �

1Similarly, we can show that ei−1/2 = e0 − 1

8
u′′

i−1/2
L2

i−1/2
+

∑i− 1

j = 0
hjEj + O(ℏ2) for 1 6 i 6 N + 1.
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3. Error analysis for q > 0

We will now obtain (1.9) for arbitrary q > 0, and same assumptions as in Section 1. Given
q, it will be convenient here to change notation slightly and denote by u[q], v[q] the solutions
of problems (1.1), (1.3), respectively, with corresponding errors e[q], E[q] given by

e
[q]
i−1/2 = v

[q]
i−1/2 − u[q](xi−1/2), 0 6 i 6 N + 1, (3.1)

E
[q]
i = ( Gv[q])i −

du[q]

dx
(xi), 0 6 i 6 N , (3.2)

i.e., we make explicit their dependence on q. In Section 2, estimates (1.9), (2.13) were derived
for e[0], E[0]; extension to e[q], E[q] follows directly from Theorems 3.1 and 3.2 below.

Theorem 3.1. e[q] = e[0] + O(ℏ2), i.e., ‖ e[q] − e[0] ‖sup = O(ℏ2).
Proof. We assume that the boundary conditions are given by (2.1), since the other cases

can be treated in a similar way. (Thus, as e
[q]
0 = 0 here, we set e[q] = { e

[q]
i−1/2, 1 6 i 6 N + 1 }

in the following argument.) Writing (1.7a), (1.7b) as Ah(q)e[q] = − bh, where

Ah(q) =













































a
[q]
1/2 − c1 0 · · · 0 0

− c1 a
[q]
3/2 − c2 · · · 0 0

0 − c2 a
[q]
5/2 · · · 0 0

· · · · · ·
· · · · · ·
· · · · · ·

0 0 0 · · · a
[q]
N−1/2 − cN

0 0 0 · · · − cN aN













































, bh =















































L1/2 τ1/2

L3/2 τ3/2

L5/2 τ5/2

·
·
·

LN−1/2 τN−1/2

τN















































with τ1/2, . . . , τN−1/2 and τN given in (1.8), (2.7), ci = Ki/hi, 0 6 i 6 N, aN = β + cN and

a
[q]
i−1/2 = ci−1 + ci + qi−1/2 Li−1/2, 1 6 i 6 N, we get, recalling that Ah(0)e[0] = − bh,

Ah(q) (e[q] − e[0]) = −Qh(q) e[0], (3.3)

where Qh(q) is a diagonal matrix, given by Qh(q) = diag ( q1/2 L1/2, . . . , qN−1/2 LN−1/2 , 0 ).

Reducing (3.3) to triangular form, we obtain Âh(q) (e[q] − e[0]) = ζ̂ [q], where ζ̂ [q] ∈ R
N+1 is

given by

ζ̂
[q]
i−1/2 = −

i
∑

j =1

θ
[q]
i−1ci−1

θ
[q]
j−1cj−1

ν
[q]
ij Lj−1/2 qj−1/2 e

[0]
j−1/2, 1 6 i 6 N + 1,

with | ν[q]
ij | 6 1 for all i, j, and positive θ

[q]
0 , θ

[q]
1 , . . . , θ

[q]
N given recursively by θ

[q]
0 = 1 and

θ
[q]
i =

ci−1 θ
[q]
i−1 + qi−1/2 Li−1/2

ci−1 θ
[q]
i−1 + ci + qi−1/2 Li−1/2

, 1 6 i 6 N .



Error estimates on arbitrary grids for a 2nd-order mimetic discretization 201

Moreover, because q > 0, we have

1

θ
[q]
i ci

6 Ii, 0 6 i 6 N ,

with Ii defined in (2.9), so that

| ζ̂ [q]
i−1/2 | 6 θ

[q]
i−1ci−1 I

N
‖ q ‖sup

N
∑

j = 1

Lj−1/2 | e[0]
j−1/2 | (3.4)

for all 1 6 i 6 N + 1, where ‖ q ‖sup denotes the supnorm of q on [ a, b ]. Now, as can be

readily checked, if ẑ = ( ẑ1/2, . . . , ẑN−1/2, ẑN+1/2) ∈ R
N+1 is such that | ẑi−1/2 | 6 θ

[q]
i−1 ci−1 Γ

for all 1 6 i 6 N + 1, and some Γ > 0 independent of i, the solution ŵ of Âh(q) ŵ = ẑ
verifies ‖ ŵ ‖sup 6 Γ. Therefore, (3.4) gives

‖ e[q] − e[0] ‖sup 6 I
N
‖ q ‖sup

N
∑

j = 1

Lj−1/2 | e[0]
j−1/2 |, (3.5)

from which we obtain, by our previous results, ‖ e[q] − e[0] ‖sup = O(ℏ2), as claimed. �

Theorem 3.2. Ge[q] = Ge[0] + O(ℏ2), E[q] = E[0] + O(ℏ2).
Proof. Starting with Ge[q], one has, by (1.7a), (2.2) and Theorem 3.1 above,

Ki(Ge[q])i = KN (Ge[q])N −
N

∑

j = i +1

Lj−1/2 τj−1/2 + O(ℏ2), 0 6 i 6 N − 1,

uniformly in i, so that, by (2.3), we need only to show that (Ge[q])N = (Ge[0])N + O(ℏ2).
For Robin or Neumann condition at xN = b, cf. (2.1), we get, by Theorem 3.1,

KN(Ge[q])N = −βe
[q]
N − τN = −βe

[0]
N − τN + O(ℏ2) = KN(Ge[0])N + O(ℏ2), and we are

done. (In case of Dirichlet condition, we proceed as in the proof of Theorem 3.1: writ-

ing e[q] = e[0] + w[q], we have w
[q]
N = 0 and, in the notation of (3.3), Ah(0)w[q] = −Qh(q)e[q]

for the other components, from which we get, similarly to (3.5) above, solving for w
[q]
N−1/2,

|w[q]
N−1/2 | 6

θ
[0]
N−1cN−1

c
N

+ θ
[0]
N−1cN−1

IN‖ q ‖sup

N
∑

j =1

Lj−1/2 | e[q]
j−1/2 | =

hN

KN

‖ q ‖sup

N
∑

j = 1

Lj−1/2 | e[q]
j−1/2 | = hN O(ℏ2)

by (2.8b), (2.9) and Theorem 3.1. This gives ( Ge[q])N = ( Ge[0])N + O(ℏ2), as before). There-
fore, (2.13) remains valid for q > 0, and (2.14) follows, i.e., E[q] = O(ℏ2). �
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