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SOLVING NONLINEAR VOLTERRA — FREDHOLM

INTEGRO-DIFFERENTIAL EQUATIONS USING

THE MODIFIED ADOMIAN DECOMPOSITION METHOD

M. A. FARIBORZI ARAGHI1 AND SH. SADIGH BEHZADI1

Abstract — In this paper, a nonlinear Volterra — Fredholm integro-differential
equation is solved by using the modified Adomian decomposition method (MADM).
The approximate solution of this equation is calculated in the form of a series in which
its components are computed easily. The accuracy of the proposed numerical scheme
is examined by comparison with other analytical and numerical results. The existence,
uniqueness and convergence and an error bound of the proposed method are proved.
Some examples are presented to illustrate the efficiency and the performance of the
modified decomposition method.
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1. Introduction

We consider a high-order nonlinear Volterra — Fredholm integro-differential equation given by

k∑
j=0

pj(x)u(j)(x) = f(x) + µ1

x∫
a

k1(x, t)g1(t, u(t))dt+ µ2

b∫
a

k2(x, t)g2(t, u(t))dt, (1.1)

with the initial conditions

u(r)(a) = br, r = 0, 1, 2, . . . , k − 1, (1.2)

where a, b, µ1, µ2, br are constant values, f(x), k1(x, t), k2(x, t), g1(t, u(t)), g2(t, u(t)) and pj(x),
j = 0, 1, . . . , k are functions that have suitable derivatives on an interval a 6 t 6 x 6 b and
pk(x) 6= 0.

If we set g1(t, u(t)) = G1(u(t)), g2(t, u(t)) = G2(u(t)), where G1 and G2 are known
smooth functions nonlinear in u(t), then Eq. (1.1) reduces to the following equation:

k∑
j=0

pj(x)u(j)(x) = f(x) + µ1

x∫
a

k1(x, t)G1(u(t))dt+ µ2

b∫
a

k2(x, t)G2(u(t))dt. (1.3)
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Since many physical problems are modeled by integro-differential equations, the numeri-
cal solutions of such integro-differential equations have been highly studied by many au-
thors. In recent years, numerous works have been focusing on the development of more
advanced and efficient methods for integral equations and integro-differential equations such
as the lineaziation method [1], the differential transform method [2], RF-pair method [3],
and semianalytical-numerical techniques such as the Adomian decomposition method [5]
and Taylor polynomials method [4, 6–8]. The modified decomposition method for solving
nonlinear Volterra — Fredholm integral equations was presented by Bildik and Inc in [9].
In the present work, we apply the MADM for solving Eq. (1.3) and compare the results
with the Taylor polynomial method. The paper is organized as follows. In Section 2, some
preliminaries consisting of the standard Adomian decomposition method (ADM), the mod-
ified Adomian decomposition method (MADM) and the Adomian polynomials are briefly
described. In Section 3, the MADM for solving nonlinear Volterra — Fredholm integro-
differential equations is presented. Also, the existence, uniqueness and convergence and the
error bound of the proposed method are proved. Finally, some numerical examples are solved
using the MADM in Section 4.

2. Preliminaries

The Adomian decomposition method is applied to the following general nonlinear equation:

Lu+Ru+Nu = g(x), (2.1)

where u is the unknown function, L is the highest-order derivative which is assumed to be
easily invertible, R is a linear differential operator of order less than L, Nu represents the
nonlinear terms, and g is the source term. Applying the inverse operator L−1 to both sides
of Eq. (2.1) and using the given conditions we obtain

u = f(x)− L−1(Ru)− L−1(Nu), (2.2)

where the function f(x) represents the terms arising from integrating the source term g(x).
The nonlinear operator Nu = G(u) is decomposed as

G(u) =
∞∑
n=0

An, (2.3)

where An, n > 0 are the Adomian polynomials determined formally as follows:

An =
1

n!

[
dn

dλn

[
N

( ∞∑
i=0

λiui

)]]
λ=0

. (2.4)

The Adomian polynomials were introduced in [10–12] as

A0 = G(u0), A1 = u1G
′(u0), A2 = u2G

′(u0) +
1

2!
u2

1G
′′(u0),

A3 = u3G
′(u0) + u1u2G

′′(u0) +
1

3!
u3

1G
′′′(u0), . . .
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2.1. Adomian decomposition method. In recent years the Adomian decomposition
method [12] has been applied to a wide class of functional equations and inverse problems
such as integral equations [13, 14].

The standard decomposition technique represents the solution of u in (2.1) as the follow-
ing series:

u =
∞∑
i=0

ui, (2.5)

where, the components u0, u1, . . . are usually determined recursively by

u0 = f(x), un+1 = −L−1(Run)− L−1(An), n > 0. (2.6)

Substituting (2.4) into (2.6) leads to the determination of the components of u. Having
determined the components u0, u1, . . . the solution u in a series form defined by (2.5) follows
immediately.

2.2. The modified decomposition method. The modified decomposition method
was introduced by Wazwaz [15]. This method is based on the assumption that the function
f(x) can be divided into two parts, namely f1(x) and f2(x). Under this assumption we set

f(x) = f1(x) + f2(x). (2.7)

We apply this decomposition when the function f consists of several parts and can be de-
composed into two different parts. In this case, f is usually a summation of a polynomial and
trigonometric or transcendental functions. A proper choice for the part f1 is important. For
the method to be more efficient, we select f1 as one term of f or at least a number of terms
if possible and f2 consists of the remaining terms of f . In comparison with the standard
decomposition method, the MADM minimizes the size of calculations and the cost of com-
putational operations in the algorithm. Both standard and modified decomposition methods
are reliable for solving nonlinear problems such as Volterra — Fredholm integro-differential
equations, but in order to decrease the complexity of the algorithm and simplify the calcu-
lations we prefer to use the MADM. The MADM will accelerate the rapid convergence of
the series solution in comparison with the standard Adomian decomposition method. The
modified technique may give the exact solution for nonlinear equations without the necessity
to find the Adomian polynomials. We refer the reader to [15–17] for more details about the
MADM.

Accordingly, a slight variation was proposed only on the components u0 and u1. The
suggestion was that only the part f1 be assigned to the component u0, whereas the remaining
part f2 be combined with the other terms given in (2.6) to define u1. Consequently, the
following modified recursive relation was developed:

u0 =f1(x), u1 =f2(x)−L−1(Ru0)−L−1(A0), . . . , un+1 =−L−1(Run)−L−1(An), n>1.

3. Description of the method

By using the MADM, from (2.7), we can write Eq. (1.3) in the form

pk(x)u(k)(x)+
k−1∑
j=0

pj(x)u(j)(x)=f1(x)+f2(x)+µ1

x∫
a

k1(x, t)G1(u(t))dt+µ2

b∫
a

k2(x, t)G2(u(t))dt.

(3.1)
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Since pk(x) 6= 0, then

u(k)(x) =
f1(x)

pk(x)
+
f2(x)

pk(x)
+ µ1

x∫
a

k1(x, t)

pk(x)
G1(u(t))dt+

µ2

b∫
a

k2(x, t)

pk(x)
G2(u(t))dt−

k−1∑
j=0

pj(x)

pk(x)
u(j)(x), (3.2)

where f1(x)/pk(x), f2(x)/pk(x), k1(x, t)/pk(x), k2(x, t)/pk(x) and pj(x)/pk(x), j = 0, 1, . . .
. . . , k − 1 are functions that have suitable derivatives on an interval a 6 t 6 x 6 b.

To obtain the approximate solution of Eq. (1.3), by integrating (k) times from Eq. (3.2)
in the interval [a, x] with respect to x we obtain,

u(x) = L−1

(
f1(x)

pk(x)

)
+ L−1

(
f2(x)

pk(x)

)
+ µ1L

−1

( x∫
a

k1(x, t)

pk(x)
G1(u(t))dt

)
+

µ2L
−1

( b∫
a

k2(x, t)

pk(x)
G2(u(t)dt)

)
− L−1

( k−1∑
j=0

pj(x)

pk(x)
u(j)(x)

)
+

k−1∑
r=0

1

r!
(x− a)rbr, (3.3)

where L−1 is the multiple integration operator as follows:

L−1(·) =

x∫
a

x∫
a

. . .

x∫
a

(·) dx dx . . . dx, (k times).

We obtain the term
∑k−1

r=0(x− a)rbr/(r!) from the initial conditions.
The nonlinear operators G1(u) and G2(u) are usually represented by an infinite series of

the so-called Adomian polynomials as follows:

G1(u) =
∞∑
i=0

Ai, G2(u) =
∞∑
i=0

Bi. (3.4)

The polynomials Ai are generated for all kinds of nonlinearity so that A0 depends only on
u0, A1 depends on u0, u1, and so on. Specific algorithms were set in [10-12] to formulate
Adomian polynomials.

A0 = G1(u0), A1 = u1G
′
1(u0), A2 = u2G

′
1(u0) +

1

2!
u2

1G
′′
1(u0),

A3 = u3G
′
1(u0) + u1u2G

′′
1(u0) +

1

3!
u3

1G
′′′
1 (u0), . . . (3.5)

By using a similar manner in (3.5), the polynomials Bi in (3.4) can be written in the
form

B0 = G2(u0), B1 = u1G
′
2(u0), B2 = u2G

′
2(u0) +

1

2!
u2

1G
′′
2(u0),

B3 = u3G
′
2(u0) + u1u2G

′′
2(u0) +

1

3!
u3

1G
′′′
2 (u0), . . . (3.6)
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By substituting (2.5) and (3.4) in Eq. (3.3) we have

∞∑
i=0

ui(x) = L−1

(
f1(x)

pk(x)

)
+ L−1

(
f2(x)

pk(x)

)
+ µ1

∞∑
i=0

L−1

( x∫
a

k1(x, t)

pk(x)
Ai(t) dt

)
+

µ2

∞∑
i=0

L−1

( b∫
a

k2(x, t)

pk(x)
Bi(t) dt

)
−
∞∑
i=0

k−1∑
j=0

L−1

(
pj(x)

pk(x)
u

(j)
i (x)

)
+

k−1∑
r=0

1

r!
(x− a)rbr, (3.7)

where the components u0, u1, u2, . . . are usually determined recursively by

u0 = L−1

(
f1(x)

pk(x)

)
+

k−1∑
r=0

1

r!
(x− a)rbr,

u1 = L−1

(
f2(x)

pk(x)

)
+ µ1L

−1

( x∫
a

k1(x, t)

pk(x)
A0(t) dt

)
+

µ2L
−1

( b∫
a

k2(x, t)

pk(x)
B0(t) dt

)
−

k−1∑
j=0

L−1

(
pj(x)

pk(x)
u

(j)
0 (x)

)
, . . .

un+1 = µ1L
−1(

x∫
a

k1(x, t)

pk(x)
An(t) dt

)
+ µ2L

−1

( b∫
a

k2(x, t)

pk(x)
Bn(t) dt

)
−

k−1∑
j=0

L−1

(
pj(x)

pk(x)
u(j)
n (x)

)
,

n > 1. (3.8)

Relation (3.8) will enable us to determine the components un(x) recursively for n > 0, and
as a result, the series solution of u(x) is readily obtained. When the kernel of the integral
equation is complicated or the terms of the series

∑∞
i=0 ui(x) are difficult or impossible to

calculate analytically, then the Adomian decomposition method needs some modifications.
In Eq. (3.3), if we consider k2(x, t) is a separable kernel, then we can write

k2(x, t) = g2(x) · h2(t). (3.9)

By using the following relation mentioned in [15]:

x∫
a

x1∫
a

x2∫
a

. . .

xn−1∫
a

f(xn) dxn . . . dx1 =
1

(n− 1)!

x∫
a

(x− t)n−1f(t) dt,

we can write

L−1

( x∫
a

k1(x, t)

pk(x)
G1(u(t)) dt

)
=

1

k!

x∫
a

(x− t)k k1(x, t)

pk(x)
G1(u(t)) dt,

k−1∑
j=0

L−1

(
pj(t)

pk(t)

)
u(j)(t) =

k−1∑
j=0

1

(k − 1)!

x∫
a

(x− t)k−1 pj(t)

pk(t)
u(j)(t) dt. (3.10)
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By substituting (3.9) and (3.10) in Eq. (3.3) we obtain

u(x) = L−1

(
f(x)

pk(x)

)
+

k−1∑
r=0

1

r!
(x− a)rbr + µ2

b∫
a

L−1

(
g2(x)

pk(x)

)
h2(t)G2(u(t)) dt+

µ1

k!

x∫
a

(x− t)k k1(x, t)

pk(x)
G1(u(t)) dt−

k−1∑
j=0

1

(k − 1)!

x∫
a

(x− t)k−1 pj(t)

pk(t)
u(j)(t) dt. (3.11)

In Eq. (3.11), we set

L−1

(
f(x)

pk(x)

)
+

k−1∑
r=0

1

r!
(x− a)rbr = F (x),

where F (x) is assumed to be bounded for all t in J = [a, b] and∣∣∣∣µ1k1(x, t)(x− t)k

k! pk(x)

∣∣∣∣ 6M
′
,

∣∣∣∣µ2L
−1

(
g2(x)

pk(x)

)
h2(t)

∣∣∣∣ 6M
′′
,

∣∣∣∣(x− t)k−1pj(t)

pk(t) (k − 1)!

∣∣∣∣ 6Mj, j = 0, 1, . . . , k − 1, ∀a 6 t 6 x 6 b.

Also, we assume that the nonlinear terms G1(u(t)), G2(u(t)) and Dj(u(t)) = dj(u(t))/dtj,
(Dj is the derivative operator, j = 0, 1, . . . , k − 1) are Lipschitz continuous with |G1(u) −
G1(z)| 6 L

′ |u − z|, |G2(u) − G2(z)| 6 L
′′ |u − z|, |Dj(u) − Dj(z)| 6 Lj|u − z| for j =

0, 1, . . . , k − 1, and have the following Adomian polynomials representation:

G1(u) =
∞∑
i=0

Ai, G2(u) =
∞∑
i=0

Bi, Dj(u) =
∞∑
i=0

Lij , j = 0, 1, . . . , k − 1.

Furthermore, we can write the following formula for the Adomian polynomials [18]:

An = G1(sn)−
n−1∑
i=0

Ai, Bn = G2(sn)−
n−1∑
i=0

Bi, Lnj
= Dj(sn)−

n−1∑
i=0

Lij , j=0, 1, . . . , k−1,

(3.12)
where sn =

∑n
i=0 ui(t) is the partial sum. Consequently, by applying the ADM to (3.11),

the following recursive formula is obtained:

u(t) =
∞∑
i=0

ui(t),

where

u0(t) = F (x), ui(t) =

x∫
a

µ1k1(x, t)(x− t)k

k! pk(x)
Ai−1 dt+

b∫
a

µ2L
−1

(
g2(x)

pk(x)

)
h2(t)Bi−1 dt−

k−1∑
j=0

x∫
a

(x− t)k−1 pj(t)

(k − 1)! pk(t)
Li−1j

dt, i > 1. (3.13)
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The following theorems are proved under the above assumptions. Theorems of uniqueness
of the solution, convergence and the truncation error of the Adomian method for a class of
nonlinear integral equations was proposed in [18]. In order to extend these theorems to non-
linear Volterra — Fredholm integro-differential equations, we prove the following theorems
for the solution (2.5) of problem (3.11).

Theorem 3.1. Problem (3.11) has a unique solution whenever 0 < α < 1, where

α = (L
′
M
′
+ L

′′
M
′′

+ kLM)(b− a), M = max |Mj|, L = max |Lj|, j = 0, 1, . . . , k − 1.

Proof. Let u and u∗ be two different solutions of (3.11). Then

|u− u∗| =
∣∣∣∣

x∫
a

µ1k1(x, t)(x− t)k

pk(x) k!
[G1(u)−G1(u

∗)] dt+

b∫
a

µ2L
−1

(
g2(x)

pk(x)

)
h2(t)×

[G2(u)−G2(u
∗)] dt−

k−1∑
j=0

x∫
a

(x− t)k−1 pj(t)

pk(t) (k − 1)!
[Dj(u)−Dj(u∗)] dt

∣∣∣∣ 6
x∫
a

∣∣∣∣µ1k1(x, t)(x− t)k

pk(x) k!

∣∣∣∣|G1(u)−G1(u
∗)| dt+

b∫
a

∣∣∣∣µ2L
−1

(
g2(x)

pk(x)

)
h2(t)

∣∣∣∣|G2(u)−G2(u
∗)| dt+

k−1∑
j=0

x∫
a

∣∣∣∣(x− t)k−1 pj(t)

pk(t) (k − 1)!

∣∣∣∣|Dj(u)−Dj(u∗)| dt 6 (b− a)(L
′
M
′
+ L

′′
M
′′

+ kLM)|u− u∗|,

from which we get (1 − α)|u − u∗| 6 0. Since 0 < α < 1, then |u − u∗| = 0 implies u = u∗

and this completes the proof. �

Theorem 3.2. The series solution (2.5) of problem (3.11) using the ADM converges if
0 < α < 1 and |u1(t)| <∞.

Proof. Let (C[J ], ‖.‖) be the Banach space of all continuous functions on J with the
norm ‖f(t)‖ = max |f(t)| for all t in J = [a, b]. We suppose the sequence of partial sums sn
and let sn and sm be arbitrary partial sums with n > m. We will prove that sn is a Cauchy
sequence in this Banach space.

‖sn − sm‖ = max
∀tεJ
|sn − sm| = max

∀tεJ

∣∣∣∣ n∑
i=m+1

ui(t)

∣∣∣∣ =

max
∀tεJ

∣∣∣∣ n∑
i=m+1

x∫
a

µ1k1(x, t)(x− t)k

k! pk(x)
Ai−1 dt+

n∑
i=m+1

b∫
a

µ2L
−1

(
g2(x)

pk(x)

)
h2(t)Bi−1 dt−

k−1∑
j=0

x∫
a

pj(t)(x− t)k−1

pk(t) (k − 1)!
Li−1j

dt

∣∣∣∣ = max
∀tεJ

∣∣∣∣
x∫
a

µ1k1(x, t)(x− t)k

k! pk(x)

( n−1∑
i=m

Ai

)
dt+

b∫
a

µ2L
−1

(
g2(x)

pk(x)

)
h2(t)

( n−1∑
i=m

Bi

)
dt−

k−1∑
j=0

x∫
a

pj(t)(x− t)k−1

pk(t) (k − 1)!

( n−1∑
i=0

Lij

)
dt

∣∣∣∣. (3.14)
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From (3.12) we have

n−1∑
i=m

Ai = G1(sn−1 − sm−1),
n−1∑
i=m

Bi = G2(sn−1 − sm−1),
n−1∑
i=m

Lij = Dj(sn−1 − sm−1),

where j = 0, 1, 2, . . . k − 1. So,

‖sn − sm‖ = max
∀tεJ

∣∣∣∣
x∫
a

µ1k1(x, t)(x− t)k

k! pk(x)
[G1(sn−1)−G1(sm−1)] dt+

b∫
a

µ2L
−1

(
g2(x)

pk(x)

)
h2(t)[G2(sn−1 − sm−1)]dt−

k−1∑
j=0

x∫
a

pj(t)(x− t)k−1

pk(t)(k − 1)!
[Dj(sn−1 − sm−1)]dt

∣∣∣∣ 6
Thus,

max
∀tεJ

x∫
a

∣∣∣∣µ1k1(x, t)(x− t)k

k! pk(x)

∣∣∣∣|G1(sn−1)−G1(sm−1)|dt+

b∫
a

∣∣∣∣µ2L
−1

(
g2(x)

pk(x)

)
h2(t)

∣∣∣∣×
|G2(sn−1 − sm−1)|dt+

k−1∑
j=0

x∫
a

∣∣∣∣pj(t)(x− t)k−1

pk(t)(k − 1)!

∣∣∣∣|Dj(sn−1 − sm−1)|dt 6 α‖sn−1 − sm−1‖.

Let n = m+ 1, then

‖sm+1 − sm‖ 6 α ‖sm − sm−1‖ 6 α2 ‖sm−1 − sm−2‖ 6 . . . 6 αm ‖s1 − s0‖.

By using the triangle inequality, we have

‖sn − sm‖ 6 ‖sm+1 − sm‖+ ‖sm+2 − sm+1‖+ . . .+ ‖sn − sn−1‖ 6

[αm + αm+1 + . . .+ αn−1]‖s1 − s0‖ 6

αm [1 + α + α2 + . . .+ αn−m−1]‖s1 − s0‖ 6 αm
[

1− αn−m

1− α

]
‖u1(t)‖.

Since 0 < α < 1, we have (1− αn−m) < 1, then

‖sn − sm‖ 6
αm

1− α
max
∀tεJ
|u1(t)|. (3.15)

Since F (x) is bounded and |u1(t)| <∞. Therefore, as m→∞, then ‖sn− sm‖ → 0. We
conclude that sn is a Cauchy sequence in C[J ], hence the series is convergent and the proof
is completed. �

Theorem 3.3. The maximum absolute truncation error of the series solution (2.5) to
problem (3.11) is estimated to be

max
∀tεJ

∣∣∣∣u(t)−
m∑
i=0

ui(t)

∣∣∣∣ 6 k αm

1− α
, (3.16)

where

k = b (M
′
max
∀tεJ
|G1(u0)|+M

′′
max
∀tεJ
|G2(u0)|+Mj max

∀tεJ
|Dj(u0)|), j = 0, 1, . . . , k − 1.
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Proof. From inequality (3.15), when n→∞, then sn → u(t) and

max
∀tεJ
|u1(t)| 6 b (M

′
max
∀tεJ
|G1(u0)|+M

′′
max
∀tεJ
|G2(u0)|+Mj max

∀tεJ
|Dj(u0)|), j = 0, 1, . . . , k−1.

Therefore,

‖u(t)− sm‖6
αm

1− α
b (M

′
max
∀tεJ
|G1(u0)|+M

′′
max
∀tεJ
|G2(u0)|+Mj max

∀tεJ
|Dj(u0)|),

j=0, 1, . . . , k − 1.

Finally, the maximum absolute truncation error in the interval J is obtained by (3.16). �

4. Numerical examples

In this Section, we compute two numerical examples which are solved by the method pro-
posed in this article. The programs have been provided with Mathematica 6 according to
the following algorithm where ε is a given positive value.

Algorithm:

Step 1. Set n← 0.

Step 2. Consider the Adomian polynomials as follows:

An =
1

n!

[
dn

dλn

[
G1

( ∞∑
i=0

λiui

)]]
λ=0

, Bn =
1

n!

[
dn

dλn

[
G2

( ∞∑
i=0

λiui

)]]
λ=0

.

Step 3. Calculate the recursive relation as follows:

u0 = L−1

(
f1(x)

pk(x)

)
+

k−1∑
r=0

1

r!
(x− a)rbr,

u1 = L−1

(
f2(x)

pk(x)

)
+ µ1L

−1

( x∫
a

k1(x, t)

pk(x)
A0(t)dt

)
+

µ2L
−1

( b∫
a

g2(x)h2(t)

pk(x)
B0(t)dt

)
−

k−1∑
j=0

L−1(
pj(x)

pk(x)
)u

(j)
0 (x), . . . ,

un+1 = µ1L
−1

( x∫
a

k1(x, t)

pk(x)
An(t)dt

)
+

µ2L
−1

( b∫
a

g2(x)h2(t)

pk(x)
Bn(t)dt

)
−

k−1∑
j=0

L−1(
pj(x)

pk(x)
u(j)
n (x)), n > 1.

Step 4. If |un+1 − un| < ε then go to step 5, else n← n+ 1 and go to step 2.

Step 5. Print u(x) =
∑n

i=0 ui as the approximation of the exact solution.
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Example 4.1. Let us first consider the nonlinear integro-differential equation

(x3−1)u(4)(x)+(x2+1)u′′(x)=e−x(x2+x3)− x2

2e2
−(0.130639)x+

x∫
0

[u(t)]2dt+

0.5∫
0

xt(1+u(t)2)dt,

with initial conditions u(0) = 1, u′(0) = −1, u′′(0) = 1, u′′′(0) = −1, p0(x) = p1(x) =
p3(x) = 0, p2(x) = (x2 + 1), p4(x) = (x3 − 1). The exact solution is u(x) = e−x. Also,
α = 0.88068 and ε = 10−4.

Table 4.1 shows that the modified Adomian decomposition method (MADM) has a more
rapid convergence with a smaller number of iterations than the number of terms (N) in
Taylor polynomials method (TPM). Comparing the results of Table 4.1, we can observe that
the increase in the error in the modified Adomian decomposition method is smaller than the
increase in the error in the Taylor polynomials method.

T a b l e 4.1. Numerical results for Example 4.1, Comparison be-
tween (TPM) and (MADM)

x Exact solution Errors (TPM) Errors (MADM)

0.05 0.951229 2.65643× 10−4(N = 2) 2.6223× 10−6 (n = 1)
0.1 0.904837 4.33795× 10−4(N = 2) 7.94562× 10−5 (n = 1)
0.2 0.818731 0.00007242 (N = 4) 2.5539× 10−5 (n = 2)
0.3 0.740818 0.00038350 (N = 4) 0.00001492 (n = 2)
0.4 0.670320 0.00012700 (N = 4) 0.00005300 (n = 2)
0.5 0.606531 0.00032650 (N = 4) 0.00001330 (n = 2)

Example 4.2. (See [6]). Let us consider the following linear integro-differential equa-
tion:

u′′(x) + xu(x) = f(x) +

x∫
0

x2etu(t) dt,

where

p0(x) = x, p1(x) = 1, µ1 = 1, µ2 = 0, 0 6 t 6 x 6 0.8, k1(x, t) = x2et,

f(x) = −(1 + x) cos(x)− 1

2
(ex(cos(x) + sin(x))− 1)x2,

with the initial conditions u(0) = 1, u′(0) = 0. The exact solution is u(x) = cos(x). Also,
α = 0.776533 and ε = 10−7.

Table 4.2 shows that the modified Adomian decomposition method (MADM) in [6] has a
more rapid convergence than the Taylor polynomials method (TPM) in different iterations.
So, we can observe that the result of the example for the modified Adomian decomposition
method can be better than the result of the Taylor polynomials method.

T a b l e 4.2. Numerical results for Example 4.2, Comparison be-
tween (TPM) and (MADM)

x Exact solution Errors (TPM) Errors (MADM)

0.2 0.98006658 6.34639× 10−7(N = 2) 4.6178× 10−8 (n = 2)
0.4 0.92106099 1.62251× 10−7(N = 3) 1.4486× 10−8 (n = 2)
0.6 0.82533561 4.1491× 10−7 (N = 4) 1.3984× 10−7 (n = 3)
0.8 0.69670671 4.13157× 10−8(N = 7) 4.8341× 10−8 (n = 3)
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5. Conclusions

The Adomian decomposition method isknown as a powerful scheme for solving many func-
tional equations such as algebraic equations, ordinary and partial differential equations,
integral equations, and so on. In this work, we have calculated the approximate solutions of
high-order nonlinear Volterra — Fredholm integro-differential equations by using the modi-
fied Adomian decomposition method (MADM). The method can be developed to solve the
integro-differential equation in the form of

k∑
j=0

pj(x)u(j)(x) = f(x) + µ1

x∫
a

p∑
i=0

k1(x, t)G1(u
(i))(t) dt+ µ2

b∫
a

s∑
l=0

k2(x, t)G2(u
(l))(t)) dt,

with G1(u
(i))(t) =

∑∞
n=0An, G2(u

(l))(t) =
∑∞

n=0Bn, where An and Bn are Adomian polyno-
mials.

We compared the MADM with the TPM and observed that the modified Adomian de-
composition method has a more rapid convergence than the Taylor polynomials method.
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