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ERROR BOUNDS FOR FINITE ELEMENT METHODS

WITH GENERALIZED CUBIC SPLINES FOR A 4-TH ORDER

ORDINARY DIFFERENTIAL EQUATION

WITH NONSMOOTH DATA

A.ZLOTNIK1,2 AND O.KIREEVA1

Abstract — A boundary value problem for a 4-th order self-adjoint ordinary differ-
ential equation is considered in the case where the coefficients of the equation and its
right-hand side can be nonsmooth (discontinuous, concentrated or rapidly oscillating
functions). Generalized cubic splines of deficiency 1 depending on the major coefficient
of the equation are applied. An error analysis of finite element methods exploiting such
splines is presented in detail including superconvergence error bounds. This is based
on general L

q–L
p interpolation error bounds for the splines.
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1. Introduction

The 4-th order ordinary differential equations are important, in particular, in continuum
mechanics. Mesh methods to solve them were studied in a lot of publications (see [5,6,9,10]).
Especially complicated is the case where the data, that is, the coefficients of the equation
and its right-hand side are nonsmooth, in particular, discontinuous, concentrated or rapidly
oscillating functions. It is well-known that specific methods have to be constructed to treat
this case efficiently. For this case, in [11] projective-grid methods (in other words, finite
element methods) with generalized cubic Hermitian splines (of deficiency 2) depending on
the major coefficient of the equation were considered, and their error analysis was performed
in detail including superconvergence error bounds.

In this paper, we present a similar study of two finite element methods using the gener-
alized cubic splines of deficiency 1. Their advantage is the twice less number of unknowns in
the corresponding system of linear algebraic equations. The first method covers the case of
nonsmooth coefficients, and the second one is its simplification in the case of the piecewise
smooth major coefficient. As a part of the whole study, we present general Lq–Lp interpola-
tion error bounds for the generalized cubic splines. The paper is an abridged English version
of our article [12] published in Russian.
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2. Boundary value problem

We consider a boundary value problem for the 4–th order self–adjoint ordinary differential
equation

D2(a2D
2u) −D(a1Du) + a0u = f on Ω = (0, X), (2.1)

u|∂Ω = 0, Du|∂Ω = 0, (2.2)

where D = d/dx, ∂Ω = {0, X} and in general the free term f has the divergence form
f = D2−ℓf (2−ℓ), ℓ = 0, 1, 2. We assume that the major coefficient a2 satisfies a2 ∈ L∞(Ω)
and N−1 6 a2(x) 6 N on Ω, where N > 1 is a parameter. To avoid too many brackets, we
adopt the abbreviation Dw · ϕ = (Dw)ϕ below.

A function u ∈W 2,p
0 (Ω) is called a weak solution to the problem (2.1), (2.2) if it satisfies

the identity
L (u, ϕ) := (a2D

2u,D2ϕ)Ω + 〈a1, Du ·Dϕ〉Ω + 〈a0, uϕ〉Ω =

〈f, ϕ〉Ω := (−1)2−ℓ(f (2−ℓ), D2−ℓϕ)Ω for all ϕ ∈W 2,p′

0 (Ω). (2.3)

As usual, here

Wm,p
0 (Ω) := {w ∈Wm,p(Ω)| Dkw

∣∣
∂Ω

= 0 for 0 6 k < m}

is a subspace in the Sobolev space Wm,p(Ω) with exponents m > 1, 1 6 p 6 ∞; also
1/p+ 1/p′ = 1. Moreover, we use the notation

(w, ψ)Ω :=

∫

Ω

w(x)ψ(x) dx

and, more generally, 〈w, ψ〉Ω denotes the value of the functional w at the function ψ defined
on Ω.

We assume that the bilinear form L (·, ·) is W 2,2
0 (Ω)–positive definite, that is,

N−1‖ϕ‖2
W 2,2(Ω) 6 L (ϕ, ϕ) for all ϕ ∈W 2,2

0 (Ω). (2.4)

We introduce the dual spaces W−1,p(Ω), 1 6 p 6 ∞, consisting of functionals having the
form w = Dw(1), that is,

〈w, ψ〉Ω = −(w(1), Dψ)Ω for all ψ ∈W 1,p′

0 (Ω),

where w(1) ∈ Lp(Ω) and
∫
Ω
w(1) dx = 0, equipped with the norm ‖w‖W−1,p(Ω) = ‖w(1)‖Lp(Ω).

(It is not difficult to verify that W−1,p(Ω) = [W 1,p′

0 (Ω)]∗ for 1 < p 6 ∞.) We also set

W−2,p(Ω) = [W 2,p′

0 (Ω)]∗ for 2 6 p 6 ∞.
Let ω0 be a fixed finite set of points 0 = x0,0 < x0,1 < · · · < x0,n0 = X, n0 > 1. For

w ∈ L1(Ω), we define the piecewise weak derivative D̄mw, m > 1, by the identity

〈D̄mw, ϕ〉Ω = (−1)m(w,Dmϕ)Ω for all ϕ ∈ Cm(Ω̄) such that Dkϕ
∣∣
ω0

= 0, 0 6 k < m.

If D̄mw ∈ L1(Ω), then this definition is equivalent to that used in [11].
Below, in the inequalities, K(N), Ki(N), i = 1, 2, . . . , denote the nondecreasing func-

tions of the parameter N ; they can also depend on X only. c(0), c(1) denote the absolute
constants (that is, fixed numbers).

In [11], the following result on properties (existence, uniqueness and regularity) of the
solution to problem (2.1), (2.2) with nonsmooth data was proved. This is essential for
deriving results of this paper as well.
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Theorem 2.1. Let 1 6 p 6 ∞.
1. If f = D2f (2) with f (2) ∈ Lp(Ω) and ‖a1‖W−1,ep(Ω) + ‖a0‖W−2,ep(Ω) 6 N with p̃ =

max {p, p′}, then there exists a unique weak solution u ∈W 2,p(Ω) to the problem (2.1), (2.2),
and the following bound holds:

‖u‖W 2,p(Ω) 6 K1(N)‖f (2)‖Lp(Ω).

2. If f = Df (1) with f (1) ∈ Lp(Ω) and ‖a1‖Lp(Ω) + ‖a0‖W−1,p(Ω) 6 N , then the solution is
more regular

‖D(a2D
2u)‖Lp(Ω) 6 K2(N)‖f (1)‖Lp(Ω).

3. If f = f (0) with f (0) ∈ Lp(Ω) and ‖a1‖L∞(Ω) + ‖D̄a1‖Lp(Ω) + ‖a0‖Lp(Ω) 6 N , then the
additional piecewise regularity bound holds

‖D̄D(a2D
2u)‖Lp(Ω) 6 K3(N)‖f (0)‖Lp(Ω).

3. The space of the generalized cubic splines of deficiency 1

We introduce a mesh ω h on Ω̄ with nodes 0 = x0 < x1 < ... < xn = X and steps hi =
xi − xi−1. Let Ωi = (xi−1, xi), i = 1, n, as well as |h| = max

i
hi and hmin = min

i
hi. Hereafter

1, n := {1, . . . , n}. We assume that ω0 ⊂ ω h. Let the mesh ω h be called quasi-uniform
provided that |h| 6 Nhmin.

Let κ ∈ L∞(Ω) and 0 < κ 6 κ(x) 6 κ on Ω. We define the space of generalized cubic
splines of deficiency 1

S1[κ] := {ϕ ∈W 2,∞(Ω)
∣∣ κD2ϕ ∈W 1,∞(Ω), D2(κD2ϕ) = 0 on Ωi, i = 1, n }. (3.1)

In the classical case, κ(x) ≡ 1; for the case of the differentiable κ see [7,10]. In [11], the space
of generalized cubic splines of deficiency 2 (in other words, of generalized cubic Hermitian
splines)

S2[κ] := {ϕ ∈W 2,∞(Ω)
∣∣D2(κD2ϕ) = 0 on Ωi, i = 1, n }

was exploited. It is easy to see that S1[κ] = {ϕ ∈ S2[κ]|κD2ϕ ∈ C(Ω̄)} is a subspace in
S2[κ].

For u ∈W 2,1(Ω), we need an interpolating generalized cubic spline s
κ
u ∈ S1[κ] such that

s
κ
u(xi) = u(xi) for i = 0, n, Ds

κ
u(x) = Du(x) for x = 0, X. (3.2)

Lemma 3.1. The interpolating spline s
κ
u is uniquely defined, and the following projec-

tion property holds:

(
κD2(u− s

κ
u), D2ϕ

)
Ω

= 0 for all ϕ ∈ S1[κ]. (3.3)

Proof. Conditions (3.2) mean that the interpolation error e := u− s
κ
u satisfies

e(xi) = 0 for i = 0, n, De|∂Ω = 0. (3.4)

Integrating by parts and applying the property

D(κD2ϕ)
∣∣
Ωi

= ci = const, i = 1, n, for all ϕ ∈ S1[κ], (3.5)
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we get

(κD2e,D2ϕ)Ω =−(De,D(κD2ϕ))Ω =−
n∑

i=1

(De,D(κD2ϕ))Ωi
=−

n∑

i=1

e|xi
xi−1

D(κD2ϕ)|Ωi
=0.

Property (3.3) is proved. We notice that, for u = 0, by virtue of this property we have
κD2s

κ
u = 0 and since s

κ
u|∂Ω = 0, s

κ
u = 0 as well.

In accordance with property (3.5), the spline s
κ
u belongs to a 4–dimensional space on

each interval Ωi, i = 1, n. Therefore, on Ω it is uniquely defined by 4n parameters (which
equal 0 in the case of s

κ
u = 0). The continuity conditions for functions s

κ
u, Ds

κ
u, κD2s

κ
u

in the internal nodes xi, i = 1, n− 1, and conditions (3.2) lead to a system of 3(n − 1) +
(n + 1) + 2 = 4n linear algebraic equations for the mentioned 4n parameters. If u = 0,
then this system is homogeneous. But for u = 0 we have already known that s

κ
u = 0,

thus, this homogeneous system has only a zero solution. Therefore, in the general case, the
nonhomogeneous system for 4n parameters is uniquely solvable, that is, the interpolating
spline s

κ
u is uniquely defined. This argument is similar to that from [7]. �

Notice that
dimS1[κ] = n + 3, dimS2[κ] = 2(n+ 1). (3.6)

By the standard argument, the projection property (3.3) implies the following extremal
property:

‖
√

κD2s
κ
u‖L2(Ω) = min ‖

√
κD2g‖L2(Ω),

where the minimum is taken over all g ∈ W 2,2(Ω) such that g(xi) = u(xi) for i = 0, n,
Dg(x) = Du(x) for x = 0, X.

For completeness, we present a global finite support basis in S1[κ] (see [14]) (a similar
basis for a simpler periodic case and for a uniform mesh is also presented in [5]). We
supplement the mesh ω h by auxiliary nodes x−i = −xi and xn+i = 2X − xn−i, i = 1, 2, 3,
and set Ω̃ := [x−3, xn+3]. Let now Ωi = (xi−1, xi) and hi = xi − xi−1 for i = −2, n+ 3. We
also extend κ evenly with respect to the points x = 0, X beyond Ω. Actually we present a
global finite support basis in an auxiliary space of the generalized cubic splines on Ω̃

S̃1[κ] =
{
ϕ ∈W 2,∞

0 (Ω̃)
∣∣∣ κD2ϕ ∈W 1,∞

0 (Ω̃), D2(κD2ϕ) = 0 on Ωi, i = −2, n+ 3
}
,

(compare with (3.1)). The basis consists of the functions

di(x) =






αi,−1

x∫

xi−2

(x− χ)
ei−1(χ)

κ(χ)
dχ+ αi,0

x∫

xi−1

(x− χ)
ei(χ)

κ(χ)
dχ, x−3 6 x 6 xi,

αi,0

xi+1∫

x

(χ− x)
ei(χ)

κ(χ)
dχ+ αi,1

xi+2∫

x

(χ− x)
ei+1(χ)

κ(χ)
dχ, xi 6 x 6 xn+3,

(3.7)

where i = −1, n + 1. Here we use the standard basis of hill functions

ej(x) =






(x− xj−1)/hj , xj−1 6 x 6 xj ,

(xj+1 − x)/hj+1, xj 6 x 6 xj+1,

0, x /∈ [xj−1, xj+1],

j = −2, n+ 2,
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in the space of functions that are continuous on Ω̃, linear on segments Ωi, i = −2, n+ 3, and
zero at x = x−3, xn+3. The coefficients in (3.7) have the form

αi,−1 =
1

γi−1νi−1/2

, αi,0 = − 1

γi

(
1

νi−1/2

+
1

νi+1/2

)
, αi,1 =

1

γi+1νi+1/2

,

where νj−1/2 = hj + δ̂j − δ̂j−1 > 0, j = −1, n + 2, and

γj =

xj+1∫

xj−1

ej(x)

κ(x)
dx > 0, δ̂j =

1

γj

xj+1∫

xj−1

(x− xj)
ej(x)

κ(x)
dx, j = −2, n+ 2.

It is known that di(x) > 0 on (xi−2, xi+2), and clearly the values of di(x) are zero outside
(xi−2, xi+2).

For calculations using this basis, the following formulas for the derivatives are convenient:

(Ddi)(x) =






αi,−1

x∫

xi−2

ei−1(χ)

κ(χ)
dχ+ αi,0

x∫

xi−1

ei(χ)

κ(χ)
dχ, x−3 6 x 6 xi,

−αi,0
xi+1∫

x

ei(χ)

κ(χ)
dχ− αi,1

xi+2∫

x

ei+1(χ)

κ(χ)
dχ, xi 6 x 6 xn+3,

and
(κD2di)(x) = αi,−1ei−1(x) + αi,0ei(x) + αi,1ei+1(x) on Ω̃.

Of course, the values of Ddi(x) and κD2di(x) are also zero outside (xi−2, xi+2). Recall that
exactly the latter formula is the original one for the derivation of (3.7).

The latter formula together with the well–known property of the hill functions imply the
useful formula

(κD2w,D2di)Ω̃ = hi−3/2αi,−1∂̂∂̄wi−1 + hi−1/2αi,0∂̂∂̄wi + hi+1/2αi,1∂̂∂̄wi+1 =

1

γ̃i+1

∂̂∂̄wi+1 − ∂̂∂̄wi
νi+1/2

− 1

γ̃i

∂̂∂̄wi − ∂̂∂̄wi−1

νi−1/2

for w ∈W 2,1(Ω̃),

where γ̃j := γj/hj+1/2, hj+1/2 := (hj + hj+1)/2 and

∂̂∂̄wj :=
1

hj+1/2

(
wj+1 − wj
hj+1

− wj − wj−1

hj

)

is the simplest three-point approximation of (D2w)(xj), with wi = w(xi).
Below we need the subspace

S1,0[κ] := {ϕ ∈ S1[κ]| ϕ|∂Ω = 0, Dϕ|∂Ω = 0}. (3.8)

To form its basis, it is convenient to remove the functions d−1, d0, dn, dn+1 from the original
basis and replace the basis functions d1, dn−1 by the following ones:

d1,0(x) = d0(0)[d1(x) + d−1(x)] − 2d1(0)d0(x),

dn−1,0(x) = dn(X)[dn−1(x) + dn+1(x)] − 2dn−1(X)dn(x).

Since by construction d0(x) = d0(−x) and d1(x) = d−1(−x) as well as dn(X−x) = dn(X+x)
and dn−1(X − x) = dn+1(X + x), we have d1,0, dn−1,0 ∈ S1,0[κ].
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4. Interpolation error bounds for generalized cubic splines

We now prove the interpolation error bounds. First we derive not the most general Lq–Lp

bounds (but in the case of an arbitrary mesh ω h) and apply the rather standard technique
to this end.

Theorem 4.1. 1. Let 2 6 q 6 ∞, k = 0, 1. For u ∈ W 2,2(Ω), the interpolation error
bound

‖Dk(u− s
κ
u)‖Lq(Ω) 6 κ−1/2|h|2−k−(1

2
− 1

q )‖
√

κD2u‖L2(Ω) (4.1)

holds.
2. Let 1 6 p 6 2 6 q 6 ∞, k = 0, 1 and m = 0, 1. For u ∈ W 2,2(Ω) and D̄mD(κD2u) ∈

Lp(Ω), the interpolation error bound

‖Dk(u− s
κ
u)‖Lq(Ω) 6 κ−1|h|m+3−k−( 1

p
− 1

q )‖D̄mD(κD2u)‖Lp(Ω) (4.2)

holds.
3. In the case q = 2, Claims 1 and 2 hold for k = 2 as well.

Proof. The proof comprises three steps.
(a) Let 1 6 r 6 q 6 ∞ and u ∈W 2,r(Ω). Applying the first property (3.4) of e = u−s

κ
u,

we get ‖e‖Lq(Ωi) 6 hi‖De‖Lq(Ωi), i = 1, n, and thus

‖e‖Lq(Ω) 6 |h|‖De‖Lq(Ω).

Moreover, since h−1
i

∫
Ωi
Dedx = 0, we also get

‖De‖C(Ω̄i) 6 ‖D2e‖L1(Ωi), i = 1, n.

By virtue of the Hölder inequality and the last one we have

‖De‖Lq(Ωi) 6 h
1
q

i ‖De‖C(Ω̄i) 6 h
1−( 1

r
− 1

q
)

i ‖D2e‖Lr(Ωi), i = 1, n.

Applying the known number inequality

( ∑

i

|αi|q
)1/q

6

(∑

i

|αi|r
)1/r

(where, for example, for q = ∞, the left–hand side should be understood as max
i

|αi|), we

derive an auxiliary bound

‖Dke‖Lq(Ω) 6 |h|2−k−(1
r
− 1

q )‖D2e‖Lr(Ω), k = 0, 1. (4.3)

(b) We first prove the last Claim 3. By virtue of the projection property (3.3), we have

(
κD2e,D2e

)
Ω

= (κD2u,D2e)Ω, (4.4)

thus, for u ∈W 2,2(Ω), we get

‖D2e‖L2(Ω) 6 κ−1/2‖
√

κD2e‖L2(Ω) 6 κ−1/2‖
√

κD2u‖L2(Ω), (4.5)

that is, bound (4.1) holds for q = 2, k = 2.
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Let in addition D̄mD(κD2u) ∈ Lp(Ω) (m = 0 or 1). Then, integrating by parts and
taking into account properties (3.4) and applying the Hölder inequality, from equality (4.4)
we derive:

κ ‖D2e‖2
L2(Ω) 6 ‖

√
κD2e‖2

L2(Ω) = (−1)m+1
(
D̄mD(κD2u), D1−me

)
Ω

6 ‖D1−me‖Lp′(Ω)‖D̄mD(κD2u)‖Lp(Ω).

Applying bound (4.3) (with k = 1 −m, q = p′, r = 2), we get

‖D2e‖L2(Ω) 6 κ−1|h|m+1−( 1
p
− 1

2)‖D̄mD(κD2u)‖Lp(Ω), 1 6 p 6 2, (4.6)

that is, bound (4.2) holds for q = 2, k = 2.
(c) Claims 1 and 2 follow straightforwardly from bound (4.3) (with r = 2) and also from

bounds (4.5) and (4.6) respectively. �

Remark 4.1. Bound (4.2) for p = 1 (and the values of parameters q, k and m from
Claims 2 and 3) can be strengthened. Namely, let u ∈ W 2,2(Ω) and if m = 1, then
D(κD2u) ∈ L1(Ω) as well. Then in bound (4.2) for p = 1, the term ‖D̄mD(κD2u)‖Lp(Ω) can
be replaced by varΩ̄D

m(κD2u); here varΩ̄w is a variation of the function w over Ω̄. To verify
this, it is sufficient to justify the possibility of the same replacement in inequality (4.6). This
can be accomplished similarly to Remark 4.2 in [11] (by using the Stieltjes integral over Ω̄).

In contrast to Theorem 4.1, to derive the Lq–Lp interpolation error bounds in the general
case 1 6 p 6 q 6 ∞ (but for the quasi-uniform mesh ω h only), we need a more delicate
technique.

Theorem 4.2. Let 1 6 p 6 q 6 ∞ and u ∈W 2,p(Ω). Let the mesh ω h be quasi-uniform.
1. Let k = 0, 1, 2 and q = p in the case k = 2. Then the interpolation error bound

‖Dk(u− s
κ
u)‖Lq(Ω) 6 κ−1/p′

[
c(0)

√
N

(
κ

κ

)2 ]|1− 2
p
|

|h|2−k−(1
p
− 1

q )‖κ1/p′D2u‖Lp(Ω) (4.7)

holds. In the particular case p = 2, the bound coincides with (4.1) and holds for an arbitrary
mesh ω h.

2. Let k = 0, 1, 2, m = 0, 1 and D̄mD(κD2u) ∈ Lp(Ω). Then the interpolation error
bound

‖Dk(u− s
κ
u)‖Lq(Ω) 6 κ−1

[
c(0)

√
N

(
κ

κ

)2 ]σk(p, q)

|h|m+3−k−( 1
p
− 1

q )‖D̄mD(κD2u)‖Lp(Ω) (4.8)

holds, where

σk(p, q) := max

{
2

q
, 1

}
− min

{
2

p
, 1

}
=






0, 1 6 p 6 2 6 q 6 ∞,

2

q
− 1, 1 6 p 6 q 6 2,

1 − 2

p
, 2 6 p 6 q 6 ∞,

for k = 0, 1,

and σ2(p, q) := |1 − 2
q
|.

In the particular case 1 6 p 6 2 6 q 6 ∞, the bound coincides with (4.2) and holds for
an arbitrary mesh ω h.
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Proof. The proof comprises four steps.
(a) We introduce the space Ŝ of functions that are continuous on Ω̄ and linear on segments

Ωi, i = 1, n. Let 1 6 p 6 q 6 ∞ and m = 0, 1. In the case w, D̄mDw ∈ Lp(Ω), the following
bound is known:

‖w − ŵ‖Lq(Ω) 6 |h|m+1−( 1
p
− 1

q )‖D̄mDw‖Lp(Ω), (4.9)

where ŵ ∈ Ŝ and ŵ(xi) = w(xi) for i = 0, n. (Recall that this is derived from the basic
bound

‖w − ŵ‖C(Ω̄i) 6 |h|m‖D̄mDw‖L1(Ωi), i = 1, n,

in the same manner as for bound (4.3).)

Clearly S1[κ] = {ϕ ∈W 2,∞(Ω)|κD2ϕ ∈ Ŝ}, and the equation κD2ϕ = ψ ∈ Ŝ has
solutions ϕ ∈ S1[κ]: one can solve, successively for i = 1, n, the auxiliary Cauchy problems
D2ϕ = ψ/κ on Ωi for arbitrary ϕ(0), Dϕ(0) (for i = 1) or for ϕ(x+

i−1) = ϕ(x−i−1), Dϕ(x+
i−1) =

Dϕ(x−i−1) (for i = 2, n). Therefore the projection property (3.3) can be transformed to the
form (

1

κ
(κD2s

κ
u), ψ

)

Ω

=

(
1

κ
w, ψ

)

Ω

for all ψ ∈ Ŝ (4.10)

with w = κD2u, and κD2s
κ
u ∈ Ŝ.

(b) Let ρ ∈ L1(Ω) and 0 < ρ(x) on Ω. We introduce the weighted Lebesgue space Lq,ρ(Ω),
1 6 q 6 ∞, consisting of functions w that are measurable on Ω and have the finite norm

‖w‖Lq,ρ(Ω) = ‖ρ1/qw‖Lq(Ω);

we consider this space as complex in this item of the proof and as real in the next one. In
this item of the proof, we also assume that

(y, ψ)Ω :=

∫

Ω

yψ̄ dx.

Clearly L∞,ρ(Ω) = L∞(Ω).
Let S be a finite-dimensional subspace in L∞(Ω). We consider the operator P = Pρ[S]:

L1,ρ(Ω) → S such that

(ρPw, ψ)Ω = (ρw, ψ)Ω for all w ∈ L1,ρ(Ω), ψ ∈ S. (4.11)

This identity defines the operator P uniquely; moreover, it is a projector, that is, P 2 = P .
This operator extends the orthogonal projector in L2,ρ(Ω) on S; thus

‖P‖L [L2,ρ(Ω)] = ‖I − P‖L [L2,ρ(Ω)] = 1. (4.12)

Hereafter L [B] is the space of linear bounded operators acting in a normed space B, and I
is the identity operator.

In the spirit of the technique in [3], for 1 6 q 6 ∞, we prove the inequality

‖w − Pw‖Lq,ρ(Ω) 6 ‖I − P‖|1−
2
q
|

L [L∞(Ω)] inf
ψ∈S

‖w − ψ‖Lq,ρ(Ω) for w ∈ Lq,ρ(Ω). (4.13)

Clearly
‖w − Pw‖Lq,ρ(Ω) 6 ‖I − P‖L [Lq,ρ(Ω)] inf

ψ∈S
‖w − ψ‖Lq,ρ(Ω) (4.14)
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(since w− Pw = w− ψ− P (w− ψ) for any ψ ∈ S). Moreover, the following equality holds:

‖I − P‖L [Lq,ρ(Ω)] = ‖I − P‖
L [Lq′,ρ(Ω)], 1 6 q 6 ∞. (4.15)

Actually, by the inverse Hölder inequality (see [2], Section 1.2.6) (its original real version in
[2] rather easily implies the corresponding complex version), we can write down the following
relations:

‖I − P‖L [Lq,ρ(Ω)] = sup
‖w‖Lq,ρ(Ω)=1

‖(I − P )w‖Lq,ρ(Ω) = sup
‖w‖Lq,ρ(Ω)=1

sup
‖g‖

Lq′ (Ω)
=1

|(ρ1/q(w − Pw), g)Ω|=

sup
‖w‖Lq,ρ(Ω)=1

sup
‖v‖

Lq′ ,ρ(Ω)
=1

|(ρ(w − Pw), v)Ω| =

sup
‖v‖

Lq′ ,ρ(Ω)
=1

sup
‖w‖Lq,ρ(Ω)=1

|(ρw, v − Pv)Ω| = ‖I − P‖
L [Lq′,ρ(Ω)].

Here we have applied the equalities

(ρ(w − Pw), v)Ω = (ρ(w − Pw), v − Pv)Ω = (ρw, v − Pv)Ω

that are valid by virtue of the original identity (4.11).
By the classical Riesz — Thorin interpolation theorem [1] we have

‖I − P‖L [Lq,ρ(Ω)] 6 ‖I − P‖2/q

L [L2,ρ(Ω)]‖I − P‖1−2/q
L [L∞,ρ(Ω)], 2 6 q 6 ∞.

Applying equalities (4.12) and (4.15), we get

‖I − P‖L [Lq,ρ(Ω)] 6 ‖I − P‖|1−2/q|
L [L∞,ρ(Ω)], 1 6 q 6 ∞. (4.16)

Inequalities (4.14) and (4.16) imply inequality (4.13).

Remark 4.2. The content of Item (b) is valid in the case where Ω is any set of finite
measure in Rk, k > 1.

(c) Let ρ ∈ L∞(Ω) and 0 < ρ 6 ρ(x) 6 ρ on Ω. Under the assumption that the mesh ω h

is quasi-uniform, the following estimate holds:

‖I − Pρ[Ŝ ]‖L [L∞(Ω)] 6 1 + ‖Pρ[Ŝ ]‖L [L∞(Ω)] 6 c(0)
√
N

(
ρ

ρ

)2

. (4.17)

This is proved in the same manner as the similar bound in [3, pp. 194–196], (see also [4]).
To this end, the following inequality is taken into account:

‖ϕ̂χ‖2
L2,ρ(Ω) 6 2

ρ

ρ
‖ϕ‖2

L2,ρ(Ω) for all ϕ ∈ Ŝ,

where χ = χ[xi,xj ] is the characteristic function of the segment [xi, xj], 0 6 i < j 6 n. The
inequality is a consequence of the elementary relations

xj∫

xj−1

ϕ2 dx =
1

3

(
ϕ2
j−1 + ϕj−1ϕj + ϕ2

j

)
>

1

4
ϕ2
j .
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Note that in [3] the case of nonweighted (ρ(x) ≡ 1) projectors P onto the general multi-
dimensional finite element subspaces S was considered; it is not difficult to understand that
the result in [3] can be generalized to the case of weighted projectors as well.

By virtue of bounds (4.13) and (4.17) for 1 6 q 6 ∞ we have

‖ρ(w − Pρ[Ŝ ]w)‖Lq(Ω) 6 ρ 1/q′
[
c(0)

√
N

(
ρ

ρ

)2 ]|1−2/q|

inf
ψ∈bS

‖ρ1/q(w − ψ)‖Lq(Ω). (4.18)

(d) Comparing identities (4.10) and (4.11), we get the formula κD2s
κ
u = P1/κ[Ŝ]w and

then, according to bound (4.18), the inequality

‖D2(u−s
κ
u)‖Lq(Ω) 6κ−1/q′

[
c(0)

√
N

(
κ

κ

)2 ]|1−2/q|

inf
ψ∈bS

‖κ−1/q(w − ψ)‖Lq(Ω) with w=κD2u.

(4.19)
In the particular case q = 2, bounds (4.18) and (4.19) do not exploit estimate (4.17), and
thus they hold for an arbitrary mesh ω h.

Bound (4.7) for k = 2, q = p follows from the last one for q = p, ψ = 0. The case k = 0, 1
is reduced to the case k = 2 with the help of bound (4.3) for r = p.

Bound (4.8) for k = 2 follows from bound (4.19) with ψ = ŵ and also from bound (4.9).
The case k = 0, 1 is reduced to the case k = 2 once again with the help of bound (4.3) with
r = 2, q and p respectively for 1 6 p 6 2 6 q 6 ∞, 1 6 p 6 q 6 2 and 2 6 p 6 q 6 ∞.
Theorem 4.2 is completely proved. �

Clearly, Theorem 4.2 generalizes Theorem 4.1 (notice that its proof contains another
justification of bound (4.6)).

Note that, for general polynomial (but not generalized) interpolating splines, error bounds
of the type like in Theorem 4.2 were proved in [8] (by another technique).

5. Finite element methods with generalized cubic splines

We consider a family of finite element methods for solving problem (2.1), (2.2). Following
the Galerkin method, we define an approximate solution v as a function from the subspace
S1,0[κ] (see (3.8)) satisfying the identity

L (v, ϕ) = 〈f, ϕ〉Ω for all ϕ ∈ S1,0[κ]. (5.1)

Under the hypotheses of Theorem 2.1, Claim 1 such a function v exists and is unique (for
p = 2 it is standard while for p = 1 it is proved quite similarly to [11]).

The advantage of exploiting generalized splines of deficiency 1 over similar splines of
deficiency 2 is that the corresponding system of linear algebraic equations has a twice less
number of unknowns as follows from formulas (3.6) (we mean exploiting bases from [14],
in particular, see the above Section 3). Note that matrices of the systems are symmetric,
positive definite and 7-diagonal in both cases (more precisely, 2 × 2-block three-diagonal in
the latter case).

The choice of the function κ defines the particular method. In the case κ = a2, the
error bounds are the strongest and general. We first get the superconvergence bounds for
sa2u − v, that is, for the difference between the interpolating generalized cubic spline and
the approximate solution.
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Theorem 5.1. Let κ = a2, 1 6 p 6 2 and f = D2−ℓf (2−ℓ), ℓ = 0, 1, 2. Let the mesh ω h

be quasi-uniform.
1. Let ℓ = 0, 1 and ‖a1‖Lr(Ω) + ‖a0‖W−1,r(Ω) 6 N for some r ∈ [1, p′] (for ℓ = 0) or

r ∈ [p, p′] (for ℓ = 1). Then the following superconvergence bound holds:

‖sa2u− v‖W 2,2(Ω) 6 K1(N)|h|ℓ+1−( 1
p
− 1

r′ )‖f (2−ℓ)‖Lp(Ω). (5.2)

2. Let ‖a1‖L∞(Ω) + ‖D̄a1‖Lr(Ω) + ‖a0‖Lr(Ω) 6 N for some r ∈ [1, 2] (for ℓ = 0, 1) or
r ∈ [p, 2] (for ℓ = 2). Then the following stronger superconvergence bound holds:

‖sa2u− v‖W 2,2(Ω) 6 K2(N)|h|ℓ+2−( 1
p
− 1

r′ )‖f (2−ℓ)‖Lp(Ω). (5.3)

In the particular case a1 = 0, the admissible values of r are r ∈ [1, p′] (for ℓ = 0, 1) or
r ∈ [p, p′] (for ℓ = 2).

In addition, in the case where p = 2 for ℓ = 0 as well as r 6 2, Claims 1 and 2 hold for
an arbitrary mesh ω h.

Proof. In a standard manner, for any ϕ ∈ S1,0[κ], we have

L (s
κ
u− v, ϕ) = L (s

κ
u− u, ϕ) =

−(a2D
2(u− s

κ
u), D2ϕ)Ω − 〈a1, D(u− s

κ
u) ·Dϕ〉Ω − 〈a0, (u− s

κ
u)ϕ〉Ω (5.4)

by the definitions of v and u (see identities (5.1) and (2.3)).
Let κ = a2 and s = sa2 . Due to the projection property (3.3), the first summand on the

right-hand side of (5.4) equals zero. Thus, quite similarly to the proof of Theorem 5.1 in
[11], under the hypotheses of Claim 1, we derive

|L (su− v, ϕ)| 6 ‖a1‖Lr(Ω)‖D(u− su)‖Lr′(Ω)‖Dϕ‖L∞(Ω)+

‖a0‖W−1,r(Ω)‖D[(u− su)ϕ]‖Lr′(Ω) 6 K1(N)‖D(u− su)‖Lr′(Ω)‖ϕ‖W 2,2(Ω). (5.5)

Furthermore, under the hypotheses of Claim 2, integrating by parts on the right-hand
side of (5.4), and taking into account the first property (3.4), we also derive, for 1 6 r 6 2,

|L (su− v, ϕ)| = |(u− su, a1D
2ϕ+ D̄a1 ·Dϕ− a0ϕ)Ω| 6

‖u− su‖Lr′(Ω)

(
‖a1‖L∞(Ω)‖D2ϕ‖Lr(Ω) + ‖D̄a1‖Lr(Ω)‖Dϕ‖L∞(Ω) + ‖a0‖Lr(Ω)‖ϕ‖L∞(Ω)

)
6

K2(N)‖u− su‖Lr′(Ω)‖ϕ‖W 2,2(Ω). (5.6)

In the particular case a1 = 0, the values r ∈ [1,∞] are admissible in (5.6).
Setting ϕ = su − v and using the W 2,2

0 (Ω)-positive definiteness property (2.4), from
bounds (5.5) and (5.6) we get bounds for su− v respectively

‖su− v‖W 2,2(Ω) 6 K3(N)‖D(u− su)‖Lr′(Ω), r ∈ [1,∞], (5.7)

and
‖su− v‖W 2,2(Ω) 6 K4(N)‖u− su‖Lr′(Ω), r ∈ [1, 2]; (5.8)

if a1 = 0, the values r ∈ [1,∞] are admissible in the latter bound as well. Therefore, applying
first Theorem 4.2 (if p = 2 for ℓ = 0 as well as r 6 2, then the mesh ω h can be arbitrary
according to this theorem) and next Theorem 2.1, we derive the final bounds (5.2) and (5.3)
for su− v. �
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Notice that we have covered a more general case 1 6 p 6 2 than the standard one
p = 2. Clearly, the orders of the superconvergence bounds (5.2) and (5.3) are the highest,

respectively, up to O(|h|ℓ+1) and O(|h|ℓ+2−( 1
p
− 1

2
)) (or even O(|h|ℓ+2) in the particular case

a1 = 0), for the maximal admissible values of the parameter r. On the other hand, smaller
values of r allow to cover broader classes of the junior coefficients a1 and a0.

Corollary 5.1. Let κ = a2, 1 6 p 6 2 and f = D2−ℓf (2−ℓ), ℓ = 0, 1, 2. Let the mesh ω h

be quasi-uniform. The following bounds for the error u− v hold:

‖Dk(u− v)‖Lq(Ω) 6 K(N)‖Dk(u− su)‖Lq(Ω) 6 K1(N)|h|ℓ+2−k−( 1
p
− 1

q )‖f (2−ℓ)‖Lp(Ω), (5.9)

where q ∈ [r′,∞], and k = 1 under the hypotheses of Claim 1 or k = 0 under the hypotheses
of Claim 2;

‖D(u− v)‖Lq(Ω) 6 K2(N)|h|3−( 1
p
− 1

q )‖f (0)‖Lp(Ω), (5.10)

where q ∈ [p,∞], under the hypotheses of Claim 2 for r = p, ℓ = 2;

‖u− v‖W 2,2(Ω) 6 K3(N)|h|ℓ−( 1
p
− 1

2)‖f (2−ℓ)‖Lp(Ω)

under the hypotheses of Claim 1 for r = p, ℓ = 1 and under the hypotheses of Claim 2 for
r = p, ℓ = 2.

In addition, if p = 2 for ℓ = 0 as well as r 6 2 and q ∈ [2,∞], then the bounds hold for
an arbitrary mesh ωh.

Proof. The inequality

‖Dk(u− v)‖Lq(Ω) 6 ‖Dk(u− su)‖Lq(Ω) + c‖su− v‖W 2,2(Ω)

together with (5.7) and (5.8) imply the left-hand inequality (5.9). Then the error bounds
follow from bounds (5.2) and (5.3) taking into account Theorems 4.2 and 2.1. �

Clearly, the orders of the error bounds (5.9) and (5.10) are the highest, respectively, for
q = r′ and q = p; on the other hand, they are bounds in the especially interesting uniform
norm for q = ∞.

We introduce interpolation spaces (Lp(Ω),W 1,p(Ω))α,∞, 1 6 p 6 ∞, 0 < α < 1, by
the Kα,θ-method of real interpolation with θ = ∞ [1]. It is known that they coincide with
the Nikolskii spaces Hα,p(Ω) (up to the equivalence of norms) for 0 < α < 1, whereas
(Lp(Ω),W 1,p(Ω))α,∞ contains the space BV (Ω̄) of functions of bounded variation on Ω̄ for
α = 1, p = 1. Therefore these spaces contain discontinuous piecewise smooth functions for
α 6 1/p.

Corollary 5.2. Let κ = a2, 1 6 p 6 2, 0 < α 6 1 and f = D2−ℓf (2−ℓ), ℓ = 0, 1. Let the
mesh ω h be quasi-uniform.

1. Let ℓ = 0 and ‖a1‖Lr(Ω) + ‖a0‖W−1,r(Ω) 6 N for some r ∈ [p, p′]. Then the following
superconvergence bound holds:

‖sa2u− v‖W 2,2(Ω) 6 K1(N)|h|1+α−( 1
p
− 1

r′ )‖f (2)‖(Lp(Ω),W 1,p(Ω))α,∞
.

2. Let ℓ = 0, 1 and ‖a1‖L∞(Ω) +‖D̄a1‖Lr(Ω) +‖a0‖Lr(Ω) 6 N for some r ∈ [1, 2] (for ℓ = 0)
or r ∈ [p, 2] (for ℓ = 1). Then the following stronger superconvergence bound holds:

‖sa2u− v‖W 2,2(Ω) 6 K2(N)|h|ℓ+2+α−( 1
p
− 1

r′ )‖f (2−ℓ)‖(Lp(Ω),W 1,p(Ω))α,∞
.
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In the particular case a1 = 0, the admissible values of r are r ∈ [1, p′] (for ℓ = 0) or r ∈ [p, p′]
(for ℓ = 1).

In addition, in the case where p = 2 for ℓ = 0 as well as r 6 2, Claims 1 and 2 hold for
an arbitrary mesh ω h.

Proof. The result straightforwardly follows from Theorem 5.1 by virtue of the interpola-
tion theorem for linear operators [1]. �

Now we complement Theorem 5.1 and the latter corollary in the case r = 1 and consider
the case of the broadest assumptions on both the junior coefficients and f . We define
the subspace C0(Ω̄) of functions in C(Ω̄) that equal zero on ∂Ω and the corresponding
conjugate space [C0(Ω̄)]∗. Clearly this conjugate space contains δ-functions; they can be also
represented as Dg with g ∈ BV (Ω̄).

Corollary 5.3. Let κ = a2, 1 6 p 6 2 and f = D2−ℓf (2−ℓ), ℓ = 0, 1. Let the mesh ω h

be quasi-uniform for 1 6 p < 2.
1. Let ℓ = 0 and ‖a1‖[C0(Ω̄)]∗ + ‖a(1)

0 ‖[C0(Ω̄)]∗ 6 N , where a0 = Da
(1)
0 in the sense that

〈a0, ϕ〉Ω = −〈a(1)
0 , Dϕ〉Ω for all ϕ ∈ W 2,1

0 (Ω). Then the following superconvergence bounds
hold:

‖sa2u− v‖W 2,2(Ω) 6 K1(N)|h|1−1/p‖f (2)‖Lp(Ω),

‖sa2u− v‖W 2,2(Ω) 6 K2(N)|h|‖f (2)‖BV (Ω̄).

2. Let ℓ = 0, 1 and ‖a1‖BV (Ω̄) + ‖a0‖[C0(Ω̄)]∗ 6 N . Then the following stronger supercon-
vergence bounds hold:

‖sa2u− v‖W 2,2(Ω) 6 K1(N)|h|2−1/p‖f (2)‖Lp(Ω),

‖sa2u− v‖W 2,2(Ω) 6 K2(N)|h|ℓ+2‖f (2−ℓ)‖BV (Ω̄).

Proof. The argument is similar to that for the corresponding Statement 3.2 in [11]. �

Now we consider the case where the major coefficient a2 is continuous at any point
of Ω \ (ω0 \ {0, X}) whereas it can have discontinuities of the first kind at the points of
ω0 \ {0, X}. In this case, the form of the coefficients of the mesh system of equations can be
essentially simplified by another choice of κ. Let â2 be the linear function over intervals Ωi

such that
â2(x

+
i−1) = a2(x

+
i−1), â2(x

−
i ) = a2(x

−
i ) for i = 1, n.

This is the piecewise linear interpolant for a2 which is discontinuous for discontinuous a2.

Remark 5.1. The interpolation error bound (4.9) can be easily generalized for piecewise
continuous functions (for the same p, q and m) as follows: for w, D̄m+1w ∈ Lp(Ω) we have

‖w − ŵ‖Lq(Ω) 6 |h|m+1−( 1
p
− 1

q )‖D̄m+1w‖Lp(Ω).

We turn to the superconvergence bounds for sba2u− v and establish the same bounds as
in Theorem 5.1 under a suitable piecewise regularity of a2.

Theorem 5.2. Let κ = â2, 1 6 p 6 2 and f = D2−ℓf (2−ℓ), ℓ = 0, 1, 2. Let the mesh ω h

be quasi-uniform.
1. Let ℓ = 0, 1 and ‖a1‖Lr(Ω) + ‖a0‖W−1,r(Ω) 6 N for some r ∈ [1, 2] (for ℓ = 0) or

r ∈ [p, 2] (for ℓ = 1), and also ‖D̄a2‖L∞(Ω) 6 N . Then the following superconvergence bound
holds:

‖sba2u− v‖W 2,2(Ω) 6 K1(N)|h|ℓ+1−( 1
p
− 1

r′
)‖f (2−ℓ)‖Lp(Ω). (5.11)
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If instead of ‖D̄a2‖L∞(Ω) 6 N we assume that ‖D̄2a2‖L∞(Ω) 6 N and ‖D̄a2‖Lp(Ω) 6 N (the
latter condition for ℓ = 1 only), then the admissible values of r are r ∈ [1, p′] (for ℓ = 0) or
r ∈ [p, p′] (for ℓ = 1).

2. Let ‖a1‖L∞(Ω) + ‖D̄a1‖Lr(Ω) + ‖a0‖Lr(Ω) 6 N for some r ∈ [1, 2] (for ℓ = 0, 1) or
r ∈ [p, 2] (for ℓ = 2) as well as ‖D̄2a2‖L∞(Ω) 6 N and ‖D̄a2‖Lℓp(Ω) 6 N (the latter condition
for ℓ = 1, 2 only). Then the following stronger superconvergence bound holds:

‖sba2u− v‖W 2,2(Ω) 6 K2(N)|h|ℓ+2−( 1
p
− 1

r′
)‖f (2−ℓ)‖Lp(Ω). (5.12)

In the particular case a1 = 0, the admissible values of r are r ∈ [1, p′] (for ℓ = 0, 1) or
r ∈ [p, p′] (for ℓ = 2).

In addition, in the case where p = 2 for ℓ = 0 as well as r 6 2, Claims 1 and 2 hold for
an arbitrary mesh ω h.

Proof. We set e = u − s
κ
u once more and bound the major summand on the right-

hand side of identity (5.4) (other summands are bounded quite similarly to the proof of the
previous theorem). Let 1 6 t 6 2 and h(x) = hi on Ωi, i = 1, n. Applying the projection
property (3.3) and the Hölder inequality, we get

(a2D
2e,D2ϕ)Ω =((a2 −κ)D2e,D2ϕ)Ω 6c(1)

∥∥∥∥h
−( 1

2
− 1

t′
)

(
a2

κ
−1

)∥∥∥∥
L∞(Ω)

‖D2e‖Lt(Ω)‖κD2ϕ‖L2(Ω);

(5.13)
here the inequality

‖h 1
2
− 1

t′ κD2ϕ‖Lt′(Ω) 6 c(1)‖κD2ϕ‖L2(Ω) for ϕ ∈ S2[κ],

(see [11], has also been exploited).
Let κ = â2 and ‖D̄ja2‖L∞(Ω) 6 N , where j = 1 or 2. It is easy to see that

‖h−λ(a2 − â2)‖L∞(Ω) 6 ‖D̄ja2‖L∞(Ω)|h|j−λ 6 N |h|j−λ for 0 6 λ 6 1

(compare with Remark 5.1 for q = p = ∞). Therefore, relations (5.4) and (5.13) imply the
bound

‖sba2u− v‖W 2,2(Ω) 6 K(N)
(
|h|j−(1

t
− 1

2)‖D2e‖Lt(Ω) + ‖Di0e‖Lr′(Ω)

)
, (5.14)

where i0 = 1 or 0 for a1 and a0 satisfying the condition from respectively Claim 1 or 2 of the
theorem.

Since (â2/a2) (x±) = 1 for x ∈ ω0 \ {0, X}, we have â2/a2 ∈ C(Ω̄) and D(â2/a2) =
D̄(â2/a2). Therefore, taking into account the relations â2D

2u = (â2/a2) a2D
2u and N−1 6

a2 6 N , we get the bounds

‖D(â2D
2u)‖Lp(Ω) 6 K1(N)

(
1 + ‖D̄a2‖Lp(Ω)

)
‖a2D

2u‖W 1,p(Ω), (5.15)

‖D̄D(â2D
2u)‖Lp(Ω) 6K2(N)(1 + ‖D̄a2‖2

L2p(Ω) + ‖D̄2a2‖Lp(Ω))×

(‖a2D
2u‖W 1,∞(Ω) + ‖D̄D(a2D

2u)‖Lp(Ω)). (5.16)

Here we have also exploited the simple formulas

D̄
â2

a2

=
1

a2

D̄â2 −
â2

a2
2

D̄a2, D̄D
â2

a2

= − 2

a2
2

D̄â2 · D̄a2 + â2

(
− 1

a2
2

D̄2a2 +
2

a3
2

(
D̄a2

)2
)
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and the inequality ‖D̄â2‖Lq(Ω) 6 ‖D̄a2‖Lq(Ω), 1 6 q 6 ∞.
To derive bounds (5.11) and (5.12), we apply successively bound (5.14) with t = p (for

ℓ = 0) or t = 2 (for ℓ = 1, 2), Theorem 4.2 (for k = i0, 2), then bound (5.15) (for ℓ = 1) or
(5.16) (for ℓ = 2), and finally Theorem 2.1. In the particular case where p = 2 for ℓ = 0 as
well as r 6 2, the mesh ω h can be arbitrary. �

Remark 5.2. According to formula (3.7), the form of the coefficients of the mesh system

of equations is simplified even more if we choose κ = (̂a−1
2 )−1 instead of κ = â2. In this case,

it is rather easy to see that Theorem 5.2 remains valid.

Remark 5.3. Theorem 5.2 is also valid for the method exploiting the space S2[κ] (in-

stead of S1[κ]) with κ = â2, (̂a−1
2 )−1; the mesh ω h can be arbitrary in this case. This

supplements the results of [11].

Remark 5.4. We have confined ourselves only to the homogeneous boundary conditions
(2.2) for brevity. In the case of the nonhomogeneous boundary conditions

u(0) = u0, u(X) = uX , Du(0) = u
(1)
0 , Du(X) = u

(1)
X , (5.17)

Theorem 2.1 (for the obviously modified definition of the weak solution) remains valid after

the addition of the summand |u0|+ |uX|+ |u(1)
0 |+ |u(1)

X | to the norms ‖f (2−ℓ)‖Lp(Ω), ℓ = 0, 1, 2,
(according to Remark 1.2 in [11]). Consequently, all error bounds remain valid after similar
modifications.

Moreover, nonhomogeneous boundary conditions other than (5.17) could be considered
as well.

Finally we note that an application to the time-dependent case can be found in [13, 15].
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