
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, Vol.9(2009), No.3, pp.238–252
c© 2009 Institute of Mathematics of the National Academy of Sciences of Belarus

A MACRO-KINETIC HYBRID MODEL FOR TRAFFIC FLOW

ON ROAD NETWORKS

M.HERTY1 AND S.MOUTARI2

Abstract — We have developed a new hybrid model for an heterogeneous traffic
flow, based on a coupling of the Lighthill — Whitham [23] and Richards [27] (LWR)
macroscopic model and the kinetic model introduced in [21]. On the highways of a road
network, we consider the macroscopic description of the traffic flow and switch to the
kinetic model to compute the mass flux through a junction. This new model reproduces
the capacity drop phenomenon at a merge junction, for instance, without imposing any
priority rule. We present some numerical simulations in which we compare the results
of the hybrid model with those given by the fully macroscopic model. Furthermore, we
illustrate the consequences of the velocity distribution on the flow through a merging
junction.
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1. Introduction

The vehicular traffic has been the subject of active research for almost sixty years and
various theories have been proposed to model the traffic flow on road networks. Some
of them are based on macroscopic models [4, 6, 8, 13, 15–18, 22, 28], others on microscopic
models [1, 3, 26], and some are based on Boltzmann or Fokker — Planck type equations
[11, 12, 19–21]. However, macroscopic models are known to be somewhat coarse to describe
certain situations such as intersections whereas the implementation of microscopic models
on large road networks is too complex to handle. Recently, hybrid approaches combining
microscopic and macroscopic models [9, 24, 25, . . . ] have been investigated. Nevertheless,
as promising as this approach, it is not as obvious to implement. Indeed, in addition to the
compatibility issue between the models to be coupled, the implementation of the interfaces
could be a tedious task in practice.

In this paper, we develop a simple hybrid model for road networks based on the coupling
of the Lighthill — Whitham and Richards (LWR) macroscopic model [23,27] and the kinetic
type model introduced in [21]. To describe the traffic dynamics on a road network, we
proceed as follows: on a highway, we consider the LWR model (which can be derived from
the kinetic model in [21]), while at an intersection, in order to describe the traffic dynamics
in more detail, we take into account the velocity distribution by considering the kinetic type
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model to compute the mass flux through the junction. This mass flux value is then used
to solve the Riemann problem within the macroscopic boundary data. Furthermore, the
derivation of the LWR macroscopic model from the kinetic model is immediate (see [21]):
Thereby we get rid of the interface problem often encountered when developing a hybrid
model.

The remaining part of this paper is as follows. In Section 2, we present the kinetic model
introduced in [21], from which we derive the LWR macroscopic model. In Section 3 we
introduce a new hybrid model which includes the velocity distribution in traffic flow, whose
consequences are illustrated through some numerical simulations in Section 4.

2. The models

This section is devoted to the presentation of the models to be coupled in the next section
in order to develop our hybrid model. First we present the kinetic model introduced in [21]
from which we derive the LWR macroscopic model.

We are concerned with the Boltzmann type model for high density traffic with a brak-
ing/acceleration force, introduced in [21]. This model consists of the following equation:

∂tf + v∂xf = C(f), (2.1)

where x, t, v denote the position on the road, the time, and the speed, respectively; f =
f(x, t, v), ρ = ρ(x, t) and u = u(x, t) denote the kinetic density, the macroscopic density,
and the macroscopic velocity, respectively, whereas C(f) is a function of the gain and loss
terms due to the braking and acceleration. It can be modelled in serveral ways and we refer
the reader to [21] for a detailed discussion. Its main property is

vmax
∫

0

C(f) dv = 0.

This is used in the following derivation. Multiplying the kinetic equation (2.1) by φ(v) and
integrating it with respect to v, we obtain

∂t

vmax
∫

0

φ(v)f dv + ∂x

vmax
∫

0

vφ(v)f dv =

vmax
∫

0

φ(v)C(f), (2.2)

For φ(v) = 1 we obtain

∂tρ + ∂x(ρu) = 0 (2.3)

if we set

ρ =

vmax
∫

0

f dv, ρu =

vmax
∫

0

vf dv. (2.4)

Testing with other functions φ(v) = vγ for γ = 1, 2 . . . , one can obtain a coupled hierarchy
of models. We are interested in the first-moment approximation (2.3). However, Eq. (2.3)
is a partial differential equation in ρ and u. Unless one assumes an explicit dependence
between ρ and u, it cannot be solved. This is known to be the closure problem. There exist
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many possible closure relations for system (2.2). As in [21], here, also we consider stationary
solutions of the space homogeneous kinetic equation., i.e., f e such that C(f e) = 0 to close
the system. It can be shown [21] that there exists a one-parameter family of solutions to
C(f e) = 0 depending on the density ρ: For any fixed density ρ we have that f e(ρ, v) is a
solution. Therefore, we close the LWR–model by the equilibrium velocity defined as

ue(ρ) =
1

ρ

vmax
∫

0

vf e(ρ, v)dv. (2.5)

The precise form of f e is given in Section 5 of [21]. For the following discussion it is only
necessary to observe that the function ue(ρ) is a monotone nonincreasing function in ρ. We
give a plot of the flux function

g(ρ) = ρue(ρ) (2.6)

in Fig. 4.1 and it can be approximated by a triangular-shaped fundamental diagram. How-
ever, the following discussion holds true in more general cases, namely for flux functions
being smooth, concave and having a single maximum.

3. The macro-kinetic hybrid model

Before introducing our hybrid model, let us present some basic notations and definitions to
be used in the sequel.

Definition 3.1. A road network is a finite connected directed graph consisting of K arcs
and N vertices. The arcs and the vertices correspond to roads and junctions, respectively.

For a given junction n we denote by δ+
n the set of indices of all the incoming roads to n

and by δ−n the set of indices of all the outgoing roads to n.
Each road i is modeled by an interval Ii = [ai, bi], possibly with either ai = −∞ or

bi = +∞. At a given junction n, we denote the junction point by x0 = ai if i ∈ δ+
n and

x0 = bi if i ∈ δ−n .

We want to use the kinetic description to derive coupling conditions at the junction.
These conditions are used in the macroscopic model as explained below. In this way we
obtain a hybrid model allowing on the one hand the precise description near the junction
and a coarse (but computationally inexpensive) LWR-model on the road. The more detailed
view on the dynamics at the junction is motivated by the fact that one needs a more detailed
model to describe the dynamics properly. The kinetic equation allows, for example, to
distribute cars by their velocity, which is, e.g., the case at highway off-ramps.

We proceed as follows: first, we derive the necessary coupling conditions for the kinetic
model. Second, these conditions are used later to compute the mass fluxes through a junction.
And finally, the mass fluxes are then used as boundary conditions for the macroscopic model.

At a junction, we consider the Boltzmann type model (2.1) on each road i ∈ δ+ ∪ δ−

∂tfi + v∂xfi = C(fi), x ∈ [ai, bi], t > 0, v ∈ [0, vmax]. (3.1)

On each road i of the network, we are interested in weak solutions to (3.1), i.e., such that

∑

i∈K

(

vmax
∫

0

+∞
∫

0

bi
∫

ai

(fi∂tϕi + vfi∂xϕi − C(fi)ϕi) dx dt dv

)

= 0 (3.2)
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holds for any set of smooth functions {ϕi}i∈K : Ii × [0, +∞[×[0, vmax] −→ R with compact
support. Furthermore, here we assume that ϕ is also smooth across a junction, i.e.,

ϕ(bi) = ϕ(aj), ∀i ∈ δ− and ∀j ∈ δ+. (3.3)

The braking and acceleration force is neglected at the junction, since a junction represents
a single point in space only. Furthermore, we obtain from (3.2) for each single junction n

∑

j∈δ+
n

vfj(x0, v, t) =
∑

j∈δ−n

vfj(x0, v, t) (3.4)

by using compactly supported test functions with property (3.3) and sufficiently regular
functions fj . Since v > 0, we can only prescribe boundary conditions for (3.1) at x = ai.
Nevertheless, relation (3.4) does not uniquely define the boundary conditions for the outgoing
roads. In order to remedy this fact, like in the modeling of macroscopic traffic flow, we
propose the following:
For a given junction, let us denote by αv

i,j the percentage of cars with velocity v on road i,
going to road j. The corresponding matrix A := (αv

i,j)i∈δ−,j∈δ+,∀v∈[0,vmax] is assumed to be
known a priori (see [4, 6, 17]). By definition, we have

∀v ∈ [0, vmax],
∑

j∈δ+

αv
i,j = 1 ∀ i ∈ δ−. (3.5)

Therefore, for any given junction, the boundary conditions for {fl}l∈δ±n
are

vfj(x
−

0 , t, v) =
∑

i∈δ−

αv
i,jvfi(x

+
0 , t, v), ∀ v ∈ [0, vmax]. (3.6)

Clearly, condition (3.6) implies (3.4). In contrast to macroscopic modeling the percentages
αv

i,j are additionally velocity dependent. This is the case, e.g., at a highway off-ramp, where
only cars which are slowing down exit but faster ones stay. Condition (3.6) is sufficient
to determine the necessary boundary conditions for (3.1). However, we use (3.6) to obtain
conditions for the first moment approximation to (3.1), namely, the LWR-model. This
constitutes the hybrid character of the model. According to (2.4), the following quantities
can be computed from a solution to the kinetic model:

ρl =

vmax
∫

0

fl(x0, t, v) dv, ql =

vmax
∫

0

vfl(x0, t, v) dv. (3.7)

Before proceeding with the derivation of macroscopic coupling conditions, we briefly discuss
some properties of the LWR model (2.3) for a flux function (2.6) having the properties of
being concave with a single maximum. As in [22], we introduce the demand and supply
functions for a general flux function g(ρ). The demand and supply functions are defined as
the increasing and decreasing parts of the curve ρ 7−→ ρu(ρ) = g(ρ), respectively, as depicted
in Figs. 3.1 and 3.2. The demand at a given point is interpreted as the amount of flux that
can be sent from this point, while the supply is the quantity of flux that can be received at
this point.

The demand and supply functions have a relation with Riemann problems for (2.3). A
Riemann problem is the following initial-value problem:

∂ρ + ∂xg(ρ) = 0, ρ0(x) =

{

ρl, x < 0

ρr, x > 0,
(3.8)
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A solution to the Riemann problem (3.8) consists of either a shock wave (corresponding to
a braking) or a rarefaction wave (corresponding to an acceleration), depending on values of
ρl and ρr. Indeed,

(i) if ρl 6 ρr, the solution consists of a shock wave connecting ρl to ρr, viz.

ρ(x, t) =

{

ρl, if x < (g(ρr) − g(ρl))/(ρr − ρl), t > 0,

ρr, if x > (g(ρr) − g(ρl))/(ρr − ρl), t > 0;
(3.9)

(ii) if ρl > ρr, the solution is a rarefaction wave connecting ρl to ρr, i.e.,

ρ(x, t) =















ρl, if x 6 g′(ρl)t, t > 0,

(g′)−1(x/t), if g′(ρl) 6 x 6 g′(ρr), t > 0,

ρr, if x > g′(ρr)t, t > 0.

(3.10)

Now, for a given data ρl, we can compute the demand d(ρl). For any flux 0 6 q 6 d(ρl), we
can solve the Riemann problem and obtain shock or rarefaction waves having nonpositive
speed. Conversely, if 0 6 q 6 s(ρr) we obtain only waves of nonnegative speed. Considering
now the situation at a junction, we can only prescribe on incoming roads mass fluxes less
than the actual demand d(ρi(ai, t)). On outgoing roads we can only prescribe mass fluxes
less than the actual supply s(ρi(bi, t)).

F i g. 3.1. The demand function F i g. 3.2. The supply function

Next, we combine the previous discussions to find solutions to the following macroscopic
problem: We consider weak solutions to the macroscopic model (2.3) on each road i ∈ δ+∪δ−

∂tρi + ∂xg(ρi) = 0, x ∈ [ai, bi], t > 0, (3.11)

where g(ρ) := ρue(ρ) and initial data

ρi(x, 0) = ρi,0(x), x ∈ [ai, bi]. (3.12)

Weak solutions to (3.11), (3.12) satisfy

∑

i∈K

(

+∞
∫

0

bi
∫

ai

(ρi∂tϕi + g(ρi)∂xϕi) dx dt +

bi
∫

ai

ρi,0ϕ(x, 0) dx

)

= 0. (3.13)
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At a given junction we obtain

∑

j∈δ+

g(ρj(x0, t)) =
∑

j∈δ−

g(ρj)(x0, t). (3.14)

In order to fulfill this condition we use the kinetic conditions derived before. This amounts
to solve the following hybrid problem at the junction, in which we maximize the total mass
flux passing through the junction i.e., the flux is given by the solution to the problem.

max
∑

j∈δ+

vmax
∫

0

vfj(x
+
0 , t, v) dv subject to

vmax
∫

0

fi(x
−

0 , t, v) dv = ρi(x
−

0 , t), ∀i ∈ δ−;

vfj(x
−

0 , t, v) =
∑

j∈δ+

αv
i,jvfi(x

+
0 , t, v), ∀v ∈ [0, vmax];

vmax
∫

0

vfi(x
−

0 , t, v)dv 6 di, ∀i ∈ δ−;

vmax
∫

0

vfj(x
+
0 , t, v)dv 6 sj, ∀j ∈ δ+;

fj(x
−

0 , t, v) > 0, ∀j ∈ δ+; fi(x
−

0 , t, v) > 0, ∀i ∈ δ−. (3.15)

Some remarks are in order. The solution clearly satisfies (3.4) and therefore

∑

i∈δ−

vmax
∫

0

vfi(x
−

0 , t, v) dv =
∑

j∈δ+

vmax
∫

0

vfj(x
+
0 , t, v) dv (3.16)

and hence also (3.14). Next, we show that for piecewise constant initial data and an arbitrary
discretization in the variable v, the problem at the junction has a solution. The mass flux
through a junction depends on the boundary conditions on either side of the junction and
due to the previous discussion has therefore to satisfy

vmax
∫

0

vfi(x
−

0 , t, v)dv 6 di, ∀i ∈ δ−,

vmax
∫

0

vfj(x
+
0 , t, v)dv 6 sj , ∀j ∈ δ+,

where di := d(ρ−

i ) and sj := s(ρ+
j ) are the demand on the incoming road i and the supply

on the outgoing road j, respectively.

Construction of the Riemann solution at a junction. We construct a solution to
the maximization problem using piecewise constant data and a discretization in the v-space.
This is later used in the numerical simulations to obtain the conditions at the junction
as well as the numerical boundary conditions. Let us consider a discrete version of the
problem (3.15) i.e. v ∈ {v1, v2, . . . vN} with N ∈ N. We pose

fi(x
−

0 , t, vk) = fi,k, i ∈ δ−, k = 1, . . . , N,

fj(x
+
0 , t, vk) = fj,k, j ∈ δ+ k = 1, . . . , N.

Therefore, the problem (3.15) becomes a linear program with unknowns {fl,k}l∈δ+∪δ−,k=1,...,N .
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Proposition 3.1. Let U−

i = (ρ−

i , q−i = ρ−

i u(ρ−

i )), i ∈ δ−, and U+
j = (ρ+

j , q+
j = ρ+

j u(ρ+
j )),

j ∈ δ+, some initial macroscopic boundary data respectively on incoming and outgoing roads

of a junction. Then there exist some unique intermediate states U+
i = (ρ+

i , q+
i ), i ∈ δ−, and

U−

j = (ρ−

j , q−j ), j ∈ δ+, solution to the Riemann problem at the junction and such that the

mass fluxes

q+
i =

N
∑

k=1

vkfi,k, i ∈ δ−, and q−j =

N
∑

k=1

vkfj,k, j ∈ δ+,

are given by a solution of a discrete version of (3.15).

Proof. First of all we neglect the case of stationary shocks: if q+
i = d(ρ−

i ) we set U+
i := U−

i

and if q−j = s(ρ+
j ) we set U−

j := U+
j . As the problem (3.15) has no contradictory constraints,

therefore it admits a solution for any macroscopic boundary data U−

i and U+
j . Thus, there

exist some mass fluxes

0 6 q+
i =

N
∑

k=1

vkfi,k 6 di ∀ i ∈ δ− and

0 6 q+
j =

N
∑

k=1

vkfj,k 6 sj, ∀ j ∈ δ+

which correspond to the flux values at the unknown intermediate states U+
i and U−

i , respec-
tively.

Having the values of q+
i and q−j at hand, the right intermediate state U+

i (resp. U−

j ) on
the fundamental diagram is the one that can be connected to U−

i (resp. U+
j ) with a shock

wave (see Eq. (3.9)) or a rarefaction wave (see Eq. (3.10)) with nonpositive speed (resp.
nonnegative speed). �

4. Numerical applications and comparison
with the fully macroscopic model

In this section we are interested in traffic dynamics for the setup depicted in Fig. 4.2. We
consider a ring road with an off-ramp and an on-ramp located at x = 0 = 100 and x = 50,
respectively. To provide a deeper insight into the above hybrid formulation, we consider
for the kinetic model a discrete velocity distribution, i.e., v ∈ {v1, . . . vN}N∈N. For the
macroscopic part, we use the following form of ue:

ue(ρ) =



















q∗

ρ∗
, 0 6 ρ 6 ρ∗,

1

ρ

(

q∗ −
q∗

ρmax − ρ∗
(ρ − ρ∗)

)

, ρ∗ 6 ρ 6 ρmax = 1,

(4.1)

where q∗ is the maximal flux and ρ∗ is the corresponding density.

This yields to a triangular fundamental diagram (see the solid curve in Fig. 4.1). In
the examples below, we consider different traffic situations on the ring road in Fig. 4.2 and
compare numerical simulations given by the hybrid model with those obtained with the fully
macroscopic model.



A macro-kinetic hybrid model for traffic flow on road networks 245

F i g. 4.1. Solid line — the fundamental diagram considered here. Doted
curve — the fundamental diagram considered in [21]

F i g. 4.2. A ring road with an off-ramp and an on-ramp located respectively at
x = 0 = 100 and at x = 50

Example 4.1 (on-ramp). In this example we consider the case N = 4, i.e., v ∈
{v1, v2, v3, v4}. We start the simulation with Road 1 and Road 3 empty. We set the percent-
age of cars aiming to enter on Road 2 to zero and we keep a nonzero constant demand on
Road 4 during the simulation time in order to observe the impact of the velocity distribution
at an on-ramp. In Fig. 4.3, we present some numerical results of the hybrid model with
constant velocity distribution (i.e., v1 = v2 = v3 = v4) and those obtained with the fully
macrosocpic model, for the same initial and boundary conditions. For the fully macroscopic
model the mass flux through the junction depends only on the priority rule (which depends
on the demands on incoming roads), whereas the kinetic approach considers the velocity
distribution without any priority rule. The consequence of the velocity distribution can be
observed in Fig. 4.4 where we present some numerical simulations of the hybrid model with
varying velocity distributions.
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Example 4.2 (dependence on the numbers of velocities). Here we consider the hy-
brid model with different values of N . And as in Example 4.1, we start the simulation with
Road 1 and Road 3 empty. We set the percentage of cars aiming to enter on Road 2 to zero
and we keep a nonzero constant demand on Road 4 during the simulation time in order to
observe the impact of the value of N on traffic dynamics at an on-ramp. Figure 4.5 presents
the numerical results of the hybrid model with a uniform velocity distribution varying the
parameter N and those obtained with the fully macrosocpic model, for the same initial and
boundary conditions.

Example 4.3 (velocity dependent distributions). We consider again the case N =
4, i.e., v ∈ {v1, v2, v3, v4}. We start the simulation with Road 1 and Road 3 empty. In
contrast with the previous examples, here the percentage of cars aiming to enter on Road 2
is computed according to the velocity of vehicles. More precisely, we consider an exit to a
highway with the following conditions:

αk
1,2 =











1 if vk 6 vmax/2,

0 if vk > vmax/2,

∀ k = 1, . . . , N. (4.2)

We keep a nonzero constant demand on Road 4 and a nonzero constant supply on Road
2 during the simulation time. Figure 4.6 presents some numerical simulations obtained
with the hybrid model and the fully macrosocpic model for the same initial and boundary
conditions. For the fully macroscopic model, the percentage of vehicles aiming to enter on
Road 2 is obtained from (4.2) in the following way:

α1,2 =

∑N
k=1 αk

1,2
∑N

k=1 αk
1,2 +

∑N
k=1 αk

1,3

. (4.3)

Example 4.4 (time-dependent inflow). In this section we consider a more general
situation which consists of a nonconstant demand on Road 4 and some time-dependent
parameters αk

1,2. We consider again the case N = 4, i.e., v ∈ {v1, v2, v3, v4} and we start the
simulation with Road 1 and Road 3 empty. We present some numerical results given by the
hybrid model with different settings of αk

1,2(t) in Fig. 4.7.

5. Concluding remarks

We propose a new hybrid model for an heterogeneous flow on road networks. The distinctive
feature of this model is that it includes the velocity distribution in the flow, which has some
consequences on the traffic dynamics, in particular, at intersections. Furthermore, this model
does not require any additional conditions expressing how the available space on the outgoing
road is shared by the flows on the incoming roads. This hybrid model based on the coupling of
the LWR macroscopic model and a kinetic type model offers an appropriate trade-off between
accuracy and computational complexity, therefore suitable for on-line prediction. Future
research topics may include the calibration of the model parameters based on measured
traffic data and the refinement of the model too.
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ter “Dependable Adaptive Systems and Mathematical Modelling” and DAAD grant D/06/
19582 and DFG grant HE5386/6–1.
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Hybrid model (N = 4):
v1 = v2 = v3 = v4 = 0.5

Fully macroscopic model
Initial and
boundary
conditions

ρ0
3 = 0

ρ0
1

= 0
ρ4 = 0.7

ρ0
3 = 0

ρ0
1

= 0
ρ4 = 0.3

ρ0
3 = 0

ρ0
1

= 0
ρ4 = 0.1

F i g. 4.3. Traffic dynamics on a highway bottleneck caused by an on-ramp. The plots show the traffic dynam-
ics on Road 3 (corresponding to the section between x = 0 and x = 50) and Road 1 (corresponding to the sec-
tion between x = 50 and x = 100) when the percentage of vehicles aiming to enter on Road 2 is equal to zero.
The column on the left shows the evolution of the density of vehicles given by the macro-kinetic hybrid model
with constant velocity distribution {v1 = v2 = v3 = v4 = 0.5}, whereas the column on the right shows the
corresponding result given by the fully macroscopic model. The rows correspond to different simulation runs

varying the boundary condition on Road 4
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Hybrid model (N = 4):
v1 = 0.1, v2 = 0.2,
v3 = 0.3, v4 = 0.4

Hybrid model (N = 4):
v1 = 0.6, v2 = 0.7,
v3 = 0.8, v4 = 0.9

Hybrid model (N = 4):
v1 = 0.1, v2 = 0.5,
v3 = 0.3, v4 = 0.9

Initial and
boundary
conditions

ρ0
3

= 0
ρ0
1

= 0
ρ4 = 0.7

ρ0
3

= 0
ρ0
1 = 0

ρ4 = 0.3

ρ0
3

= 0
ρ0
1 = 0

ρ4 = 0.1

F i g. 4.4. Traffic dynamics on a highway bottleneck caused by an on-ramp. The plots show the traffic
dynamics on Road 3 (corresponding to the section between x = 0 and x = 50) and Road 1 (corresponding to
the section between x = 50 and x = 100) obtained with the macro-kinetic hybrid model when the percentage
of vehicles aiming to enter on Road 2 is equal to zero. The columns on the left, in the center and on the right
show the evolution of the density with the velocity distributions {v1 = 0.1, v2 = 0.2, v3 = 0.3, v4 = 0.4},
{v1 = 0.6, v2 = 0.7, v3 = 0.8, v4 = 0.9}, {v1 = 0.1, v2 = 0.5, v3 = 0.3, v4 = 0.9}, respectively. The rows

correspond to different simulation runs varying the boundary condition on Road 4
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Hybrid model (N = 2):
v1 = 1/3, v2 = 2/3

Hybrid model (N = 4):
v1 = 1/5, v2 = 2/5,
v3 = 3/5, v4 = 4/5

Initial and
boundary
conditions

ρ0
1

= 0
ρ0
3

= 0
ρ4 = 0.3

Hybrid model (N = 8):
v1 = 1/9, v2 = 2/9, v3 = 3/9,
v4 = 4/9, v5 = 5/9, v6 = 6/9,

v7 = 7/9, v8 = 8/9

Fully macroscopic model

ρ0
1

= 0
ρ0
3

= 0
ρ4 = 0.3

F i g. 4.5. Traffic dynamics on a highway bottleneck caused by an on-ramp. The plots show the traffic
dynamics on Road 3 (corresponding to the section between x = 0 and x = 50) and Road 1 (corresponding
to the section between x = 50 and x = 100) obtained with the macro-kinetic hybrid model varying the

parameter N (related to the velocity distribution) and the fully macroscopic model, respectively
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Hybrid model (N = 4):
v1 = 0.2, v2 = 0.6,
v3 = 0.8, v4 = 0.8

Fully macroscopic model
α1,2 = 1/4

Initial and
boundary
conditions

ρ0
3 = 0

ρ0
1

= 0
ρ0
2 = 0.15
ρ4 = 0.2

Hybrid model (N = 4):
v1 = 0.1, v2 = 0.5,
v3 = 0.3, v4 = 0.9

Fully macroscopic model
α1,2 = 1/2

ρ0
3

= 0
ρ0
1 = 0

ρ0
2

= 0.15
ρ4 = 0.2

Hybrid model (N = 4):
v1 = 0.9, v2 = 0.4,
v3 = 0.2, v4 = 0.3

Fully macroscopic model
α1,2 = 3/4

ρ0
3 = 0

ρ0
1

= 0
ρ0
2

= 0.15
ρ4 = 0.2

F i g. 4.6. Traffic dynamics on a highway bottleneck caused by an on-ramp and an off-ramp. The plots show
the traffic dynamics on Road 3 (corresponding to the section between x = 0 and x = 50) and Road 1 (corre-
sponding to the section between x = 50 and x = 100) when the percentage of cars aiming to enter on Road 2
depends on the velocity. The column on the left shows the evolution of the density given by the macro-kinetic
hybrid model with the velocity distributions {v1 = 0.2, v2 = 0.6, v3 = 0.7, v4 = 0.8}, {v1 = 0.1, v2 = 0.5, v3 =
0.3, v4 = 0.9}, {v1 = 0.9, v2 = 0.4, v3 = 0.2, v4 = 0.3} from top to bottom respectively, and the column on

right shows the corresponding results obtained with the fully macroscopic model
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Hybrid model (N = 4):
v1 = 1/5, v2 = 2/5, v3 = 3/5, v4 = 4/5

Boundary conditions Initial
conditions

ρ0
3

= 0.2
ρ0
1 = 0.2

ρ0
3 = 0.2

ρ0
1

= 0.2

F i g. 4.7. Traffic dynamics on a highway bottleneck caused by an on-ramp and an off-ramp. The plots show
the traffic dynamics on Road 3 (corresponding to the section between x = 0 and x = 50) and Road 1
(corresponding to the section between x = 50 and x = 100) obtained with the macro-kinetic hybrid model
when the demand on Road 4 and the percentage of cars aiming to enter on Road 2 are time dependent.
The column on the left shows the evolution of the density with the velocity distributions {v1 = 1/5, v2 =
2/5, v3 = 3/5, v4 = 4/5} and the column on the right shows the boundary conditions on Road 4 and the

distribution parameter αk
1,2, k = 1 . . . 4
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