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AN ADAPTIVE SCHEME TO HANDLE THE PHENOMENON

OF QUENCHING FOR A LOCALIZED SEMILINEAR HEAT

EQUATION WITH NEUMANN BOUNDARY CONDITIONS

TH. K. KOUAKOU1 , TH. K. BONI2 , AND R. K. KOUAKOU3

Abstract — This paper concerns the study of the numerical approximation for the
following initial-boundary value problem:

ut(x, t) = uxx(x, t)− f(u(1/2, t)), (x, t) ∈ (0, 1)× (0, T ),
ux(0, t) = 0, ux(1, t) = 0, t ∈ (0, T ),
u(x, 0) = u0(x), x ∈ [0, 1],

where f : (0,∞)→ (0,∞) is a C1 convex, nonincreasing function,
∫ α
0

dσ
f(σ) <∞ for any

positive real α, lim
s→0+

f(s) =∞. The initial datum u0 ∈ C0([0, 1]), u0(x) > 0, x ∈ [0, 1].

Under some assumptions, we prove that the solution of a discrete form of the above
problem quenches in a finite time and estimate its numerical quenching time. We also
show that the numerical quenching time in certain cases converges to the real one when
the mesh size tends to zero. Finally, we give some numerical experiments to illustrate
our analysis.
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1. Introduction

In this paper, we address the following initial-boundary value problem for a semilinear heat
equation of the form

ut(x, t) = uxx(x, t)− f(u(1/2, t)), (x, t) ∈ (0, 1)× (0, T ), (1.1)

ux(0, t) = 0, ux(1, t) = 0, t ∈ (0, T ), (1.2)

u(x, 0) = u0(x), x ∈ [0, 1], (1.3)
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where f : (0,∞) → (0,∞) is a C1 convex, nonincreasing function,
∫ α

0
dσ
f(σ)

< ∞ for any

positive real α, lim
s→0+

f(s) =∞. The initial datum u0 ∈ C0([0, 1]), u0(x) > 0, x ∈ [0, 1],

u
′

0(x) < 0, x ∈ (0, 1/2), u
′′

0(x)− f(u0(1/2)) < 0, x ∈ (0, 1), (1.4)

u
′

0(0) = 0, u
′

0(1) = 0. (1.5)

The problem describes in (1.1)–(1.3) models the temperature distribution of a large number
of physical phenomena from physics, chemistry and biology, and its particularity is that it
represents a model in physical phenomena where the reaction is driven by the temperature
at a single site. This kind of phenomena is observed in biological systems and in chemical
reaction diffusion processes in which the reaction takes place only at some local sites. For
instance, the above model is appropriate to describe:

(i) the influence of defect structures on a catalytic surface;
(ii) the temperature in a solid-fuel combustion scenario where the heat that is input into

the system is localized, say as in a laser focused on one spot in the domain;
(iii) chemical reaction-diffusion processes in which, due to the effect of the catalyst, the

reaction takes place only at a single site;
(iv) the ignition of a combustible medium with damping, where either a heated wire or

a pair of small electrodes supplies a large amount of energy to every confined area.
For more physical motivation see [3, 4, 15]. Here, the interval (0, T ) is the maximal time

interval on which umin(t) is positive, where

umin(t) = min
06x61

u(x, t).

The time T may be finite or infinite. When T is infinite, then we say that the solution u
exists globally. When T is finite, then the solution u develops a singularity in a finite time,
namely

lim
t→T

umin(t) = 0.

In this last case, we say that the solution u quenches in a finite time and the time T is called
the quenching time of the solution u. In this paper, we are interested in the numerical study
of the phenomenon of quenching for localized semilinear heat equations. We start with the
construction of an adaptive scheme as follows. Let I be a positive integer, and let h = 1/I.
Define the grid xi = ih, 0 6 i 6 I, and approximate the solution u of the problem (1.1)–(1.3)

by the solution U
(n)
h = (U

(n)
0 , · · · , U (n)

I )> of the following discrete equations:

δtU
(n)
i = δ2U

(n)
i − f(U

(n)
k ), 0 6 i 6 I, (1.6)

U
(0)
i = ϕi > 0, 0 6 i 6 I, (1.7)

where n > 0, k is the integer part of I/2,

δ2U
(n)
i =


(2U

(n)
1 − 2U

(n)
0 )/h2, i = 0,

(U
(n)
i+1 − 2U

(n)
i + U

(n)
i−1)/h2, 1 6 i 6 I − 1,

(2U
(n)
I−1 − 2U

(n)
I )/h2, i = I,
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δtU
(n)
i =

U
(n+1)
i − U (n)

i

∆tn
, 0 6 i 6 I,

ϕi = ϕI−i, 0 6 i 6 I, δ+ϕi 6 0, 0 6 i 6 k − 1,

δ+ϕi =
ϕi+1 − ϕi

h
.

In order to permit the discrete solution to reproduce the properties of the continuous one
when the time t approaches the quenching time T , we need to adapt the size of the time
step so that we take

∆tn = min

{
(1− τ)h2

3
,
τU

(n)
hmin

f(U
(n)
hmin)

}
, (1.8)

with τ ∈ (0, 1), where U
(n)
hmin = min

06i6I
U

(n)
i .

Let us notice that the restriction on the time step ensures the positivity of the discrete
solution.

To facilitate our discussion, we need to define the notion of numerical quenching.

Definition 1.1. We say that the solution U
(n)
h of the explicit scheme quenches in a finite

time if lim
n→∞

U
(n)
hmin = 0, and the series

∑∞
n=0 ∆tn converges. The quantity

∑∞
n=0 ∆tn is called

the numerical quenching time of the discrete solution.

The theoretical study of quenching of solutions for localized semilinear heat equations
has been the subject of investigations of many authors (see [8, 9], and the references therein).
Under the assumptions given in the introduction of the present paper, by standard methods,
it is not hard to prove the local in time existence and uniqueness of the solution u of (1.1)–
(1.3) (see [2, 8, 9, 16]). In addition, the authors proved that the solution u of (1.1)–(1.3)
quenches in a finite time, and its quenching time is estimated (see, [8, 9]). An interesting
question about the phenomenon of quenching is the determination of the quenching time.
Theoretically, in most of the cases, it is impossible to get the real quenching time. However,
numerically, it is possible to obtain good approximations of the real quenching time in certain
situations. The objective of the numerical method is to propose an algorithm which permits
the determination of an approximation of the real quenching time. In the present paper, we
are interested in the numerical study using the discrete form of (1.1)–(1.3) defined in (1.6),
(1.7). We give some assumptions under which the solution of the discrete problem quenches
in a finite time and estimate its numerical quenching time. We also show that the numerical
quenching time converges to the theoretical one when the mesh size goes to zero. Recently,
in [13], Nabongo and Boni obtained an analogous result considering a semidiscrete scheme.
Previously, some authors used discrete schemes to study the phenomenon of quenching.
However, only the case where the reaction term f(u(1/2, t)) is replaced by f(u(x, t)) was
taken into account (see [12]). Our paper is written in the following manner. In the next
section, we prove some results about the discrete maximum principle for localized parabolic
problems. In the third section, we prove that the solution of the discrete problem quenches
in a finite time and estimate its numerical quenching time. In the fourth section, we give a
result about the convergence of numerical quenching times in some cases where the quenching
occurs. Finally, in the last section, we give some numerical results to illustrate our analysis.
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2. Properties of the discrete scheme

In this section, we give some lemmas about the discrete maximum principle for localized
parabolic problems and reveal certain properties concerning the discrete solution.

The following lemma is a discrete form of the maximum principle for localized parabolic
problems.

Lemma 2.1. Let a(n) and V
(n)
h be two sequences such that a(n) is nonnegative, and

δtV
(n)
i − δ2V

(n)
i − a(n)V

(n)
k > 0, 0 6 i 6 I, n > 0, (2.1)

V
(0)
i > 0, 0 6 i 6 I. (2.2)

Then, we have V
(n)
i > 0, 0 6 i 6 I, n > 0, when ∆tn 6 h2/2.

Proof. A straightforward computation shows that

V
(n+1)

0 > 2
∆tn
h2

V
(n)

1 +

(
1− 2

∆tn
h2

)
V

(n)
0 + ∆tna

(n)V
(n)
k ,

V
(n+1)
i >

∆tn
h2

V
(n)
i−1 +

(
1− 2

∆tn
h2

)
V

(n)
i +

∆tn
h2

V
(n)
i+1 + ∆tna

(n)V
(n)
k , 1 6 i 6 I − 1,

V
(n+1)
I > 2

∆tn
h2

V
(n)
I−1 +

(
1− 2

∆tn
h2

)
V

(n)
I + ∆tna

(n)V
(n)
k .

If V
(n)
h > 0, then using an argument of recursion, we easily see that V

(n+1)
h > 0. This

completes the proof. �
An immediate consequence of the above result is the following comparison lemma. Its

proof is straightforward.

Lemma 2.2. Let V
(n)
h , W

(n)
h and a(n) be three sequences such that a(n) is nonnegative,

and

δtV
(n)
i − δ2V

(n)
i − a(n)V

(n)
k 6 δtW

(n)
i − δ2W

(n)
i − a(n)W

(n)
k ,

0 6 i 6 I, n > 0,

V
(0)
i 6 W

(0)
i , 0 6 i 6 I.

Then, we have V
(n)
i 6 W

(n)
i , 0 6 i 6 I, n > 0 when ∆tn 6 h2/2.

The lemma below reveals some properties of the discrete solution.

Lemma 2.3. The discrete solution U
(n)
h of (1.6), (1.7) obeys the following relations:

U
(n)
i = U

(n)
I−i, 0 6 i 6 I, δ+U

(n)
i 6 0, 0 6 i 6 k − 1, n > 0. (2.3)
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Proof. Introduce the vector V
(n)
h defined as follows:

V
(n)
i = U

(n)
i − U

(n)
I−i, 0 6 i 6 I, n > 0.

A routine calculation reveals that

V
(n+1)

0 = 2
∆tn
h2

V
(n)

1 +

(
1− 2

∆tn
h2

)
V

(n)
0 , n > 0,

V
(n+1)
i =

∆tn
h2

V
(n)
i−1 +

(
1− 2

∆tn
h2

)
V

(n)
i +

∆tn
h2

V
(n)
i+1 , 1 6 i 6 I − 1, n > 0,

V
(n+1)
I = 2

∆tn
h2

V
(n)
I−1 +

(
1− 2

∆tn
h2

)
V

(n)
I , n > 0,

V
(0)
i = 0, 0 6 i 6 I.

Using an argument of recursion, we easily note that V
(n)
h = 0, n > 0, and the first part of

the lemma is proved. In order to prove the second one, we proceed as follows. Set

W
(n)
i = U

(n)
i+1 − U

(n)
i , 0 6 i 6 k − 1.

We remark that

δtW
(n)
0 =

W
(n)
1 − 3W

(n)
0

h2
, n > 0. (2.4)

On the other hand, it is easy to check that U
(n)
k+1 = U

(n)
k if I is odd, and U

(n)
k+1 = U

(n)
k−1 if I is

even. This implies that

δ2W
(n)
k−1 =

{
(−2W

(n)
k−1 +W

(n)
k−2)/h2, if I is odd,

(−3W
(n)
k−1 +W

(n)
k−2)/h2, if I is even.

Obviously

δtW
(n)
i = δ2W

(n)
i , 1 6 i 6 k − 2, n > 0. (2.5)

Making use of the above relations, we arrive at

W
(n+1)
0 =

∆tn
h2

W
(n)
1 +

(
1− 3

∆tn
h2

)
W

(n)
0 , n > 0,

W
(n+1)
i =

∆tn
h2

W
(n)
i−1 +

(
1− 2

∆tn
h2

)
W

(n)
i +

∆tn
h2

W
(n)
i+1, 1 6 i 6 k − 2, n > 0,

W
(n+1)
k−1 =

∆tn
h2

W
(n)
k−2 +

(
1− 3

∆tn
h2

)
W

(n)
k−1, n > 0, if I is even,

W
(n+1)
k−1 =

∆tn
h2

W
(n)
k−2 +

(
1− 2

∆tn
h2

)
W

(n)
k−1, n > 0, if I is odd,

W
(0)
i 6 0, 1 6 i 6 k − 1.

We deduce by induction that

W
(n)
i 6 0, 1 6 i 6 k − 1, n > 0.

This completes the proof. �
The above lemma says that if the initial datum of the discrete solution is symmetric in

space, then the discrete solution also obeys this property. In addition, if the initial datum is
nonincreasing in space, then the discrete solution also verifies this assertion. These properties
imply that the discrete solution attains its minimum at the node xk.
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3. Numerical quenching time

In this section, under some assumptions, we show that the solution of the discrete problem
quenches in a finite time and estimate its numerical quenching time.
We need the following lemmas.

Lemma 3.1. Let a and b be two positive numbers such that b < 1. Then the following
estimate holds:

∞∑
n=0

abn

f(abn)
6

a

f(a)
− 1

ln(b)

a∫
0

dσ

f(σ)
.

Proof. We observe that

∞∫
0

abxdx

f(abx)
=
∞∑
n=0

n+1∫
n

abxdx

f(abx)
>

∞∑
n=0

n+1∫
n

abn+1dx

f(abn+1)
,

because f(s) is nonincreasing for s > 0. We deduce that

∞∫
0

abxdx

f(abx)
>

∞∑
n=0

abn+1

f(abn+1)
= − a

f(a)
+
∞∑
n=0

abn

f(abn)
.

On the other hand, by a change of variables, we see that

∞∫
0

abxdx

f(abx)
= − 1

ln(b)

a∫
0

dσ

f(σ)
,

which implies that
∞∑
n=0

abn

f(abn)
6

a

f(a)
− 1

ln(b)

a∫
0

dσ

f(σ)
.

This completes the proof. �

Lemma 3.2. Let a(n) be a positive sequence. Then we have

δtf(a(n)) > f
′
(a(n))δta

(n), n > 0.

Proof. Apply Taylor’s expansion to obtain

δtf(a(n)) = f
′
(a(n))δta

(n) +
(a(n+1) − a(n))2

2∆tn
f

′′
(c(n)),

where c(n) is an intermediate value between a(n) and a(n+1). Use the fact that a(n) > 0 and
f

′′
(s) > 0 for s > 0 to complete the rest of the proof. �
The statement of our first result on quenching is the following.

Theorem 3.1. Assume that there exists a constant A ∈ (0, 1) such that the initial datum
at (1.7) satisfies

δ2ϕi − f(ϕhmin) 6 −Af(ϕhmin), 0 6 i 6 I. (3.1)



An adaptive scheme to handle the phenomenon of quenching 345

Then the solution U
(n)
h of (1.6), (1.7) quenches in a finite time, and its numerical quenching

time T∆t
h obeys the following estimate:

T∆t
h 6

τϕhmin

f(ϕhmin)
− τ

ln(1− τ ′)

ϕh min∫
0

dσ

f(σ)
,

where

τ
′
= min

{
(1− τ)h2f(ϕhmin)

3ϕhmin

, τ

}
.

Proof. Introduce the vector J
(n)
h defined as follows:

J
(n)
i = δtU

(n)
i + Af(U

(n)
k ), 0 6 i 6 I, n > 0.

A straightforward computation reveals that

δtJ
(n)
i − δ2J

(n)
i = δt(δtU

(n)
i − δ2U

(n)
i ) + Aδtf(U

(n)
k ), 0 6 i 6 I, n > 0.

Taking into account (1.6), we arrive at

δtJ
(n)
i − δ2J

(n)
i = −(1− A)δtf(U

(n)
k ), 0 6 i 6 I, n > 0. (3.2)

The application of Lemma 3.2 renders

δtf(U
(n)
k ) > f

′
(U

(n)
k )δtU

(n)
k , n > 0. (3.3)

Using the expression of J
(n)
h , we see that

δtU
(n)
k = J

(n)
k − Af(U

(n)
k ), n > 0. (3.4)

We infer from (3.2), (3.3) and (3.4) that

δtJ
(n)
i − δ2J

(n)
i 6−(1− A)f

′
(U

(n)
k )J

(n)
k + (1− A)Af

′
(U

(n)
k )f(U

(n)
k ), 06 i6I − 1, n>0,

which implies that

δtJ
(n)
i − δ2J

(n)
i 6 −(1− A)f

′
(U

(n)
k )J

(n)
k , 0 6 i 6 I, n > 0, (3.5)

because f(s) is nonincreasing for s > 0. We know by virtue of the definition of the number

k that U
(0)
k = ϕhmin, and according to (3.1), we easily see that

J
(0)
i = δ2ϕi − f(ϕhmin) + Af(ϕhmin) 6 0, 0 6 i 6 I.

It follows from Lemma 2.1 that J
(n)
h 6 0, n > 0, or equivalently

U
(n+1)
i 6 U

(n)
i − A∆tnf(U

(n)
k ), 0 6 i 6 I, n > 0. (3.6)

Invoking Lemma 2.3, we know that U
(n)
k = U

(n)
hmin. Replace i by k in (3.6) to obtain

U
(n+1)
k 6 U

(n)
hmin − A∆tnf(U

(n)
hmin), n > 0,
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which implies that

U
(n+1)
hmin 6 U

(n)
hmin − A∆tnf(U

(n)
hmin), n > 0. (3.7)

We note that

A∆tn
f(U

(n)
hmin)

U
(n)
hmin

= Amin{(1− τ)h2f(U
(n)
hmin

3U
(n)
hmin

), τ}. (3.8)

Thanks to (3.7), we get U
(n+1)
hmin 6 U

(n)
hmin, n > 0, and by induction, we see that U

(n)
hmin 6 ϕhmin,

n > 0. We infer from (3.8) that

A∆tn
f(U

(n)
hmin)

U
(n)
hmin

= Amin

{
(1− τ)h2f(ϕhmin)

3ϕhmin

, τ

}
= τ

′
.

Consequently, making use of (3.7), we derive the following estimate:

U
(n+1)
hmin 6 U

(n)
hmin(1− τ ′

), n > 0. (3.9)

Using an argument of recursion, we obtain

U
(n)
hmin 6 U

(0)
hmin(1− τ ′

)n = ϕhmin(1− τ ′
)n, n > 0. (3.10)

This implies that U
(n)
hmin goes to zero as n approaches infinity. Now, let us estimate the

numerical quenching time. The restriction on the time step and (3.10) allow us to write

∞∑
n=0

∆tn 6 τ
∞∑
n=0

ϕhmin(1− τ ′
)n

f(ϕhmin(1− τ ′)n)
.

Invoking Lemma 3.1, the above estimate becomes

∞∑
n=0

∆tn 6
τϕhmin

f(ϕhmin)
− τ

ln(1− τ ′)

ϕh min∫
0

dσ

f(σ)
.

Use the fact that the quantity on the right hand side of the above inequality is finite to
complete the rest of the proof. �

Remark 3.1. Using (3.9), we deduce by induction that

U
(n)
hmin 6 U

(q)
hmin(1− τ ′

)n−q, n > q. (3.11)

Thanks to (3.11), the restriction on the time step leads us to

T∆t
h − tq =

∞∑
n=q

∆tn 6
∞∑
n=q

τU
(q)
hmin(1− τ ′

)n−q

f(U
(q)
hmin(1− τ ′)n−q)

.

It follows from Lemma 3.1 that

T∆t
h − tq 6

τU
(q)
hmin

f(U
(q)
hmin)

− τ

ln(1− τ ′)

U
(q)
h min∫
0

dσ

f(σ)
.
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Apply Taylor’s expression to obtain ln(1− τ ′) = −τ ′ + o(τ ′), which implies that

− τ

ln(1− τ ′)
=

τ

τ ′(1 + o(1))
.

If we pick τ = h2, then we note that

τ
′

τ
= min

{
(1− h2)f(ϕhmin)

3ϕhmin

, 1

}
.

This implies −τ/ln(1− τ ′) = O(1) with the choice τ = h2.

In the sequel, we choose τ = h2.

4. Convergence of the numerical quenching time

In this section, under some conditions, we show that the discrete solution quenches in a finite
time and, its numerical quenching time converges to the real one when the mesh size goes
to zero. In order to prove this result, we firstly show that the discrete solution approaches
the continuous one on any interval [0, 1]× [0, T − τ ] with τ ∈ (0, T ) as the parameter h goes
to zero. We denote by

uh(t) = (u(x0, t), . . . , u(xI , t))
>.

The result on the convergence of the discrete solution to the theoretical one is stated in the
following theorem.

Theorem 4.1. Suppose that the problem (1.1)–(1.3) has a solution u ∈ C4,2([0, 1] ×
[0, T − τ ]) with τ ∈ (0, T ) such that mint∈[0,T−τ ] umin(t) = ρ > 0. Assume that the initial
datum at (1.7) satisfies

‖ϕh − uh(0)‖∞ = o(1) as h→ 0. (4.1)

Then the problem (1.6), (1.7) admits a unique solution U
(n)
h for h sufficiently small, 0 6 n 6

J , and the following relation holds:

sup
06n6J

‖U (n)
h − uh(tn)‖∞ = O(‖ϕh − uh(0)‖∞ + h2) as h→ 0,

where J is any quantity satisfying the inequality
∑J−1

j=0 ∆tj 6 T − τ and tn =
∑n−1

j=0 ∆tj.

Proof. For each h, the problem (1.6), (1.7) has a solution U
(n)
h . Let N 6 J be the greatest

value of n such that

‖U (n)
h − uh(tn)‖∞ <

ρ

2
for n < N. (4.2)

In view of the condition (4.1), we note that N > 1 when h is small enough. The application
of the triangle inequality gives

U
(n)
hmin > uhmin(tn)− ‖U (n)

h − uh(tn)‖∞ > ρ− ρ

2
=
ρ

2
for n < N. (4.3)

Use Taylor’s expansion to obtain

δtu(xi, tn)− δ2u(xi, tn) + f(u(xk, tn))=−h
2

12
uxxxx(x̃i, tn) +

∆tn
2
utt(xi, t̃n), 06 i6I, n<N.
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Let e
(n)
h = U

(n)
h − uh(tn) be the error of discretization. From the mean value theorem we get

δte
(n)
i − δ2e

(n)
i + f

′
(ξ

(n)
k )e

(n)
k =

h2

12
uxxxx(x̃i, tn)− ∆tn

2
utt(xi, t̃n), 0 6 i 6 I, n < N,

where ξ
(n)
k is an intermediate value between u(xk, tn) and U

(n)
k . Since uxxxx(x, t), utt(x, t) are

bounded and ∆tn = O(h2), then there exists a positive constant M such that

δte
(n)
i − δ2e

(n)
i + f

′
(ξ

(n)
k )e

(n)
k 6Mh2, 0 6 i 6 I, n < N. (4.4)

Set L = −f ′
(ρ/2) and introduce the vector V

(n)
h defined as follows:

V
(n)
i = e(L+1)tn(‖ϕh − uh(0)‖∞ +Mh2), 0 6 i 6 I, n < N.

A straightforward computation gives

δtV
(n)
i − δ2V

(n)
i + f

′
(ξ

(n)
k )V

(n)
k > Mh2, 0 6 i 6 I, n < N, (4.5)

V
(0)
i > e

(0)
i , 0 6 i 6 I. (4.6)

It follows from Lemma 2.2 that V
(n)
h > e

(n)
h . In the same way, we also prove that V

(n)
h > −e(n)

h ,
which implies that

‖U (n)
h − uh(tn)‖∞ 6 e(L+1)tn(‖ϕh − uh(0)‖∞ +Mh2), n < N. (4.7)

Let us show that N = J . Suppose that N < J . If we replace n by N in (32) and use (4.2),
we find that

ρ

2
6 ‖U (N)

h − uh(tN)‖∞ 6 e(L+1)T (‖ϕh − uh(0)‖∞ +Mh2).

Since the term on the right hand side of the second inequality goes to zero as h goes to zero,
we deduce that ρ

2
6 0, which is a contradiction and the proof is complete. �

Now we are in a position to prove the main result of this section.

Theorem 4.2. Suppose that the problem (1.1)–(1.3) has a solution u which quenches in
a finite time T such that u ∈ C4,2([0, 1] × [0, T )). Assume that the initial datum at (1.7)
satisfies the condition (4.1).

Under the assumption of Theorem 3.1, the problem (1.6), (1.7) admits a unique solution

U
(n)
h which quenches in a finite time T∆t

h , and the following relation holds:

lim
h→0

T∆t
h = T.

Proof. We know from Remark 3.1 that −τ/ln(1− τ ′
) is bounded. Letting 0 < ε < T/2,

there exists a positive constant R such that

τR

f(R)
− τ

ln(1− τ ′)

R∫
0

dσ

f(σ)
<
ε

2
. (4.8)

Since u quenches at the time T , then we observe that there exist T0 ∈ (T − ε/2, T ) and
h0(ε) > 0 such that 0 < uhmin(t) < R/2 for t ∈ [T0, T ), h 6 h0(ε). Let q be a positive integer
such that tq =

∑q−1
n=0 ∆tn ∈ [T0, T ). Invoking Theorem 4.1, we see that the problem (1.6),
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(1.7) has a unique solution U
(n)
h which obeys ‖U (n)

h − uh(tn)‖∞ < R/2 for n 6 q, h 6 h0(ε).
This implies that

U
(q)
hmin 6 uhmin(tq) + ‖U (q)

h − uh(tq)‖∞ 6
R

2
+
R

2
= R, h 6 h0(ε). (4.9)

The application of Theorem 3.1 shows that U
(n)
h quenches at the time T∆t

h . It follows from
Remark 3.1 and (4.8) that

|T∆t
h − tq| 6

τU
(q)
hmin

f(U
(q)
hmin)

− τ

ln(1− τ ′)

U
(q)
h min∫
0

dσ

f(σ)
6
ε

2
, (4.10)

because U
(q)
hmin 6 R for h 6 h0(ε). We deduce that for h 6 h0(ε),

|T − T∆t
h | 6 |T − tq|+ |tq − T∆t

h | 6
ε

2
+
ε

2
= ε,

and the proof is complete. �

5. Numerical results

In this section, we give some computational experiments to illustrate our analysis. Firstly,
we take the explicit scheme defined in (1.6), (1.7). Secondly, we use the implicit scheme
below

U
(n+1)
i − U (n)

i

∆tn
= δ2U

(n+1)
i − f(U

(n)
k )U

(n+1)
i

U
(n)
i

, 0 6 i 6 I,

U
(0)
i = ϕi, 0 6 i 6 I,

where n > 0. In both cases, we choose ϕi = [2 + ε(sin(iπh))2]/4 with ε ∈ (0, 1). As in the
case of the explicit scheme, here we pick

∆tn =
τU

(n)
hmin

f(U
(n)
hmin)

.

Let us notice that for the above implicit scheme, the existence and positivity of the discrete
solution are also guaranteed using standard methods (see [1]).

In the following tables, in rows, we present the numerical quenching times, the numbers of
iterations, the CPU times and the orders of the approximations corresponding to meshes of
16, 32, 64, 128. We take for the numerical quenching time tn =

∑n−1
j=0 ∆tj which is computed

at the first time when
|tn+1 − tn| 6 10−16.

The order (s) of the method is computed from

s =
log((T4h − T2h)/(T2h − Th))

log(2)
.

The results of numerical experiments for f(U
(n)
k ) = (U

(n)
k )−1 are given in the Tables 5.1–

5.6.
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Remark 5.1. If we consider the problem (1.1)–(1.3) in the case where u0(x) = 2/4, then
it is not hard to see that the quenching time of the solution u is the same as the one of the
solution α(t) of the following differential equation α′(t) = α−1(t), t > 0, α(0) = 2/4. A
routine computation reveals that the value of the quenching time of α(t) is equal to 0.125.
We observe from Tables 5.1–5.6 that when ε diminishes, then the numerical quenching time
goes to 0.125.

T a b l e 5.1. Numerical quenching times,
numbers of iterations, CPU times (sec-
onds), and orders of the approximations
obtained with the explicit Euler method,

ε = 1

T a b l e 5.2. Numerical quenching times,
numbers of iterations, CPU times (sec-
onds), and orders of the approximations
obtained with the implicit Euler method,

ε = 1

I tn n CPU time s

16 0.200341 100853 61 —
32 0.200303 216090 185 —
64 0.200294 538064 852 2.08
128 0.200292 1280592 5995 2.17

I tn n CPU time s

16 0.201264 119774 101 —
32 0.200537 225439 383 —
64 0.200356 561343 1765 2.01
128 0.200311 1335996 12420 2.01

T a b l e 5.3. Numerical quenching times,
numbers of iterations, CPU times (sec-
onds), and orders of the approximations
obtained with the explicit Euler method,

ε = 1/100

T a b l e 5.4. Numerical quenching times,
numbers of iterations, CPU times (sec-
onds), and orders of the approximations
obtained with the implicit Euler method,

ε = 1/100

I tn n CPU time s

16 0.125939 22501 13.6 —
32 0.125758 52704 44 —
64 0.125713 131511 203 2.01
128 0.125702 315627 1336 2.03

I tn n CPU time s

16 0.126431 23638 21.8 —
32 0.125882 53293 88 —
64 0.125744 131814 846 1.99
128 0.125709 316354 17356 1.98

T a b l e 5.5. Numerical quenching times,
numbers of iterations, CPU times (sec-
onds), and orders of the approximations
obtained with the explicit Euler method,

ε = 1/10000

T a b l e 5.6. Numerical quenching times,
numbers of iterations, CPU times (sec-
onds), and orders of the approximations
obtained with the implicit Euler method,

ε = 1/10000

I tn n CPU time s

16 0.125251 3920 3.4 —
32 0.125068 14618 12.1 —
64 0.125022 54865 207 1.99
128 0.125011 203000 11921 2.06

I tn n CPU time s

16 0.125739 3943 4.2 —
32 0.125190 14636 24.3 —
64 0.125052 54881 344 1.99
128 0.125018 203059 15492 2.02

In the following, we also give some plots to illustrate our analysis. In Figs. 5.1–5.6,
we can appreciate that the discrete solution quenches globally. This implies that in this
case the numerical quenching set is the whole domain [0, 1]. It is worth noting that the
fact that the discrete solution quenches globally in a finite time can be remarked if one
plots the approximation of umin(t) against t and the approximation of ‖u(·, t)‖∞ against
t. For instance, in the case where ε = 1/100, we observe from Figs. 5.7–5.10 that the
trajectories of the above curves are the same. In the case where ε = 1/100, it is also important
to notice that the trajectories of the approximation of umin(t) against t, the approximation of
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F i g. 5.1. Evolution of the discrete solution with the
Euler explicit scheme: I = 16, ε = 0

F i g. 5.2. Evolution of the discrete solution with the
Euler implicit scheme: I = 16, ε = 0

F i g. 5.3. Evolution of the discrete solution with the
Euler explicit scheme: I = 16, ε = 1/100

F i g. 5.4. Evolution of the discrete solution with the
Euler implicit scheme: I = 16, ε = 1/100

F i g. 5.5. Evolution of the discrete solution with the
Euler explicit scheme: I = 16, ε = 1/10000

F i g. 5.6. Evolution of the discrete solution with the
Euler implicit scheme: I = 16, ε = 1/10000
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F i g. 5.7. Approximation of umin(t) against t with
the explicit scheme: I = 16, ε = 1/100

F i g. 5.8. Approximation of umin(t) against t with
the implicit scheme: I = 16, ε = 1/100
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F i g. 5.9. Approximation of ‖u(·, t)‖∞ against t with
the implicit scheme: I = 16, ε = 1/100

F i g. 5.10. Approximation of ‖u(·, t)‖∞ against t
with the implicit scheme: I = 16, ε = 1/100
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‖u(·, t)‖∞ against t and (T − t)1/2 against t are practically the same, here T = 0.125 (see

Fig. 5.11). This allows us to conclude that U
(n)
i ∼ (T − t)1/2, 0 6 i 6 I, which gives us some

information about the quenching rate. Let us remark that, with our hypotheses, it is well
known that the theoretical solution quenches globally in a finite time, and the quenching is
complete (see [10, 16, 17]).
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