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ERROR ESTIMATES ON ARBITRARY GRIDS
FOR A 2ND-ORDER MIMETIC DISCRETIZATION
OF BOUNDARY-VALUE PROBLEMS FOR LINEAR ODES

J.P.ZINGANO! AND S. L. STEINBERG?

Abstract — We obtain sharp pointwise 2nd-order estimates for both solution and
derivative errors on arbitrary grids for a mimetic finite-difference approximation to
solutions of one-dimensional linear boundary-value problems with separated boundary
conditions. Although the scheme considered is formally inconsistent with the differen-
tial equation, it turns out to possess nice convergence properties which make it a good
alternative to more standard, consistent discretizations of similar arithmetic complex-
ity, particularly with respect to derivative errors.
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1. Introduction

In this work we derive detailed error estimates for a mimetic finite difference method con-
sidered in [13,14,18,19,22] for the numerical approximation of smooth solutions to one-
dimensional boundary-value problems of the form

— % (K(x) Z—;) + q(zx)u(z) = f(x), a<az<b, (1.1a)
agu(a) — arK(a)u'(a) = Ty, Bou(d) + L1K(b)u'(b) = T, (1.1b)

where «g, a1, By, 81, ', 'y are given constants satisfying
ag, a1, fo, B 2 0, aptar >0, G+ >0, ag+pf>0, (1.1c)

and where K, q,f denote certain known (smooth) functions, with K(z) > 0 and q(z) > 0
everywhere on [a,b].

Under these conditions, it is well known that problem (1.1) admits a unique solution u,
which cannot in general be obtained in closed, exact form. Hence, some sort of approximation
must be used to compute u, such as that provided by discrete methods like finite difference
or finite element formulae.
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Precise convergence results like those obtained here, especially when they are extended
to multiple dimension, are important because mimetic and related methods are now seeing
extensive applications and are undergoing rapid theoretical development. An idea of recent
developments in mimetic finite difference methods can be found in [2,4,5,16,21]. An overview
of related ideas for finite elements can be found in [1,3] and for applications to electromag-
netics in [9,10,12]. There has also been extensive development and applications of discrete
differential forms [7,8, 11], including the construction of an extensive programming library
6].

For the discretization of (1.1), we set up some grid on the interval [a,b], picking N + 1
points a = zg < 11 < -+ < xy_1 < xy = b, called nodes, which divide [a,b] into N
subintervals [ x;_1, z;], or cells, with lengths Li_1/2 = ; — x;_1, whose central points will be
denoted by z;_1/2, 1 <i < N. (Here, we follow notation in [14,18].) It will prove convenient
toset w_1/2 =29, L_1/2 =0, Tn41/2 = @n, Lnyi1/2 = 0, and define, for each node, the nodal
length h, given by hl = Tig1/2 — Ti-1/2, i.e.,

Li—1/2+ Lit1)2

hi = )
2

0 § ) § N (L—I/Q = 0, LN+1/2 = O) (12)

These quantities are illustrated in the figure 1.1.

ho hi h;_1 h; hit1 hn
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Lyjp L3 Li 12 Lit1p2 Ly_1/2

Fig. 1.1. Nodal points x;, 0 <i < N, cell centers z;_;/2, 1 <i <N, and cell and nodal lengths L; 15, h;

The mimetic scheme to be considered here can then be written in the form
—D(K-Gv") + q-o" = f, (1.3a)
apvy — a1 Ko (G0")g = To, Bovnw + BiKn- (G")y = T, (1.3b)

for appropriate difference operators D (“discrete divergence”), § (“discrete gradient”) and

discrete functions K, ¢, f (or, in fuller notation, K" ¢" f" where superscript h refers to the

grid) that represent (project) K,q,f on appropriate grid points [13]; solving (1.3) for v"

gives the approximation sought for the exact values u” In our case, D, G are defined by
W; — Wi—1

(@?U)i,l/g = ——, 1 < 1 g N, (14&)
Lifl/2

(Gz), = 22 ;42“/2, 0<i<A, (1.4b)

for (arbitrary) discrete functions w, z defined at the grid points x;, 2;_1 /2, respectively. Thus,
(1.3a) reads

K;_ K;_ K; K;
- . Vi—3/2 + -+ + Gi—12Lic1yo | Vi1y2 — Viv12 = Li—1jafic1ye (1.5)
hi—q hi—q h; hi
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for 1 <i < N, where K; = K(x;), K;—1 = K(x;_1), ¢i—1/2 = q(xi_1/2), and so forth.
Our goal is to investigate the errors e := v — u" (solution error), E" :== Go" — ()"
(derivative or gradient error), which are related to 7" (truncation error) defined by

~D(K-Gu") + q¢-u" = f+ 1" (1.6a)
at the cell centers, and
aguy — a1 Ko (Gu)y = Ty + Ty, Boun + PiKy- (GuM)y =Ty + 7 (1.6b)
at the endpoints 2y = a, x5 = b. The relevance of 7 can be seen from the equations
~D(K-Ge") + q-e = —7" (1.7a)
apey — a1 Ky (Ge)y = — Ty, Boey + BiKy: (GeM)y = — Ty (1.7b)

relating 7" to e”. Likewise, similar steps can be given for discrete methods in general, and
it is a fundamental result that, as the grid is infinitely refined (“h — 0”), condition 7" — 0
(“consistency”) turns out to be sufficient! to assure e” — 0 (“convergence”), although this

is by no means necessary [14,18,22]. This is the case of our scheme (1.3), (1.4), for which?
hi 4 hi— ) 1 " h? — h?_l (18)

Tic12 = Kicqy2 UQ’_1/2 (1 - 2L 1y 5 Ki—12 WUi—1/2

1
T2 1(71/2 u;Ll/Z (hi —hi—1) + O(L?f:a/z) + O(L?fl/z) + O(L?H/z)

Li 12

for 1 < i < N: not only 7" may fail to vanish uniformly as h — 0, it may even grow
unboundedly! And yet, as it will be shown in the sequel, the mimetic method happens to
have some nice convergence properties, with 2

1
ei_l/g = —g U//([Bi_l/g) Lzzfl/Z + O(ﬁZ), 1 é Z é N (19&)
o = O(2), ey = O(H?) (1.9b)
E; = O(h*), 0<i<N (1.9¢)

uniformly in ¢, where £ is the global grid spacing measure [17,20] given by

(1.10)

Insight into the estimator A can be gained by noting that for uniform grids on [a,b]
with cells of length h, h = /b — a h, and if one mimimizes A given in equation (1.10) with
respect to the L;_;/5’s with the constraint Ly, +...+ Ly_1/2 = b—a, one obtains a uniform
grid with h = (b — a)/N. A common way of generating a grid [15] is to choose a smooth

LOne must note that, in our present setting, consistency is also sufficient for zero-stability [22].
2Expressions (1.8), (1.9) are valid provided that K € C3([a,b]), u € C*([a,b]). If K, u are less smooth,
then these must be changed accordingly.
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monotone function ® = ®(¢£) that maps [0,1] to [a,b] and then set h = 1/N and z; = ®(i h).

In this case,
! 1/2
h h</®’(§)3d§)
0

for small h. For generating functions of the form ®(§) = (b — a) & + a, p > 0, convergence
is second order in h for p > 2/3, that is, convergence is still second order in 1/N for such
singular grids where ®'(¢£) is unbounded.

By (1.9), the error €i—1/2 = Vj—1/2 — uij—1/2 at the i-th cell is made of two components: one
local, with size O(L? | /2) and a global component elglj o = Cim1j2 T 1 /8ul /QL?_I /o whose
size depends on the entire grid. At the endpoints o = a, xy = b, however, e" behaves
globally (to second order accuracy), as do the derivative errors E; = (Sv"); —u) everywhere.
This is precisely the behavior observed in numerical experiments [13,18,22], including the

case of negative or sign-changing q, as illustrated in Figures 1.2 and 1.3 below.

2. Error analysis for q =0

We first derive (1.9) in the fundamental case q = 0, and then extend the results to more
general q in Section 3. It will be sufficient to consider the boundary conditions to be, say,
of Dirichlet type at one end and Robin or Neumann type at the other, since the other cases
can be handled in an entirely similar way. Thus, we set

u(a) = T, Lud) + Kb)u'(b) = T, (2.1)

for some given 3, I,, I, € R, with 3 > 0.} In particular, we take vy = I,, and so ey = 0.
The key point to determine the other errors is to obtain the quantity Ge” first [14,22], which
is achieved in (2.13) below. To do this, we observe that

K;(Ge"); = Z Li-1/2 (D(K-Ge"))jo1y (2:2)

j=1+1

for all 0 < i < N, so that we obtain, by (1.7a) and recalling that q = 0,
Ki(geh)i = KN(Seh)N — Z Lj—1/2 Tj—-1/2, 0 < 1 < N. (23)
j=i+1
Now, from (1.8), we get

hjy + hy
Z L] 1/27'3 1/2 = O ﬁ2 Z 1/2U;.,_1/2(Lj1/2 — %)_

j=1+1 j=1+1

N
1
- Z C1ppWiipp Ljoaja (hy —hj1) — 5 S Kjapu(B2—h,)  (24)

]72-1—1 j=1+1

b
! Actually, as will be clear in the analysis below, we need only assume (3 > — < / K(z 1dx)
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Solution error Derivative error
T T T T T T
0.5e-5 - . 0.5e-5 |- .
Eglob
0 S — 0 1
Eh
-0.5e-5 |- , . -0.5e-5 | .
e"/10

-1.0e-5 |- . -1.0e-5 | .
1 1 1 T L | | T

0 0.25 0.50 0.75 1 0 0.25 0.50 0.75 1

Fig. 1.2. Errors 6?—1/2’ Efiolb/z = eff_l/Q +1/8 u;il—l/QL?—l/W E! for the Dirichlet problem (1.1) on [0, 1] with

K(z) = 2+ sinz, q(z) = —e®/10, u(xz) = 1 + coshz and grid points zo = 0, z; = x;_1 + H/(1001 — i)3/4,

1 <4 <1000, 2 = zi—1 + H/(i — 1000)>/4 1001 < i < 2000, H = 0.262e-1; for this grid, i = 0.726e-2. The
values of e are shown divided by a factor of 10 to fit the picture

Solution error (g8°" only) Derivative error
cglob Eh . : .
1.0e-05 1.0e-05 - .
0.5e-05 0.5e-05 | .

-0.5e-05 - b 2 -0.5e-05 - b
0 0.25 0.50 0.75 1 0 0.25 0.50 0.75 1

Fig. 1.3. Errors efi()lb/? E! for five successively refined grids in the case of problem (1.1) on [0, 1] with K(x) =

2+sinz, q(z) = —e”/10, u(z) = 14coshz and boundary conditions of Robin type —2u(0) 4+ K(0)u’(0) = T,

u(1) + K(1)u'(1) = I}, showing the O(h?) behavior as these errors are halved each time 42 is halved. Grid

points are zo = 0, x; = ;1 + H, /(1001 —4)3/4 1 <4 < N/2, x; = x;_1 + H,, /(i—1000)*/4 N/2+1 <i < N,

with N = 444, 926, 2000, 4440 and 10064, corresponding to h = 1.452e-2. 1.028 e-2, 0.726¢e-2, 0.513e-2 and
0.363e-2, respectively
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and we proceed by estimating the sums on the right hand side of (2.4). For the first sum,
setting w(z) := K(z)u”(x), we have

N
hi_1+h;
D Kiapu (Lj—1/2 - %) =

j=i+1

-7 Z w12 { (Liyryz = Liaj2) = (Lisijp — Ljsp) } =
gfz—i—l

N
1
=7 2w (L = Linyz) — wia (Limae = Ljape) J+

j=it1
L
B DA (wi—wiap) (Livas = Lizap) = (wjon—wjoapn) (Ljoajs = Li-apn) }+
5
Lo
4 D (wiap —wiap) (Lisas — Ljap) =
j=i+1
1 1 2
wa—1/2LN—1/2 + sz‘—1/2(Li+1/2 — L 1/2 Z w ] 1/2 — LJ 3/2) +O(h7) =
] i+1

1 1 1 1
ZwN—1/2LN71/2 + gw;v—l/QL?\f—lﬂ + Zwi71/2(Li+1/2 —Li—1p2) — Wi iLi 12 O(h*) =

1 1
ZwNLN—l/Q + Zwi(Li—i—lﬂ - Li—1/2) - gw; Li—l/QLi—i—l/Q + O(ﬁQ),
so that we obtain
h, -1+ h; 1 1
Z 1/2ua 1/2(LJ'*1/2 - %) 1 N“gleNfl/Z + 1 Kiu;,(LiJrl/Z - Li71/2)_
j=1+1

1 1
g KZI u;' Li71/2 Li+1/2 — g KZ u;" Li71/2 Li+1/2 + O(ﬁ2) (25&)

In a similar way, for the second sum in (2.4), setting w(z) := K'(x)u"(z), we get

Z 1/2% 1/2LJ 1/2(h _ha 1 —— Z {wJ J— 1/2h wj—le—l/th—1}+O(ﬁ2):

Jj=i+1 ] 1+1

Wy Ly_1/2hy — Wi Li—yp2 h Zw] 1 (Lj—1y2 — Lj73/2)hj—1 + O(ﬁ2) -
j=14+1
1 Y
Wy Ly—12hy — Wi Li—1y2 hi — 52(@ Ly 1 — Wi L?,3/2> +O(7%) =
j=i+1
1

=-3 Wi Li—1ya Liv12 + O(R?),
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1
Z —12Uieayp Liaye (hy = hjmy) = — 5 Kiui Licya Ligayz + O(1?). (2.5b)

j=1+1

Finally, for the third sum in (2.4), we obtain

1
]72-1—1

Hence, from (2.4) and (2.5a)—(2.5¢c), we get

1 1 1
Z Lj71/2 Tj-1/2 = 1 Ky UK; LN71/2 Y Ky Um LN 1/2 + — K; ué’ ( Li+1/2 - Li71/2) -

= 4
j=1i+1
1 " 1 " y2 2
gKZUZ Li71/2 Li+1/2 + EKZUZ hz + O(ﬁ )
Now, for (2.3) to be useful, there still remains to estimate (Ge)y = (eN — eN_l/g)/hN.
By (1.7b)%, we have Ky(Ge")y = —7y — Bey, where 7y is the truncation error at z, = b,
1 " 1 " r2
Ty = _ZKNUNLNfl/Q + ﬂKNuNL —1/2 + O(LN 1/2) (27)

thus, (Ge™)y is easily obtained when 3 = 0. For general 3 > 0, the following procedure can
be used: solving (1.7a), (1.7b) for ey, we obtain

N

[0]
c 0 e 1
v = (TN + — }1 - Z LJ'—I/QTJ'_lﬂ)/<6£$]0NjL ﬂ) (2.8a)

0 0
CN+6][\7—ICN—1 j=1 0 c

j—16—1
where .
K’L L hé
a= 3 o <ZE) i <N (2.8b)
=0
Setting
= Z he 0<i<N (2.9)
- Ke ) ~X ~X 9 N

so that, in particular, I, = fab ﬁ dr + O(h?), (2.8a) reduces to

N
1 1
€y = — (TN + ]_N]Ellj_l le/Qle/Q)/<ﬁ + ]_) (2‘10)

N

Similarly to (2.5a) — (2.5¢) above, we can show

hi_1+ h; 1
Z Kjappuj_ 1/2(Lj—1/2 - %) = v Kyul Ly 12 + O(I?),

j=1

'Here, by (2.1), one has ag =1, a1 =0, 70 =0, Bo = 3, /1 = 1 in equation (1.7b).
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Z 3 12U ] 1/2Lj—1/2(hj_hjfl) = O(h2)>
j=1
1
Z K- 1/2u3 1/2(h h2 1) = Z[ Ky UWLN 12t O(ﬁZ)a

j=1
so that we have

1 1
le—le—l/2Tj—1/2 = Z]NKNUXILN—U2 - 24] K UWLN 1/2 + O(ﬁ2) (211)

j=1
Hence, by (2.7), (2.10) and (2.11), we obtain
ey = O(R?), (2.12)
and so Ky(Ge")y = — 7y — Bey gives
h 1 " 1 " 2
(96 )N = ZuNLN*l/Q - ﬂu LN 1/2 + O(ﬁ ) (213&)
Recalling (2.3) and (2.6), this yields the fundamental estimate
1 1
(Ge); = —ZUQI(LHW — Li—ipp) — ﬁum(Lz 2 — LicijpLivays + L) + O(R?)
(2.13b)

for all 0 <7< N.
Once Ge and one of the errors ey or ey have been estimated, it becomes simple to obtain
the errors € E" by the following procedure [14,22]. Starting with E” we note that

1 1, L 12t Lz+1/2
E; = (Ge")i + (Gu")i —uj = (Ge")i + Z“Q’(Lz‘+1/2 —Lic1p) + =Y ' — " +O0(n?),
so that we obtain, by (2.13),
E; = O(h*), 0<i<N. (2.14)
Now, given 0 < i < N, we have, by definition of E",
N N
Ui71/2 = Uy — ZhjEj — Zhju;-,
j=i j=i
while, by the trapezoidal quadrature rule,
; = Lo h; O(h*
Uj—1/2 = Un + S ui71/2 i— 1/2 Z u + )
j=1
Therefore, for 0 <7 < N}
1
j=1

and we obtain (1.9a), (1.9b) from (2.12), (2.14) and (2.15), concluding the argument. [

!Similarly, we can show that e;_; o = eg — %u2L1/2L1271/2 + E;;thEj + O(h?) for 1 <i<N+1.
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3. Error analysis for q > 0

We will now obtain (1.9) for arbitrary q > 0, and same assumptions as in Section 1. Given
q, it will be convenient here to change notation slightly and denote by ul®, v[9 the solutions
of problems (1.1), (1.3), respectively, with corresponding errors el9, Eld given by

e[q] _ldl

i—1/2 = Vi—1/2 0<i7< N+1,

— yl (2i_1/2), (3.1)
duld]

dx
i.e., we make explicit their dependence on q. In Section 2, estimates (1.9), (2.13) were derived
for el El: extension to eld, Bl follows directly from Theorems 3.1 and 3.2 below.
Theorem 3.1. ¢4 = % 1 O(h?), ie., || el — €, = O(R?).
Proof. We assume that the boundary conditions are given by (2.1), since the other cases

Ei[q} _ (SU[C‘])Z» _

0<i<N, (3.2)

(‘Ii)7

can be treated in a similar way. (Thus, as egﬂ = 0 here, we set el = { eglm, I<i<N+1}
in the following argument.) Writing (1.7a), (1.7b) as Ap(q)e = — b, where

(G, a0 0 0 ] L7y
- agq/g — ¢y 0 0 L33 7372
0 - a, 0 0 Ls 2 75/
Ap(a) = b =
0 0 0 ad , —ex Ly—1/2Tw-1/2
0 0 0 - —ey oy o]
with 71/2,...,7x—1/2 and 7y given in (1.8), (2.7), ¢; = K;/h;, 0 < i < N, ay = + ¢y and

[a]

1

a

where Q(q) is a diagonal matrix, given by Qn(q) =
Reducing (3.3) to triangular form, we obtain Ah(q) (eldl — el = ¢l where ¢l e R¥*is

given by
4 ~ 6 g 0
q i—1-7— q .
Ci—l/Q = - Z Pl Vii Li 179G 1 €5 1/2> I1<i<N+1,
j=1 V32161
with | z/l-[;‘] | <1 for all 4, j, and positive 0([;‘], ng], .., 09 given recursively by Qt[)q] =1 and

Ci2 = Gt Gt Qi1 Li_1)2,

An(a) (¥ =€) = —Qu(q) €,

gl _ Ci-1 Qz[q—]l + Gi—1/2 Li—1)2
Z Ciflez[cﬂl + ¢ + Gi—172 Licay2

diag(ql/ng/?, e

1 <1< N

1 <i < N, we get, recalling that Aj,(0)el% = — "

y N—1/2 LN71/270)'

(3.3)
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Moreover, because q > 0, we have

1
w S L 0sisN,
0% ¢
with I; defined in (2.9), so that
N
2 0
‘ Ci[i}l/z | < ez[cﬂlci—l L 119 [lsup Z Lj—12]| 6g'll/Q | (3.4)

i=1

for all 1 < i < N+ 1, where || q ||sup denotes the supnorm of q on [a,b]. Now, as can be
readily checked, if 2 = (Z1/2, ..., 2n_1/2, Zn41/2) € RYLis such that |5 1| < 0% ¢, | T
for all 1 <i < N+ 1, and some I" > 0 independent of i, the solution w of Ah(q) w o= 2
verifies || @ ||sup < I'. Therefore, (3.4) gives

N
0
I eldl — el lsup < Ly 19 flsup Z Lj-1y2| €§11/2 B (3.5)
j=1
from which we obtain, by our previous results, || el — el ||, = O(h?), as claimed. O

Theorem 3.2. Geld = Gl + O(r?), B = EO 4 O(r?).
Proof. Starting with Gel¥, one has, by (1.7a), (2.2) and Theorem 3.1 above,

N
Ki(Gel), = Ky(Geld), — ZLjfl/Zijl/Z + Ok, 0<i<N-1,
j=it1

uniformly in 7, so that, by (2.3), we need only to show that (Gel), = (Gel%), + O(K?).
For Robin or Neumann condition at xzy = b, cf.(2.1), we get, by Theorem 3.1,

Ky (Geld)y = —66%} — 7y = =B — 7y + O(R) = Ky(Gel), + O(h?), and we are

done. (In case of Dirichlet condition, we proceed as in the proof of Theorem 3.1: writ-

ing el = % 4wl we have w!¥ = 0 and, in the notation of (3.3), Ap(0)wld = —Q(q)eld

for the other components, from which we get, similarly to (3.5) above, solving for w!?

N—1/2°
oo al
\wz[j}_1/2| < Nﬁo}Nil Il q HSHPZ Lj-1p2] eg'qll/Q‘ B

N
h
2o el Licazl el | = hyO()
N

j=1
by (2.8b), (2.9) and Theorem 3.1. This gives ( Gel)y, = (Gel%), + O(h?), as before). There-
fore, (2.13) remains valid for q > 0, and (2.14) follows, i.e., E9 = O(h?). O
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