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SINGULARLY PERTURBED CONVECTION — DIFFUSION

PROBLEMS IN ONE DIMENSION:

BOUNDS ON DERIVATIVES

A.NAUGHTON1 AND M.STYNES2

Abstract — A convection-dominated singularly perturbed two-point boundary prob-
lem is considered. For the numerical analysis of such problems, it is necessary to prove
certain a priori bounds on the derivatives of its solution. This paper provides a sur-
vey of the ways in which such bounds can be proved, while assessing the feasibility of
extending such proofs to convection-dominated partial differential equations, and also
introduces a new proof based on a classical finite-difference argument of Brandt.
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1. Introduction

For the rigorous numerical analysis of convection-diffusion problems, one needs bounds on
derivatives of their solutions that inter alia specify the dependence on the singular pertur-
bation parameter. Such bounds are also of interest in their own right from the point of view
of understanding the behaviour of solutions to such problems.

In this paper we consider a convection-diffusion two-point boundary value problem. While
solution derivative bounds for such problems were established as long ago as 1978 in [5], the
method of proof of [5] does not extend easily to partial differential equations. Consequently
in this paper we shall discuss alternative approaches, some of which have previously appeared
in the literature and at least one of which is new.

The problem examined in this paper is the two-point boundary value problem

Lu(x) := −εu′′(x) + p(x)u′(x) + q(x)u(x) = f(x) ∀x ∈ (0, 1),

u(0) = u0, u(1) = u1, (1.1)

where u0 and u1 are given constants. Here the diffusion coefficient ε ∈ (0, 1] is a fixed
parameter that is taken to be sufficiently small in various calculations below, e.g., in Section 5
one needs (ε/a)| ln ε| < 1. It is assumed that p, q, f ∈ C[0, 1] with q(x) > 0 for all x ∈
[0, 1]. Then the operator L satisfies a maximum or comparison principle [9] as described in
Lemma 2.1 below and it follows from the standard theory of ordinary differential equations
that (1.1) has a unique solution u ∈ C2[0, 1].
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Set p = min
x∈[0,1]

p(x). The convection coefficient p is assumed to satisfy

p > a > 0 for some constant a. (1.2)

Then it is well known (see, e.g., [5, 10]) that u has a boundary layer at x = 1.
Our aim in the present paper is to show how various analytical techniques can be used

to demonstrate this boundary layer behaviour. We shall confine our attention to proving
a pointwise bound on u′(x), since an inductive argument (see [5, Lemma 2.3]) can then
be invoked to deduce analogous bounds on high-order derivatives. Pointwise bounds imply
bounds in other norms such as H1.

It is also of interest to observe how some analytical approaches demand more regularity
of the data p, q and f . Thus in each section below we shall where necessary make additional
assumptions on this data.

Notation. Throughout this paper C will denote a generic constant that is independent
of ε and of all norms of u. It may take different values at different places. A subscripted C
(such as C0) indicates a fixed constant that is independent of ε and of all norms of u. Write
‖ · ‖ for the L∞[0, 1] norm.

Thus we have ‖p‖ 6 C and ‖q‖ 6 C. To push through the inductive argument to bound
derivatives of u of order greater than 1, instead of f = f(x) one must work (see [5]) with
the more general hypothesis that f = f(x, ε) with

|f(x, ε)| 6 C0

(

1 + ε−1e−a(1−x)/ε
)

for x ∈ [0, 1]. (1.3)

2. Preliminary results

In this section we gather a few basic results that are used in the subsequent sections.

Lemma 2.1. (Comparison principle) Let [c, d] ⊂ [0, 1]. Let v, w ∈ C2(c, d) ∩ C[c, d]
satisfy Lv(x) > |Lw(x)| on (c, d) and v(x) > |w(x)| for x = c, d. Then v > |w| on [c, d].

Proof. See, e.g., [9]. �

In Lemma 2.1 we say that v is a barrier function for w on the interval [c, d].

Lemma 2.2. [5, Lemma 2.1] There exists a constant C1 such that ‖u‖ 6 C1.

Proof. A quick calculation shows that for all x ∈ (0, 1) one has

L(1 + x) = p(x) + (1 + x)q(x) > a

and

L
(

e−a(1−x)/ε
)

=

{

a[p(x) − a]

ε
+ q(x)

}

e−a(1−x)/ε >
a

[

p− a
]

ε
e−a(1−x)/ε.

Set

v(x) =

(

C0

a
+ u0 + u1

)

(1 + x) +
C0

a(p− a)
e−a(1−x)/ε for x ∈ [0, 1].

The above inequalities and (1.3) imply that Lv(x) > |f(x, ε)| on (0, 1) with v(x) > |u(x)|
for x = 0, 1. By Lemma 2.1 we therefore have |u(x)| 6 v(x) on [0, 1]. Finally,

‖v‖ 6 2

(

C0

a
+ u0 + u1

)

+
C0

a(p− a)
=: C1.

�

Note how vital the strict inequality p > a of (1.2) is to the proof of Lemma 2.2.
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Lemma 2.3. There exists a constant C2 such that |u(x) − u0| 6 C2x for 0 6 x 6 2/3
and |u′(0)| 6 C2.

Proof. Set w(x) = u(x)− u0 for x ∈ [0, 2/3]. Then |w(0)| = 0 and |w(2/3)| 6 2C1. From
(1.3) and q ∈ C[0, 1] we get

|Lw(x)| = |f(x, ε) − q(x)u0| 6 C3 (say) for 0 < x < 2/3.

Let C2 = max {3C1, C3/a}. Set v(x) = C2x. Then v(0) = |w(0)| and v(2/3) = 2C2/3 >

|w(2/3)|, while Lv(x) > |Lw(x)| on (0, 2/3). Invoking Lemma 2.1 we get |w(x)| 6 v(x) for
0 6 x 6 2/3, as desired. The bound |u′(0)| 6 C2 follows. �

Lemma 2.3 implies that u has no layer at x = 0, insofar as u′(0) is bounded independently
of ε. On the other hand there are points in (0, 1) where |u′(x)| is large when ε is close to
zero, as the next result implies.

Lemma 2.4. There exists a constant C4 such that ‖u′‖ 6 C4ε
−1.

Proof. Choose x ∈ [0, 1] such that |u′(x)| = ‖u′‖. Choose an interval [x1, x2] ⊂ [0, 1] such
that x ∈ [x1, x2] and x2 − x1 = ε/(2‖p‖). By the mean value theorem and Lemma 2.2 there
exists x̃ ∈ (x1, x2) such that

|u′(x̃)| =

∣

∣

∣

∣

u(x2) − u(x1)

x2 − x1

∣

∣

∣

∣

6 4C1‖p‖ε
−1 = Cε−1.

Integrating (1.1)from x to x̃ and rearranging gives

‖u′‖ = |u′(x)| 6 |u′(x̃)| + ε−1

x̃
∫

x

[|p(s)u′(s)| + |f(s)| + |q(s)u(s)|] ds.

Hence, invoking (1.3) and Lemma 2.2 and observing that |x− x̃| 6 ε/(2‖p‖), we get

‖u′‖ 6 Cε−1 + ‖u′‖/2.

The result follows. �

The statement of Lemma 2.4 is sharp but it does not reveal that |u′(x)| is large only near
x = 1. The proof of this layer property of u′ is the subject of the rest of this paper.

Theorem 2.1. There exists a constant C such that

|u′(x)| 6 C
[

1 + ε−1e−a(1−x)/ε
]

for 0 6 x 6 1. (2.1)

Proof. In each subsequent section we shall provide a different proof of (2.1). �

3. Kellogg and Tsan technique

In [5] an integrating factor and some elementary manipulations are used to handle (1.1), as
we now describe.

1st proof of Theorem 2.1. Set h = f − qu and

P (x) =

x
∫

0

p(t) dt for 0 6 x 6 1.
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Then rewriting (1.1) as −εu′′ + pu′ = h, multiplying by the integrating factor ε−1e−P (x)/ε

and rearranging, we get

u′(x) = e−[P (1)−P (x)]/εu′(1) + ε−1

1
∫

t=x

e−[P (t)−P (x)]/εh(t) dt.

Invoking Lemma 2.4 to bound u′(1), and noting that P (s) − P (x) > p(s − x) for s > x, it
follows that

|u′(x)| = Cε−1e−a(1−x)/ε + Cε−1

1
∫

t=x

e−p(t−x)/ε|h(t)| dt. (3.1)

By (1.3) and Lemma 2.2,

ε−1

1
∫

t=x

e−p(t−x)/ε|h(t)| dt 6 Cε−1

1
∫

t=x

e−p(t−x)/ε
[

1 + ε−1e−a(1−t)/ε
]

dt =

C
[

1 − e−p(1−x)/ε
]

+ Cε−2e−a(1−x)/ε

1
∫

t=x

e−(p−a)(t−x)/ε dt 6 C
[

1 + ε−1e−a(1−x)/ε
]

.

Recalling (3.1), we are done.

Remark 3.1. While the analysis of this section is short and requires only that p, q and
f lie in C[0, 1], it does not seem possible to generalize it to problems in higher dimensions
such as

−ε∇u+ p1(x, y)ux + p2(x, y)uy + q(x, y)u = f(x, y) on Ω = (0, 1)2,

u = 0 on ∂Ω, (3.2)

where p1 > 0, p2 > 0 and q > 0 on Ω̄.

4. Majorizing function approach

This elementary method generalizes the argument of Lemma 2.3. It has been used by many
authors in many contexts but we are unaware of any published proof of Theorem 2.1 that is
based on it.

2nd proof of Theorem 2.1. Let x0 ∈ [0, 1] be arbitrary but fixed. We shall show that

|u′(x0)| 6 C
[

1 + ε−1e−a(1−x0)/ε
]

.

If x0 > 1 − ε then the result is immediate from Lemma 2.4, so we can assume that
0 6 x0 6 1 − ε. For x ∈ [x0, 1], set ψ(x) = u(x) − u(x0),

C5 =
C0 + C1‖q‖

p
, C6 =

C0

a(p− a)
+

2C1

1 − e−a
,

and φ(x) = C5(x− x0) + C6

[

e−a(1−x)/ε − e−a(1−x0)/ε
]

, where C0 and C1 are defined in (1.3)
and Lemma 2.2. We shall show that φ is a barrier function for ψ on the interval [x0, 1].



Singularly perturbed convection — diffusion problems in one dimension: bounds on derivatives 285

Now |ψ(x0)| = 0 = φ(x0) and Lemma 2.2 implies that |ψ(1)| = |u(1) − u(x0)| 6 2C1 6

φ(1) owing to the definition of C6 and 1 − x0 > ε. Furthermore, for x ∈ (x0, 1) one has

|Lψ(x)| = |L[u(x) − u(x0)]| = |f(x, ε) − q(x)u(x0)| 6 C0

(

1 + ε−1e−a(1−x)/ε
)

+ C1‖q‖ (4.1)

by (1.3) and Lemma 2.2, while a short calculation shows that

Lφ(x) = C6ε
−1e−a(1−x)/εa [p(x) − a] + C5p(x) + q(x)φ(x) > C6ε

−1e−a(1−x)/εa
[

p− a
]

+ C5p .

Comparing this with (4.1), it is clear that the definitions of C5 and C6 imply that Lφ(x) >

|Lψ(x)|. Thus φ is a barrier function for ψ on the interval [x0, 1] and Lemma 2.1 yields
φ(x) > |ψ(x)| on [x0, 1].

Consequently

|u′(x0)| =

∣

∣

∣

∣

∣

lim
x→ x+

0

ψ(x)

x− x0

∣

∣

∣

∣

∣

6 lim
x→ x+

0

∣

∣

∣

∣

φ(x)

x− x0

∣

∣

∣

∣

= |φ′(x0)| = C5 + C6aε
−1e−a(1−x0)/ε

and we are done.

Remark 4.1. For the two-dimensional problem (3.2) it does not seem possible to gen-
eralize the above argument by finding a suitable barrier function that vanishes at the point
(x0, y0) while satisfying all the inequalities required in the argument.

5. Using the Green’s function

Andreev [1] derives various weighted estimates of the Green’s function G(x, ξ) associated
with (1.1) (with u0 = u1 = 0) by considering G as a perturbation of the Green’s function
for the case where q ≡ 0. (The latter Green’s function can be written down explicitly.) He
is thereby able to prove the inequalities

|u′(x)| 6 C
[

1 + ε−1e−r(1−x)/ε
]

‖f‖ ∀x ∈ [0, 1], (5.1)

max
06x61

∣

∣(|u(x) + ε|u′(x)|)er(1−x)/ε
∣

∣ 6 Cε max
06x61

∣

∣f(x, ε)er(1−x)/ε
∣

∣ (5.2)

for any constant r ∈ (0, p) and C = C(r). Since ‖f‖ = O(ε−1) by (1.3), inequality (5.1)
does not provide an immediate proof of Theorem 2.1. The proof of this theorem that we
now present is new.

3rd proof of Theorem 2.1. By a change of variable we can assume that u0 = u1 = 0
without disturbing any of our hypotheses (the value of C0 in (1.3) will then change but we
ignore this detail here). First we decompose f into two components of distinct types: from
(1.3) one sees that |f(x)| 6 2C0 for 0 6 x 6 1 − (ε/a)| ln ε|. Choose f0 ∈ C[0, 1] to agree
with f on the interval [0, 1 − (ε/a)| ln ε|] and to satisfy ‖f0‖ 6 2C0. Set f1 = f − f0. Then
f1 ≡ 0 on [0, 1 − (ε/a)| ln ε|], while for x > 1 − (ε/a)| ln ε| one has

|f1(x)| 6 |f(x)| + |f0(x)| 6 C0

(

3 + ε−1e−a(1−x)/ε
)

6 4C0ε
−1e−a(1−x)/ε.

For i = 0, 1 define vi ∈ C2[0, 1] to be the solution of Lvi = fi on (0, 1) with vi(0) = vi(1) = 0.
Applying (5.1) to v0 with r = a yields

|v′0(x)| 6 C
[

1 + ε−1e−a(1−x)/ε
]

,

while applying (5.2) to v1 with r = a yields a similar result. But u = v0 + v1 so the proof is
complete.
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Remark 5.1. As the Green’s function for (3.2) is more complicated and less well behaved
than the Green’s function for (1.1), it is uncertain whether an argument like this could work
in the two-dimensional case.

6. Applying L to u
′(x) directly

The idea of this section is the most obvious one of all — one uses the barrier function
technique of Lemma 2.1 to bound u′(x) for x ∈ [0, 1]. This technique has been used by many
authors. To push through the argument one needs the following extension of Lemma 2.1 to
more general operators.

Lemma 6.1 (Comparison principle without q > 0). Define the operator M : C2(0, 1) →
C(0, 1) by

Mv(x) := −εv′′(x) + p(x)v′(x) + q̃(x)v(x) ∀x ∈ (0, 1),

where q̃ ∈ C[0, 1] satisfies p2 + 4εq̃(x) > 0 for all x. Let v, w ∈ C2(0, 1) ∩ C[0, 1] satisfy
Mv(x) > |Mw(x)| on (0, 1) and v(x) > |w(x)| for x = 0, 1. Then v > |w| on [0, 1].

Proof. Set w(x) = eσxw̃(x) for x ∈ [0, 1], where σ is independent of x and will be specified
in a moment. Then a calculation gives

Mw(x) = eσx
{

−εw̃′′(x) + [p(x) − 2εσ] w̃′(x) +
[

q̃(x) + p(x)σ − εσ2
]

w̃(x)
}

= eσxM̃w̃(x),

say. Similarly setting v(x) = eσxṽ(x), one gets Mv(x) = eσxM̃ṽ(x), so we now have M̃ṽ(x) >

|M̃w̃(x)| on (0, 1). Moreover ṽ(x) > |w̃(x)| for x = 0, 1. Set q̃ = min
06x61

q̃(x). Choose

σ = [p+(p2 +4εq̃)1/2]/(2ε). Then 0 < σ and −εσ2 +pσ+ q̃ = 0. Thus q̃(x)+p(x)σ−εσ2 > 0

and M̃ satisfies the comparison principle of Lemma 2.1. Hence ṽ(x) > |w̃(x)| on [0, 1], which
gives v(x) > |w(x)| on [0, 1], as desired. �

Variants of this lemma have been used by various authors; the earliest example seems to
be Lorenz [7].

Assume that p, q ∈ C1[0, 1] and fx ∈ C[0, 1] with |fx(x, ε)| 6 C7

(

1 + ε−2e−a(1−x)/ε
)

for
all x and some constant C7.

4th proof of Theorem 2.1. From Lemmas 2.3 and 2.4 one has |u′(0)| 6 C2 and
|u′(1)| 6 C4ε

−1. Now

L(u′) = −εu′′′ + pu′′ + qu′ = (−εu′′ + pu′ + qu)′ − p′u′ − q′u = fx − p′u′ − q′u. (6.1)

Define the operator L̂ : C2[0, 1] → C(0, 1) by L̂v = Lv + p′v. Then L̂(u′) = fx − q′u. Hence

|L̂(u′(x))| 6 C8

(

1 + ε−2e−a(1−x)/ε
)

for all x ∈ (0, 1),

where C8 is some constant. We shall apply the comparison principle of Lemma 6.1 to L̂ and
the function u′. To do this we must construct a barrier function. For any constant k one
has L̂(ekx) = ekx(−εk2 + pk+ q+ p′); choosing k = 2(‖q‖+ ‖p′‖)/a and taking ε sufficiently
small yields L̂(ekx) > C9 := ‖q‖ + ‖p′‖ for all x ∈ [0, 1]. One also has

L̂(e−a(1−x)/ε)=

{

a[p(x) − a]

ε
+ q(x) + p′(x)

}

e−a(1−x)/ε >

{

a[p− a]

ε
− ‖q‖ − ‖p′‖

}

e−a(1−x)/ε.
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Thus for ε sufficiently small one obtains L̂
(

e−a(1−x)/ε
)

> C10ε
−1e−a(1−x)/ε for some constant

C10 and all x. These inequalities together yield

L̂(C8(e
kx/C9 + ε−1e−a(1−x)/ε/C10)) > |L̂u′(x)| for all x ∈ (0, 1).

After modifying the barrier function to handle the boundary data for u′, Lemma 6.1 then
gives

|u′(x)| 6

(

C2 +
C8

C9

)

ekx +

(

C4 +
C8

C10

)

ε−1e−a(1−x)/ε for all x ∈ (0, 1).

Remark 6.1. This technique can be used to bound the derivatives in the two-dimensio-
nal example (3.2), but as we have seen it does require extra regularity of the data, viz., that
p, q and f be differentiable.

7. Brandt’s finite difference method

Finally we come to the method of Brandt [2], who applied it only to problems that are not
singularly perturbed; the extension of the method to singularly perturbed problems is non-
trivial and the analysis of this section is new. In this method a second-order elliptic operator
such as L is transformed into an elliptic operator that acts on differences of functions in a
higher-dimensional setting. Applying the maximum principle to the modified operator yields
pointwise bounds on difference quotients of solutions to the problems, from which bounds
on the derivatives follow.

Assume as in Section 6 that |fx(x, ε)| 6 C7

(

1 + ε−2e−a(1−x)/ε
)

for all x and some constant
C7. Assume that p, q ∈ C1[0, 1]. Set P = ‖p′‖ for convenience.

Set k = min{1/3, (p−a)(1−e−2a)/(4P ), a(p−a)/(2Pea)} (if P = 0 then choose k = 1/3).
Let η ∈ [0, k] be a parameter. Although (1.1) is a two-point boundary value problem,
nevertheless the analysis of this section takes place in a two-dimensional trapezoidal domain.
Set Ω1 = Ω2 ∪ Ω3 ∪ Ω4, where

Ω2 = {(x, η) : 0 < x 6 k, 0 < η < x}, Ω3 = {(x, η) : k < x 6 1 − k, 0 < η < k},

Ω4 = {(x, η) : 1 − k < x < 1, 0 < η < 1 − x}.

Given a function F defined on [0, 1], define the finite difference operator δ and the finite
mean operator µ by

δ(η)F (x) = [F (x+ η)−F (x− η)]/2, µ(η)F (x) = [F (x+ η)+F (x− η)]/2 for (x, η) ∈ Ω̄1.

The construction of Ω1 guarantees that these functions are well defined. It is easy to verify
the following product rule [2, Lemma 2.1] for the operator δ: if F and G are defined on [0, 1]
then

δ(η){F (x)G(x)} = [µ(η)F (x)][δ(η)G(x)] + [δ(η)F (x)][µ(η)G(x)].

Define the difference function ψ(x, η) = δ(η)u(x). Clearly

∂ψ(x, η)

∂x
=

1

2

[

∂u(x+ η)

∂(x + η)

∂(x + η)

∂x
−
∂u(x− η)

∂(x− η)

∂(x− η)

∂x

]

= δ(η)u′(x),

∂ψ(x, η)

∂η
= µ(η)u′(x) and

∂2ψ(x, η)

∂x2
=
∂2ψ(x, η)

∂η2
= δ(η)u′′(x).
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Using these identities we have

δ(η)Lu(x) = −
ε

2

∂2ψ(x, η)

∂x2
−
ε

2

∂2ψ(x, η)

∂η2
+ [µ(η)p(x)]

∂ψ(x, η)

∂x
+ [δ(η)p(x)]

∂ψ(x, η)

∂η
+

[µ(η)q(x)]ψ(x, η) + [δ(η)q(x)][µ(η)u(x)]; (7.1)

here the −εu′′ term has been split into two to give an elliptic operator in the variables (x, η).
Define L1 : C2(Ω1) → C(Ω1) by

L1w = −
ε

2

∂2w

∂x2
−
ε

2

∂2w

∂η2
+ [µ(η)p(x)]

∂w

∂x
+ [δ(η)p(x)]

∂w

∂η
+ [µ(η)q(x)]w. (7.2)

Then rearranging (7.1) and recalling that Lu(x) = f(x) yields

L1[δ(η)u(x)] = f1(x, η), (7.3)

where f1(x, η) := δ(η)f(x) − [δ(η)q(x)][µ(η)u(x)]. This identity is a discrete analogue of
(6.1). For the subsequent analysis it is convenient to work with the closely-related but
simpler operator L2 : C2(Ω1) → C(Ω1) defined by

L2w = −
ε

2

∂2w

∂x2
−
ε

2

∂2w

∂η2
+ p

∂w

∂x
− Pη

∂w

∂η
.

Observe that if w > 0, ∂w/∂x > 0 and ∂w/∂η > 0, then L1w(x, η) > L2w(x, η) for all
(x, η) ∈ Ω1.

Our analysis uses a barrier function σ(x, η) that will be constructed to have the properties
described in the next lemma.

Lemma 7.1. Suppose that there exists a function σ(x, η) ∈ C2(Ω1) ∩ C(Ω̄1) for which

L2σ(x, η) > |f1(x, η)| ∀(x, η) ∈ Ω1, (7.4)

σ(x, η) > 0,
∂σ(x, η)

∂x
> 0 and

∂σ(x, η)

∂η
> 0 ∀(x, η) ∈ Ω1, (7.5)

σ(x, η) > |δ(η)u(x)| ∀(x, η) ∈ ∂Ω1. (7.6)

Then σ(x, η) > |δ(η)u(x)| ∀(x, η) ∈ Ω̄1.

Proof. The hypotheses (7.5), (7.4) and (7.3) imply that L1σ(x, η) > L2σ(x, η) >

|f1(x, η)| = |L1[δ(η)u(x)]| for all (x, η) ∈ Ω1. This inequality, (7.6) and µ(η)q(x) > 0 in
(7.2) enable us to invoke a standard comparison principle [9] for the elliptic operator L1 in
Ω1 to get the result. �

Our aim now is to construct a function σ that enjoys the properties (7.4)–(7.6). First,
consider (7.6) and the four line segments that comprise ∂Ω1. Along the line η = x with
0 6 x 6 k, Lemma 2.3 yields |δ(η)u(x)| = |u(2x) − u(0)|/2 6 C2x = C2η. When η = 1 − x
on ∂Ω1, then Lemma 2.4 and the mean value theorem give |δ(η)u(x)| 6 2C4ε

−1(1 − x) for
1 − k 6 x 6 1. On the upper horizontal boundary where η = k and k 6 x 6 1 − k,
by Lemma 2.2 we have |δ(k)u(x)| 6 C1. Finally, when η = 0 on ∂Ω1 this clearly gives
δ(η)u(x) = 0.
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Next we move on to (7.4). For (x, η) ∈ Ω1, by Lemma 2.2 one has

|f1(x, η)| 6 |δ(η)f(x)| + |[δ(η)q(x)][µ(η)u(x)]| 6
1

2

∣

∣

∣

∣

∣

∣

x+η
∫

x−η

fx(t, ε) dt

∣

∣

∣

∣

∣

∣

+ η‖q′‖C1 6

C7

2

x+η
∫

x−η

[

1 + ε−2e−a(1−t)/ε
]

dt+ η‖q′‖C1 = (C7 + ‖q′‖C1)η +
C7

2aε

[

e−a(1−x−η)/ε − e−a(1−x+η)/ε
]

.

(7.7)
A calculation shows that for (x, η) ∈ Ω1 one has

L2

[

ηe(1+P )x/a
]

=

[

−
ε

2

(1 + P )2

a2
+
p(1 + P )

a

]

ηe(1+P )x/a − Pηe(1+P )x/a > ηe(1+P )x/a (7.8)

provided ε is sufficiently small (independently of η), and

L2

[

e−a(1−x−η)/ε − e−a(1−x+η)/ε
]

=
a(p− a)

ε

[

e−a(1−x−η)/ε − e−a(1−x+η)/ε
]

−

Paη

ε

[

e−a(1−x−η)/ε + e−a(1−x+η)/ε
]

. (7.9)

We need a suitable lower bound for the right-hand side of (7.9). There are two cases: first,
if η 6 ε then

e−a(1−x−η)/ε + e−a(1−x+η)/ε 6 2eae−a(1−x)/ε

and

e−a(1−x−η)/ε − e−a(1−x+η)/ε = e−a(1−x)/ε
(

eaη/ε − e−aη/ε
)

>
2aη

ε
e−a(1−x)/ε

since et − e−t > 2t for all t > 0. Consequently

a(p− a)

ε

[

e−a(1−x−η)/ε − e−a(1−x+η)/ε
]

−
Paη

ε

[

e−a(1−x−η)/ε + e−a(1−x+η)/ε
]

>

a(p− a)

2ε

[

e−a(1−x−η)/ε − e−a(1−x+η)/ε
]

(7.10)

provided ε 6 a(p − a)/(2Pea); the definition of k ensures that this condition on ε can be
satisfied without violating η 6 ε. In the case where η > ε one has

e−a(1−x−η)/ε − e−a(1−x+η)/ε > e−a(1−x−η)/ε
(

1 − e−2a
)

while

Paη

ε

[

e−a(1−x−η)/ε + e−a(1−x+η)/ε
]

6
2Pak

ε
e−a(1−x−η)/ε 6

a(p− a)(1 − e−2a)

2ε
e−a(1−x−η)/ε

from the definition of k; thus (7.10) holds true. Combining (7.9) and (7.10) yields

L2

[

e−a(1−x−η)/ε − e−a(1−x+η)/ε
]

>
a(p− a)

2ε

[

e−a(1−x−η)/ε − e−a(1−x+η)/ε
]

for all (x, η) ∈ Ω1

(7.11)
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provided that ε is sufficiently small (independently of η), which is not a restriction.
Define

σ(x, η)=(C7 + ‖q′‖C1)ηe
(1+P )x/a +

C7

a2(p− a)
[e−a(1−x−η)/ε − e−a(1−x+η)/ε] for all (x, η) ∈ Ω̄1.

Then σ(x, η) ∈ C2(Ω1) ∩ C(Ω̄1). It follows from (7.7), (7.8) and (7.11) that

L2(σ(x, η)) > |f1(x, η)| for all (x, η) ∈ Ω1.

It is easily seen that our selected σ satisfies all the conditions (7.4)–(7.6); in particu-
lar (7.6) follows from the comments immediately after the proof of Lemma 7.1. Consequently
Lemma 7.1 gives

σ(x, η) > |δ(η)u(x)| for all (x, η) ∈ Ω̄1. (7.12)

5th proof of Theorem 2.1. By (7.12) and the definition of δ(η), for each x ∈ (0, 1) we
have

|u′(x)| = lim
η→0+

∣

∣

∣

∣

δ(η)u(x)

η

∣

∣

∣

∣

6 lim
η→0+

σ(x, η)

η
= (C7 + ‖q′‖C1)e

(1+P )x/a +
2C7

a(p− a)ε
e−a(1−x)/ε,

from which the desired result follows.

Remark 7.1. The technique of this section is applied to classical second-order elliptic
partial differential operators in n > 1 variables in [2] and to parabolic operators in [3, 6].
The analysis described above should likewise be capable of extension to problems posed in
higher dimensions and we shall pursue this topic in a forthcoming paper [8].

Furthermore, one can analyse elliptic and parabolic difference operators in the same
framework—see [2, 3, 6].

8. Conclusions

The preceding sections have given five different proofs of the sharp pointwise bound on
u′ stated in Theorem 2.1. Some of these proofs can be generalized to the two-dimensional
problem (3.2), but these arguments require more regularity of the data in the one-dimensional
case. For (3.2), even when the norm used is slightly weaker than the standard L∞ norm,
increased regularity of the data seems to be needed if one is to show that certain first-order
derivatives are bounded on most or all of the domain [4, Theorem 4.1]. It is unclear whether
increased regularity of the data is a necessary condition for proving satisfactory pointwise
bounds on derivatives in higher-dimensional singularly perturbed problems and we defer
investigation of this question to a later paper.
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