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SOME REMARKS ON RESIDUAL-BASED STABILISATION

OF INF-SUP STABLE DISCRETISATIONS OF THE

GENERALISED OSEEN PROBLEM

G. MATTHIES1, G. LUBE2, AND L. RÖHE2

Abstract — We consider residual-based stabilised finite element methods for the gen-
eralised Oseen problem. The unique solvability based on a modified stability condition
and an error estimate are proved for inf-sup stable discretisations of velocity and pres-
sure. The analysis highlights the role of an additional stabilisation of the incompress-
ibility constraint. It turns out that the stabilisation terms of the streamline-diffusion
(SUPG) type play a less important role. In particular, there exists a conditional stabil-
ity problem of the SUPG stabilisation if two relevant problem parameters tend to zero.
The analysis extends a recent result to general shape-regular meshes and to discon-
tinuous pressure interpolation. Some numerical observations support the theoretical
results.
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1. Introduction

Let us consider the time-dependent, incompressible Navier — Stokes problem with homoge-
neous Dirichlet boundary conditions

∂tu− ν4u+ (u · ∇)u+∇p = f̃ in Ω× (0, T ),

div u = 0 in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ],

u|t=0 = u0 in Ω, (1.1)

for the velocity u and the pressure p in the space-time cylinder Ω× (0, T ) with a polyhedral
domain Ω ⊂ Rd, d = 2, 3, and a time T > 0. The given source term is denoted by f̃ . A
typical algorithmic approach for solving (1.1) is to first semidiscretise in time and then apply
a fixed-point iteration within each time step. This leads in each step of this iteration to an
auxiliary Oseen-type problem

LO(b;u, p) := −ν4u+ (b · ∇)u+ σu+∇p = f in Ω,
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div u = 0 in Ω,

u = 0 on ∂Ω. (1.2)

Also, the iterative solution of the steady-state Navier — Stokes equations may lead to prob-
lems of type (1.2) with σ = 0 if a fixed-point iteration is applied.

The basic Galerkin finite element method (FEM) for (1.2) may suffer from two prob-
lems: the dominating advection (and reaction) in the case of 0 < ν � ‖b‖L∞(Ω), and/or the
violation of the discrete inf-sup (or Babuška — Brezzi) stability condition for the velocity
and pressure approximations. The streamline-upwind/Petrov — Galerkin method (SUPG)
introduced in [4] and the pressure-stabilisation/Petrov — Galerkin method (PSPG) intro-
duced in [10,11], opened the possibility of treating both problems within a unique framework
using rather arbitrary FE approximations of velocity-pressure, including equal-order pairs.
Additionally to the Galerkin part, the elementwise residual LO(b;u, p)− f is tested against
the (weighted) nonsymmetric SUPG/PSPG parts (b ·∇)v+∇q of LO(b; v, q). An additional
elementwise stabilisation of the divergence constraint div u = 0 in (1.2), henceforth denoted
as grad-div stabilisation, is important for the robustness if 0 < ν � ‖b‖L∞(Ω) (see [6] for the
analysis in the case of equal-order interpolation).

For a unified a priori analysis of classical residual-based stabilisation (RBS) techniques,
we refer to [13]. We emphasize that the design of the stabilisation parameters for equal-
order interpolation significantly differs from that for inf-sup stable pairs. In particular, the
grad-div stabilisation is much more important in the advection-dominated case if an inf-sup
stable interpolation is applied (see also [7, 17]).

One of the critical aspects of these RBS techniques for incompressible flows is the strong
coupling between velocity and pressure in the stabilising terms. Several attempts have
been made to relax this problem. In particular, we mention the promising idea of weakly-
consistent, symmetric stabilisation techniques (e.g., via edge stabilisation or local projection)
(see [3] for an overview).

Within the framework of strongly consistent RBS techniques, one natural idea is to skip
the PSPG term in the case of inf-sup stable discretisations of velocity and pressure. We
considered this possibility in [7]. The analysis of the so-called reduced stabilised scheme
is so far restricted to the quasi-uniform case and to continuous pressure approximations.
Moreover, in [7] there remained the question whether the analysis is optimal for the case
ν2 +σ2 → +0. In particular, within our numerical simulations on equidistant meshes we did
not observe numerical instabilities of the scheme.

The goal of this paper is to refine the analysis in [7] for the reduced stabilised scheme and
to relax the assumptions of quasi-uniform meshes and continuous pressure discretisations. A
technical ingredient is the application of quasi-local interpolation operators preserving the
discrete divergence [9]. For brevity, we consider only conforming FEM. The main results are
as follows:

• We prove a conditional inf-sup stability estimate of the scheme which requires a sim-
ilar upper bound of the SUPG-stabilisation parameter as in [7]. Numerical tests on
slightly distorted quasi-uniform meshes show that such upper bound may really exist.
Moreover, we derive an a priori error estimate in terms of the stabilisation parameters.

• A discussion of the grad-div- and SUPG-stabilisation parameters, together with some
numerical results, highlights the role of the additional stabilisation of the incompress-
ibility constraint. Finally, it turns out that the SUPG-stabilisation is often less essen-
tial.
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The paper is organised as follows. In Section 2, we introduce notation and the stabilised
Galerkin discretisation of the Oseen problem. Then, we analyse the method in Section 3
and discuss the results in Section 4. Finally, in Section 5 we give a summary and consider
some open problems.

2. Notation. The discrete problem

Let Ω ⊂ Rd, d = 2, 3 be a bounded polygonal or polyhedral domain. For a subdomain
G ⊂ Ω, the usual Sobolev spaces Wm,p(G) with norm ‖ · ‖m,p,G and seminorm | · |m,p,G are
used. In the case p = 2, we have Hm(G) = Wm,2(G) and the index p will be omitted. The L2

inner product on G is denoted by (·, ·)G. Note that the index G will be omitted for G = Ω.
This notation of norms, seminorms, and inner products is also used for the vector-valued

and tensor-valued case. We set X :=
(
H1

0 (Ω)
)d

, M := L2
0(Ω) :=

{
q ∈ L2(Ω) : (q, 1) = 0

}
and H(div ,Ω) :=

{
v ∈ (L2(Ω))d : div v ∈ L2(Ω)

}
.

The generalised Oseen equations with homogeneous Dirichlet boundary conditions are
given by problem (1.2) with constants ν > 0, σ > 0 and a known convection field

b ∈ H(div ,Ω) ∩
(
L∞(Ω)

)d
with div b = 0. For u, v ∈ X, p, q ∈ M , the bilinear forms

A, b and linear form L are defined by

A
(
(u, p), (v, q)

)
:= ν(∇u,∇v) +

(
(b · ∇)u, v

)
+ σ(u, v)− b(v, p) + b(u, q),

b(v, q) := (q, div v),

L
(
(v, q)

)
:= (f, v).

Note that the following integration by parts(
(b · ∇)v, w

)
= −

(
(b · ∇)w, v

)
(2.1)

holds true for all v, w ∈ X due to div b = 0.

A weak formulation of the generalised Oseen equations (1.2) reads:

Find (u, p) ∈ X ×M such that

A
(
(u, p), (v, q)

)
= L

(
(v, q)

)
∀(v, q) ∈ X ×M. (2.2)

Let {Th} be a family of shape-regular and exact triangulations of the domain Ω such that

Ω =
⋃
K∈Th

K

holds true for all triangulations Th.
Let Xh be a conforming finite element space based on Th for approximating the veloc-

ity. The space Mh for approximating the pressure may consist of continuous or generally
discontinuous functions. We are interested in inf-sup stable discretisations, i.e., the condition

inf
qh∈Mh

sup
vh∈Xh

(div vh, qh)

|vh|1 ‖qh‖0

> β0 > 0 (2.3)

is valid for all Th with a positive constant β0 which is independent of the mesh parame-
ter h. Examples for such pairs are the Taylor — Hood family Pk/Pk−1, k > 2, on simplices
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and Qk/Qk−1, k > 2, on quadrilaterals and hexahedra (see [8] and the references therein).
Furthermore, Qk/P

disc
k−1, k > 2 fulfils the inf-sup condition on quadrilaterals and hexahedra

(see [8, 16]).
We assume that for all cells K ∈ Th the following inverse inequalities

‖4vh‖0,K 6 µh−1
K ‖∇vh‖0,K ∀vh ∈ Xh,

1√
d
‖div vh‖0,K 6 ‖∇vh‖0,K 6 µh−1

K ‖vh‖0,K ∀vh ∈ Xh,

‖∇qh‖0,K 6 µh−1
K ‖qh‖0,K ∀qh ∈Mh (2.4)

are valid with a constant µ which depends only on the shape-regularity parameter of the
family of triangulations.

We assume that the discrete velocity space Xh is based on finite elements of order k.
One can think of the case where Xh consists of all continuous functions whose restrictions
to a single cell K of the triangulation Th belong to Pk (for simplicial cells) or to Qk (for
quadrilateral and hexahedral cells). The discrete pressure space Mh is assumed to be based
on finite elements of order ` > 1. This means that the restriction of a function from Mh

to a cell K ∈ Th belongs to P` or Q`. Note that P` can be used also on quadrilaterals and
hexahedra if no continuity is required in Mh.

The standard finite element interpolation operator Jh : M → Mh fulfils for all K ∈ Th
the estimate

|q − Jhq|m,K 6 Ch`+1−m
K ‖q‖`+1,K ∀q ∈ H`+1(Ω) ∩M, m = 0, . . . , `+ 1,

where the constant C is independent of h (see [5]). We choose from [9] for the velocity the
quasi-local interpolation operator which preserves the discrete divergence. Hence, we have
for the interpolation operator Ih : X → Xh the estimate

|v − Ihv|m,K 6 Chk+1−m
K ‖v‖k+1,ω(K) ∀v ∈

(
Hk+1(Ω)

)d ∩X, m = 0, . . . , k + 1,

where ω(K) is a suitable neighbourhood of K and C is independent of h (see [9]). Moreover,

(div Ihv, qh) = (div v, qh) ∀qh ∈Mh, ∀v ∈ X (2.5)

holds true.
Using the finite element spaces Xh and Mh, we can formulate the standard Galerkin

discretisation of (2.2) which reads

Find (uh, ph) ∈ Xh ×Mh such that

A
(
(uh, ph), (vh, qh)

)
= L

(
(vh, qh)

)
∀(vh, qh) ∈ Xh ×Mh. (2.6)

In the case of locally dominating convection, one may get solutions of (2.6) with spurious
oscillations which are in general not localised to regions with dominating convection. In
order to stabilise the discrete problem, we introduce a modified bilinear form and a modified
linear form by

AS
(
(u, p), (v, q)

)
:= A

(
(u, p), (v, q)

)
+∑

K∈Th

γK(div u, div v)K +
∑
K∈Th

(
− ν4u+ (b · ∇)u+ σu+∇p, δK(b · ∇)v

)
K
,
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LS
(
(v, q)

)
:= L

(
(v, q)

)
+
∑
K∈Th

(
f, δK(b · ∇)v

)
K

where δK and γK are cell-dependent parameters. A detailed study of the choice of these
parameters will be given later.

The stabilised discrete problem reads:
Find (uh, ph) ∈ Xh ×Mh such that

AS
(
(uh, ph), (vh, qh)

)
= LS

(
(vh, qh)

)
∀(vh, qh) ∈ Xh ×Mh. (2.7)

Since the additional terms inAS and LS vanish in sum for a smooth solution, the stabilised
problem is of the residual type. Hence, we have the Galerkin orthogonality

AS
(
(u− uh, p− ph), (vh, qh)

)
= 0 ∀(vh, qh) ∈ Xh ×Mh (2.8)

where (uh, ph) ∈ Xh ×Mh is the solution of (2.7) and the solution (u, p) ∈ X ×M of (2.2)

satisfies additionally the regularity requirement u ∈
(
H2(Ω)

)d
and p ∈ H1(Ω).

Remark 2.1. It is possible to consider the fully stabilised discrete problem which in-
cludes a PSPG term. In this case, the bilinear form AF and the linear form LF are defined by

AF
(
(uh, ph), (vh, qh)

)
:= AS

(
(uh, ph), (vh, qh)

)
+
∑
K∈Th

(
LO(b;uh, ph), αK∇q

)
K
,

LF
(
(vh, qh)

)
:= LS

(
(vh, qh)

)
+
∑
K∈Th

(
f, αK∇q

)
K
,

where αK is a user-chosen parameter. Using similar techniques as below, corresponding
error estimates and parameter designs can be derived for the fully stabilised scheme (see [13]).
Although the PSPG stabilisation is not needed for inf-sup stable discretisation from the point
of stability, the additional term might improve the accuracy of the pressure approximation.

We introduce the norms

|[v]|2 := ν|v|21 +σ‖v‖2
0 +

∑
K∈Th

γK‖div v‖2
0,K +

∑
K∈Th

δK‖(b ·∇)v‖2
0,K , |||(v, q)|||2 := |[v]|2 +α‖q‖2

0

on X and X ×M , respectively. The positive constant α will be chosen later on in the proof
of Lemma 3.1. The lower and upper bounds are given in (3.9). Furthermore, we set

bK := ‖b‖0,∞,K , b∞ := ‖b‖0,∞.

In this paper, the generic constant C may have different values at different places but it
will be always independent of the mesh size h and the parameter ν.

3. Analysis of the method

3.1. Stability and solvability of the discrete problem. To show that our stabilised
discrete problem (2.7) is uniquely solvable and stable, we will prove for the bilinear form AS
an inf-sup condition on Xh ×Mh where the constant is independent of the mesh size h and
the parameter ν.
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It turns out that our stability analysis requires the upper bound of the SUPG-parameter
δK which is basically dictated by an upper bound of the advective Galerkin term. We define

ϕ :=
√
ν + σC2

F + 2b∞min

(
1√
σ
,
CF√
ν

)
+
√
γd (3.1)

where CF is the Friedrichs constant for Ω and γ := maxK γK . We assume that the stabilisa-
tion parameters fulfil

0 6 γK , 0 6 δK 6 min

(
1

15
min

(
1

σ
,
C2
F

ν

)
,

1

30

h2
Kβ

2
0

µ2ϕ2

)
(3.2)

where µ is the constant from the inverse inequalities (2.4) and β0 the inf-sup constant for
the pair (Xh,Mh) in (2.3).

Lemma 3.1. Let the stabilisation parameters fulfil (3.2). Then, there exists a positive
constant βS independent of the mesh size h and the parameter ν such that

inf
(vh,qh)

sup
(wh,rh)

AS
(
(vh, qh), (wh, rh)

)
|||(vh, qh)||| |||(wh, rh)|||

> βS > 0 (3.3)

holds true where the infimum and supremum are taken over Xh ×Mh.

Proof. Let (vh, qh) be an arbitrary element of Xh ×Mh. During the proof, we will use
the following abbreviations:

X2 :=
∑
K∈Th

δK‖(b · ∇)vh‖2
0,K , Z2 :=

∑
K∈Th

γK‖div vh‖2
0,K ,

Y 2 :=
∑
K∈Th

δK‖ − ν4vh + σvh +∇qh‖2
0,K , B2 := ‖qh‖2

0, A2 := ν|vh|21 + σ‖vh‖2
0,

which give immediately that |[vh]|2 = A2 +X2 + Z2.
The outline of the proof is as follows.
1. We show AS

(
(vh, qh), (vh, qh)

)
> C1 |[vh]|2− δ B2 with constants C1 and δ. The critical

constant δ scales like δK/h
2
K (see (3.5)).

2. We get from the inf-sup condition (2.3) the existence of a function zh ∈ Xh such that
AS
(
(vh, qh), (−zh, 0)

)
> 2

3
β0B

2 − C2 |[vh]|2 with C2 scaling like ϕ2, see (3.7).
3. The function (wh, rh) := (vh, qh) + λ(−zh, 0) ∈ Xh ×Mh with a suitably chosen λ > 0

satisfies AS
(
(vh, qh), (wh, rh)

)
> C3|||(vh, qh)|||2 and |||(wh, rh)||| 6 C4|||(vh, qh)||| which together

result in the assertion of this lemma.

Step 1. Using the definition of the bilinear form AS, we obtain via the Young inequality
and integration by parts (see (2.1))

AS
(
(vh, qh), (vh, qh)

)
> |[vh]|2 −XY > |[vh]|2 −

3

4
X2 − 1

3
Y 2.

The terms will be estimated separately. Exploiting (2.4), (3.2) and ν2/ϕ2 6 1, we get

Y 2 6 2
∑
K∈Th

(δK‖∇qh‖2
0,K + δK‖ − ν4vh + σvh‖2

0,K) 6
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∑
K∈Th

2δKµ
2

h2
K

‖qh‖2
0,K + 4

( ∑
K∈Th

δK
µ2

h2
K

ν2|vh|21,K +
∑
K∈Th

δKσ
2‖vh‖2

0,K

)
6

∑
K∈Th

2δKµ
2

h2
K

‖qh‖2
0,K+4

( ∑
K∈Th

1

30

β2
0

ϕ2
ν2|vh|21,K+

∑
K∈Th

1

15
σ‖vh‖2

0,K

)
6 2 max

K∈Th

(
δKµ

2

h2
K

)
B2+

4

15
A2

(3.4)
where β0 6 1 was applied which is always possible to choose, see (2.3). Hence, we obtain

AS
(
(vh, qh), (vh, qh)

)
>

1

4
|[vh]|2 −

2

3
max
K∈Th

(
δKµ

2

h2
K

)
B2. (3.5)

Step 2. Due to the inf-sup condition (2.3) for (Xh,Mh), there exists zh ∈ Xh such that

|zh|1 = ‖qh‖0 = B, (div zh, qh) > β0 |zh|1 ‖qh‖0 = β0B
2.

We have

AS
(
(vh, qh), (−zh, 0)

)
> β0B

2 −
4∑
i=1

Ti

where

T1 := ν(∇vh,∇zh) + σ(vh, zh)− ((b · ∇)zh, vh), T2 :=
∑
K∈Th

γK(div vh, div zh)K ,

T3 :=
∑
K∈Th

δK(−ν4vh + σvh +∇qh, (b · ∇)zh)K , T4 :=
∑
K∈Th

δK((b · ∇)vh, (b · ∇)zh)K .

These four terms will be estimated individually. Applying the Cauchy — Schwarz inequality,
we obtain

|T1| 6
(
ν|vh|21 + σ‖vh‖2

0

)1/2(
ν|zh|21 + σC2

F |zh|21
)1/2

+
∑
K∈Th

bK‖vh‖0,K |zh|1,K 6

√
ν + σC2

F AB +
∑
K∈Th

bK‖vh‖0,K |zh|1,K .

The last term can be estimated in two ways∑
K∈Th

bK‖vh‖0,K |zh|1,K 6
∑
K∈Th

bK√
σ

(
√
σ‖vh‖0,K)|zh|1,K 6 b∞

1√
σ
AB

or ∑
K∈Th

bK‖vh‖0,K |zh|1,K 6
∑
K∈Th

bK√
ν

(
√
ν‖vh‖0,K)|zh|1,K 6 b∞

CF√
ν
AB.

Hence, we get the estimate

|T1| 6
√
ν + σC2

FAB + b∞min

(
1√
σ
,
CF√
ν

)
AB
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which is governed by the bound of the advective term ((b · ∇)zh, vh). Furthermore, we have

|T2| 6
∑
K∈Th

√
γK‖div vh‖0,K

√
γK‖div zh‖0,K 6 Z

√
γd

( ∑
K∈Th

|zh|21,K
)1/2

=
√
γdZB

and

|T3| 6
( ∑
K∈Th

δK‖ − ν4vh + σvh +∇qh‖2
0,K

)1/2( ∑
K∈Th

δK‖(b · ∇)zh‖2
0,K

)1/2

6

Y

( ∑
K∈Th

δKb
2
K |zh|21,K

)1/2

6

(
max
K∈Th

(
bK
√
δK

))
Y B.

Using (3.2) and (3.4), we obtain Y 2 6 2
30

β2
0

ϕ2B
2 + 4

15
A2 which gives Y 6

√
2
30
β0

ϕ
B + 2√

15
A.

Furthermore, we have

|T3| 6
2√
15

(
max
K∈Th

(
bK
√
δK

))
AB +

√
2

30

β0

ϕ

1

2

1√
15

2b∞min

(
1√
σ
,
CF√
ν

)
B2 6

2√
15

(
max
K∈Th

(
bK
√
δK

))
AB +

1

30
β0B

2.

It remains to bound T4. We obtain

|T4| 6
( ∑
K∈Th

δK‖(b · ∇)vh‖2
0,K

)1/2( ∑
K∈Th

δK‖(b · ∇)zh‖2
0,K

)1/2

6 max
K∈Th

(
bK
√
δK

)
XB.

We proceed with estimating the max-term via the first argument of the min-term in (3.2)

max
K∈Th

(
bK
√
δK

)
6

1√
15
b∞min

(
1√
σ
,
CF√
ν

)
. (3.6)

Note that, due to the upper bound of |T1|, no gain is obtained if the second argument of the
min-term in (3.2) is used. Using (3.6) and the estimates for T1, . . . , T4, we end up with

4∑
i=1

Ti 6
4∑
i=1

|Ti| 6
(√

ν + σC2
F +

17

15
b∞min

(
1√
σ
,
CF√
ν

))
AB+

1√
15
b∞min

(
1√
σ
,
CF√
ν

)
XB +

√
γdZB +

1

30
β0B

2 6 (A+X + Z)ϕB +
1

30
β0B

2.

To summarise, we have

AS
(
(vh, qh), (−zh, 0)

)
> β0B

2 − (A+X + Z)ϕB − 1

30
β0B

2 >

29

30
β0B

2 − 3 · 1
10

β0B
2 − 5

2

ϕ2

β0

(A2 +X2 + Z2) =
2

3
β0B

2 − 5

2

ϕ2

β0

|[vh]|2. (3.7)



376 G. Matthies, G. Lube, and L. Röhe

Step 3. We define (wh, rh) := (vh, qh) + λ(−zh, 0) with λ > 0. Using estimates (3.5)
and (3.7), we obtain

AS
(
(vh, qh), (wh, rh)

)
>

(
1

4
− 5

2

λϕ2

β0

)
|[vh]|2 +

(
2

3

λβ0

α
− 2

3
max
K∈Th

(
δKµ

2

αh2
K

))
αB2.

By choosing λ and α such that

1

4
− 5

2

λϕ2

β0

=
1

30
and

2

3

λβ0

α
− 2

3
max
K∈Th

(
δKµ

2

αh2
K

)
=

1

30
, (3.8)

we derive

λβ0 =
13

150

β2
0

ϕ2
and α =

26

15

β2
0

ϕ2
− 20 max

K∈Th

(
δKµ

2

h2
K

)
.

We can bound α from below and above via (3.2) as follows:

16

15

β2
0

ϕ2
6 α 6

26

15

β2
0

ϕ2
. (3.9)

Our choice of λ and α results in

AS
(
(vh, qh), (wh, rh)

)
>

1

30
|||(vh, qh)|||2.

Finally, we will show that |||(wh, rh)||| 6 C|||(vh, qh)|||. To this end, we start with

|||(wh, rh)||| 6 |||(vh, qh)|||+ λ|||(−zh, 0)|||,

and see that it suffices to estimate |||(−zh, 0)|||. We have

|||(−zh, 0)|||2 = ν|zh|21 + σ‖zh‖2
0 +

∑
K∈Th

γK‖div zh‖2
0,K +

∑
K∈Th

δK‖(b · ∇)zh‖2
0,K 6

∑
K∈Th

(ν + σC2
F + γd+ b2

KδK)|zh|21,K 6 ϕ2B2 6
ϕ2

α
|||(vh, qh)|||2

where we have used (3.6) to bound b2
K δK . Using the above estimate, we obtain

|||(wh, rh)||| 6
(

1 +
λϕ√
α

)
|||(vh, qh)|||.

Exploiting the choice of λ in (3.8) and the lower bound of α in (3.9), we have

Q := 1 +
λϕ√
α
6 1 +

13

150

β0

ϕ2
ϕ

√
15

16

ϕ2

β2
0

= 1 +
13

150

√
15

16

which results in

AS
(
(vh, qh), (wh, rh)

)
>

1

30Q
|||(vh, qh)||||||(wh, rh)|||.

Hence, the inf-sup constant βS := 1/(30Q) is independent of ν and h. �

3.2. Is there a conditional stability problem for the SUPG-parameter? The
condition on the SUPG-parameter according to (3.1), (3.2) in the stability analysis above
gives a strong upper bound. In particular, one obtains δK → 0 in the critical case ν2+σ2 → 0.
This leads to the question whether such conditional stability problem of the method with
respect to the SUPG-stabilisation really exists. The following example of a vortex flow
exemplarily shows that this is indeed the case, although the results do not show the very
strict upper bound for ν2 + σ2 → 0. (For further examples, see Section 4.)
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Example 3.1. The flow and pressure fields

u(x) = (sin(2πx1) cos(2πx2),− cos(2πx1) sin(2πx2))>, p(x) :=
1

4
(cos(4πx1) + cos(4πx2))

solve the Oseen problem (1.2) in Ω = (0, 1)2 with b(x) := u(x), σ = 0, f(x) := 8π2νb(x),
and with inhomogeneous Dirichlet data u(x) = b(x) on ∂Ω. The field u (extended to R2)
has stagnation points of the saddle point type, e.g., around (1

2
, 1

2
). We emphasize that this

flow was considered in [14] (Example 2.3) as a solution of the stationary Euler problem. It
is mentioned there that ”this flow is dynamically instable so that small perturbations result
in very chaotic motion”.

For the numerical simulations, the inf-sup stable Q2/Q1 elements pair is applied on a
sequence of unstructured quasi-uniform, quadrilateral meshes with h ∈ { 1

12
, 1

32
, 1

64
, 1

122
} for

the small viscosity ν = 10−6 and σ = 0.

First, we consider the stabilised problem (2.7) with the SUPG parameter δK = δ0h
2
K and

without grad-div stabilisation, i. e., with γK = 0. In Fig. 3.1 we plot the H1-seminorm and
L2-norm of the discrete solution vs. the scaling parameter δ0 on a relatively small range of
δ0 (sampled at 257 points, equidistantally distributed on the logarithmic scale). One clearly
observes the arising instability of the discrete solution for certain values of δ0 > 20.

F i g. 3.1. H1-seminorm and L2-norm vs. scaling SUPG-parameter δ0 (without grad-div stabilisation) for
Example 3.1 with ν = 10−6, σ = 0 and different values of h

For comparison, we plot in Fig. 3.2 the corresponding results for the SUPG/PSPG scheme
with a common parameter αK = δK = δ0h

2
K (see Remark 2.1) on a much larger range of the

scaling parameter δ0. The results are sampled only at 49 points (equidistantally distributed
on the logarithmic scale) as the discrete problem is coercive on a much larger range of the
SUPG/PSPG-parameter with δK . min{h2

K/ν, 1/σ} (see [13]). Indeed, we observe a robust
behaviour of the H1-seminorm and L2-norm for a large range of δ0. The strongly decreasing
values of the norms for sufficiently large δ0 are due to the excessive numerical diffusion.

Moreover, we present in Fig. 3.3 the corresponding plots for the solution of the sta-
bilised scheme (2.7) with grad-div stabilisation, i.e., with γK ≡ γ0, and without SUPG, i.e.,
with δ0 = 0. We observe that the H1-seminorm and L2-norm of the solution are uniformly
bounded for a wide range of the parameter γ0 (sampled only at 49 points, again equidistan-
tally distributed on the logarithmic scale, as the discrete problem is coercive for arbitrary
γK > 0 and again excessive numerical diffusion for large values of γ0).
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F i g. 3.2. H1-seminorm and L2-norm vs. scaling SUPG/PSPG-parameter δ0 (without grad-div stabilisation)
for Example 3.1 with ν = 10−6, σ = 0 and different values of h

F i g. 3.3. H1-seminorm and L2-norm vs. scaling parameter γ0 of grad-div stabilisation (without SUPG)
for Example 3.1 with ν = 10−6, σ = 0 and different values of h

F i g. 3.4. H1-seminorm and L2-norm vs. scaling SUPG-parameter δ0 (without grad-div stabilisation) for
Example 3.1 with ν = 10−6, h = 1/64 and different values of σ
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Finally, we consider the influence of the parameter σ on the stability of the discrete prob-
lem with SUPG-stabilisation (without grad-div stabilisation). Therefore, we study Example
3.1 for ν = 10−6, h = 1

64
and different values of σ = 10i, i ∈ {−1, 0, 1, 2}. This, together

with the source term f̃(x) := f(x) + σb(x), mimics the behaviour of a simple implicit time
discretisation. In Fig. 3.4, we observe that the H1-seminorm and L2-norm of the velocity
are robust in an increasing range of the scaling parameter δ0 for increasing values of σ. This
is in agreement with the increasing upper bound of δK in (3.2) for increasing values of σ.
Nevertheless, again numerical instabilities are obtained for larger values of δ0. In fact, from
(3.1), (3.2) we observe decreasing upper bound of δK if σC2

F is too large. �

3.3. Preliminary a priori error estimate. First, we will state and prove a continuity
estimate for the bilinear form AS.

Lemma 3.2. Let u ∈
(
Hk+1(Ω)

)d ∩ X and p ∈ H`+1(Ω) ∩ M . Moreover, Ihu is the
interpolant of u which preserves the discrete divergence (see (2.5)) while Jhp is the standard
finite element interpolant of p. Then, for all (wh, rh) ∈ Xh ×Mh, the following estimate
holds true:

AS
(
(u− Ihu, p− Jhp), (wh, rh)

)
|||(wh, rh)|||

6 C

( ∑
K∈Th

[
ν + σ h2

K + γKd+ δKb
2
K +

3 b2
K h

2
K

δK b2
K + ν + σ h2

K

]
×

h2k
K ‖u‖2

k+1,ω(K) +
∑
K∈Th

[
δK +

2dh2
K

ν + γKd

]
h2`
K‖p‖2

`+1,K

)1/2

.

Proof. Let w := u−Ihu and r := p−Jhp. As the following estimate of AS
(
(w, r), (wh, rh)

)
is straightforward, we only emphasize some important aspects. By separation of symmetric
and nonsymmetric terms and using the definitions of |[w]| and |||(wh, rh)|||, we obtain

AS
(
(w, r), (wh, rh) 6 |[w]||||(wh, rh)|||+

∣∣∣∣ ∑
K∈Th

δK
(
− ν4w + σw +∇r, (b · ∇)wh

)
K

∣∣∣∣+
∣∣(rh, divw)

∣∣+
∣∣(r, divwh)

∣∣+
∣∣((b · ∇)w,wh

)∣∣.
The estimate for the interpolation is

|[w]| 6 C

( ∑
K∈Th

[(
ν + σ h2

K + δK b
2
K + γKd

)
h2k
K ‖u‖2

k+1,ω(K)

])1/2

.

Now, the remaining terms are estimated separately. We obtain∣∣∣∣ ∑
K∈Th

δK
(
− ν4w + σw +∇r, (b · ∇)wh

)
K

∣∣∣∣ 6
C

( ∑
K∈Th

[
(ν + σh2

K)h2k
K ‖u‖2

k+1,ω(K) + δKh
2`
K‖p‖2

`+1,K

])1/2

|||(wh, rh)|||

where we have used the fact that νδK 6 Ch2
K and δKσ 6 C by (3.1), (3.2). Since the

interpolation operator Ih preserves the discrete divergence (see (2.5)) we have (rh, divw) = 0.
Note that this term is in general nonzero for standard interpolation operators. An estimate



380 G. Matthies, G. Lube, and L. Röhe

would involve a negative power of α causing additional difficulties. Please note that also the
Ritz projection of the Stokes problem would not be sufficient.

The term |(r, divwh)| can be handled in two ways

∣∣(r, divwh)
∣∣ 6 ∑

K∈Th

γ
−1/2
K ‖r‖0,K

√
γK‖divwh‖0,K 6 C

( ∑
K∈Th

γ−1
K h2`+2

K ‖p‖2
`+1,K

)1/2

|||(wh, rh)|||

or ∣∣(r, divwh)
∣∣ 6 ( ∑

K∈Th

dν−1‖r‖2
0,K

)1/2( ∑
K∈Th

ν|wh|21,K
)1/2

6

C

( ∑
K∈Th

dν−1h2`+2
K ‖p‖2

`+1,K

)1/2

|||(wh, rh)|||.

This gives ∣∣(r, divwh)
∣∣ 6 C

( ∑
K∈Th

2d

ν + γKd
h2`+2
K ‖p‖2

`+1,K

)1/2

|||(wh, rh)|||.

There are several ways for estimating the remaining term∣∣((b · ∇)w,wh
)∣∣ 6 ∑

K∈Th

bK |w|1,K‖wh‖0,K 6

(∑
K

b2
K

σ
|w|21,K

)1/2( ∑
K∈Th

σ ‖wh‖2
0,K

)1/2

6 C

(∑
K

b2
K

σ
h2k
K ‖u‖2

k+1,ω(K)

)1/2

|||(wh, rh)|||

or using integration by parts∣∣((b · ∇)w,wh
)∣∣ =

∣∣((b · ∇)wh, w
)∣∣ 6 ∑

K∈Th

bK |wh|1,K‖w‖0,K 6

(∑
K

b2
K

ν
‖w‖2

0,K

)1/2( ∑
K∈Th

ν |wh|21,K
)1/2

6 C

(∑
K

b2
K

ν
h2k+2
K ‖u‖2

k+1,ω(K)

)1/2

|||(wh, rh)|||

or∣∣((b · ∇)w,wh
)∣∣ =

∣∣((b · ∇)wh, w
)∣∣ 6 ( ∑

K∈Th

δ−1
K ‖w‖

2
0,K

)1/2( ∑
K∈Th

δK
∥∥(b · ∇)wh

∥∥2

0,K

)1/2

6

C

( ∑
K∈Th

δ−1
K h2k+2

K ‖u‖2
k+1,ω(K)

)1/2

|||(wh, rh)|||.

These three estimates give together

∣∣((b · ∇)w,wh
)∣∣ 6 C

( ∑
K∈Th

3 b2
K h

2
K

δK b2
K + ν + σ h2

K

h2k
K ‖u‖2

k+1,ω(K)

)1/2

|||(wh, rh)|||.

The combination of all the above estimates gives the assertion of the Lemma. �
We are now in a position to derive a preliminary a priori error estimate using the previous

stability and continuity estimates.
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Theorem 3.1. Let (u, p) ∈
(
X ∩Hk+1(Ω)d

)
×
(
(M ∩H`+1(Ω)

)
and (uh, ph) ∈ Xh×Mh

be the solutions of (2.2) and (2.7), respectively. Moreover, we assume that conditions (3.1),
(3.2) are valid. Then, the following estimate holds true:

|||(u− uh, p− ph)|||2 6 C
∑
K∈Th

(
dh

2(`+1)
K

ν + γKd
‖p‖2

`+1,K+

[
ν + σ h2

K + δKb
2
K + γKd+

b2
K h

2
K

δK b2
K + ν + σ h2

K

]
h2k
K ‖u‖2

k+1,ω(K)

)
.

Proof. Using the triangle inequality, we obtain

|||(u− uh, p− ph)||| 6 |||(u− Ihu, p− Jhp)|||+ |||(Ihu− uh, Jhp− ph)|||

where Jhp is the standard finite element interpolant of p and Ihu the interpolant of u which
additionally preserves the discrete divergence (see (2.5)). The inf-sup condition for AS given
by Lemma 3.1 ensures the existence of (wh, rh) ∈ Xh ×Mh such that

βS|||(Ihu− uh, Jhp− ph)|||6
AS((Ihu−uh, Jhp−ph), (wh, rh))

|||(wh, rh)|||
=
AS((Ihu−u, Jhp−p), (wh, rh))

|||(wh, rh)|||

where we also used the Galerkin orthogonality (2.8). The application of Lemma 3.2 yields

βS|||(Ihu− uh, Jhp− ph)||| 6 C

( ∑
K∈Th

[
ν + σ h2

K + δKb
2
K + γKd+

3 b2
K h

2
K

δK b2
K + ν + σ h2

K

]
×

h2k
K ‖u‖2

k+1,ω(K) +

[
δK +

2dh2
K

ν + γKd

]
h2`
K‖p‖2

`+1,K

)1/2

.

We use (3.1), (3.2) for the estimates

h2
K

δK
> Cϕ2 > C(ν + γKd), δK 6 C

dh2
K

ϕ2
6 C

dh2
K

ν + γKd
.

This allows a simplification of the [·]-factors of the previous estimate.
The interpolation error estimates for Ih and Jh give

|||(u− Ihu, p− Jhp)|||26C
∑
K∈Th

[(
ν + σ h2

K + γKd+ δKb
2
K

)
h2k
K ‖u‖2

k+1,ω(K) + αh2
Kh

2`
K‖p‖2

`+1,K

]
.

We can simplify the right-hand side by using (3.1)–(3.2), (3.9) and

δK 6 C
dh2

K

ν + γKd
, αh2

K 6 C
dh2

K

ϕ2
6 C

dh2
K

ν + γKd
.

Putting together all estimates and applying the triangle inequality from the beginning of
this proof gives the assertion. �

Remark 3.1. Theorem 3.1 clarifies and generalises several aspects of the result of The-
orem 4.1 in [7]. The new result relaxes the assumption of quasi-uniformity of the mesh to
shape-regularity and the assumption of continuous pressure approximation to a (potentially)
discontinuous ansatz. Finally, the H2-regularity result for the Stokes problem which is used
in [7] can be avoided (as a technical tool).
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4. Discussion of the parameter action. Numerical experiments

Here we will apply Theorem 3.1 in order to discuss the action of the stabilisation parameters
δK and γK . For simplicity, we discuss cases with k = ` + 1, including conforming Pk-
or Qk-interpolation of velocity and continuous or discontinuous P`- or Q`-interpolation of
pressure.

First of all, the error estimate is optimal with respect to the mesh size hK for fixed data.
Nevertheless, the error estimate may deteriorate in the critical case ν2 +σ2 → 0. We observe
from (3.1) that positive γK and δK , respectively, would prevent a degeneration of the [·]-
factor of the p-dependent term if ν → +0 and of the [·]-factor of the u-dependent term if
ν2 + σ2 → 0, respectively. The standard approach to design stabilisation parameters is the
equilibration of corresponding terms on the right-hand side of the error estimate (3.1).

(i) The critical terms in the [·]-factor of the u-dependent term are

δKb
2
K + ν + σh2

K and
b2
Kh

2
K

δKb2
K + ν + σh2

K

. (4.1)

The first observation is that eventually no SUPG-stabilisation is required if the latter term
remains of order O(1) for ν2 + σ2 → 0. This occurs if

ν > Cb2
Kh

2
K , i.e., ReK :=

bKhK
ν
6

1

C
√
ν

(4.2)

or
σh2

K > Cb2
Kh

2
K , i.e., σ > Cb2

K . (4.3)

On the other hand, if ν + σh2
K 6 Cb2

Kh
2
K , a choice with δK > Ch2

K would be desirable.
Unfortunately, this is not possible under the stability condition (3.2). Example 3.1 shows
that an upper bound on the parameter δK may exist in the general case.

(ii) The critical terms in the [·]-factors of the u- and p-dependent terms in (3.1) with
k = `+ 1 are (ν + γKd)‖u‖2

k+1,ω(K) and (ν + γKd)−1‖p‖2
`+1,K . A formal equilibration yields

‖p‖`+1,K ∼ γKd‖u‖k+1,ω(K) (4.4)

and thus the behavior of the parameter γK depending on the local norms of the solution.
Unfortunately, these quantities are not available. As the Oseen problem is only an auxil-
iary problem within a simulation of time-dependent flows, one could think of a ”dynamic”
recovery of ‖p‖`+1,K and ‖u‖k+1,ω(K) from a previous time step or iteration. We will report
on such approach elsewhere.

Let us emphasize that the dominating approach in the literature is to assume that the
Sobolev norms of p and u in (4.4) have the same size with respect to ν → 0. This is indeed
not valid in general. For simplicity, let us consider the stationary Navier — Stokes equation

−ν∆u+ (u · ∇)u+∇p = 0

where we assume that the source term f is a gradient field and can be hidden in ∇p. Let us
look at two extremal situations:

• Consider a situation with ‖(u · ∇)u‖L2(D) � ν‖∆u‖L2(D). This occurs typically in
vortices of the flow away from boundary or interior layers. Then the choice of a
positive value of γK for K ⊂ D seems to be appropriate. This will be discussed in
Examples 3.1 and 4.2 below.
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• In a simple shear flow with (u·∇)u = 0 (like the Poiseuille flow in a straight channel), we
obtain ∇p = ν∆u, i.e. ‖∇p‖L2(D) � ‖∆u‖L2(D) for arbitrary D ⊂ Ω. As a conclusion
from (4.4), the choice γK = 0 is reasonable. This will be discussed in Example 4.1
below.

We continue the discussion with some numerical experiments to check some aspects of
the a priori analysis. To be as close to the Navier — Stokes model as possible, the solution
u of the Oseen problem (1.2) is chosen as the convective field b. Unfortunately, it is not
possible to discuss the dependence of the scheme with respect to all parameters and data in
this paper. In particular, we restrict ourselves to the simplest Taylor — Hood pair Q2/Q1.
The stabilisation parameters are chosen, for simplicity, as δK = δ0h

2
K and γK = γ0 with

scaling parameters δ0, γ0 > 0. We will always consider a sequence of unstructured, quasi-
uniform, quadrilateral meshes with h ∈ { 1

12
, 1

32
, 1

64
, 1

122
} and sampling points for δ0 and γ0 as

in Subsection 3.2.
First, we look again at Example 3.1 with a smooth and ν-independent solution.
We solve the Oseen problem (1.2) on Ω = (0, 1)2 for the small viscosity ν = 10−6 and

σ = 0, with the flow field b(x) = (sin(2πx1) cos(2πx2),− cos(2πx1) sin(2πx2))>, source term
f(x) := 8π2νb(x), and with inhomogeneous Dirichlet data u(x) = b(x) on ∂Ω. The exact
solution is u(x) := b(x) and p(x) := 1

4
(cos(4πx1) + cos(4πx2)).

First, we consider the stabilised problem (2.7) with the SUPG-parameter δK = δ0h
2
K

and without grad-div stabilisation, i.e., with γK = 0. In Fig. 4.1, we plot the errors in the
H1-seminorm and L2-norm vs. the scaling parameter δ0 in a relatively small range of δ0.
One clearly observes again the arising instability of the discrete solution for certain values
of δ0 > 20.

F i g. 4.1. Errors in the H1-seminorm and L2-norm vs. the SUPG-scaling parameter δ0 (without grad-div
stabilisation) for Example 3.1 with ν = 10−6, σ = 0 and different values of h

For comparison, we plot in Fig. 4.2 the corresponding results for the SUPG/PSPG scheme
with αK = δK = δ0h

2
K in a much larger range of δ0. We observe a minimum of the error

in the H1-seminorm for δ0 ≈ 5. Moreover, we present in Fig. 4.3 the corresponding plots
for the solution of the stabilised scheme (2.7) with grad-div stabilisation, i.e., with γK ≡ γ0

and without SUPG (δ0 = 0). We observe a distinguished minimum of the errors in the H1-
seminorm and L2-norm for parameter γ0 ≈ 10−1 which leads (as compared to the unstabilised
case) to improved values of the norms by a factor of nearly 10−2 on the finest grid. Notably,
compared to the SUPG/PSPG case, the errors are better by a factor 10−2 . . . 10−1 on the
finest grids.
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F i g. 4.2. Errors in the H1-seminorm and L2-norm vs. the SUPG/PSPG-scaling parameter δ0 (without grad-
div stabilisation) for Example 3.1 with ν = 10−6, σ = 0 and different values of h

F i g. 4.3. Plots of H1- and L2-errors vs. the scaling parameter γ0 of grad-div stabilisation (without SUPG) for
Example 3.1 with ν = 10−6, σ = 0 and different values of h

For this example there holds (u · ∇)u = π(sin(4πx1),− sin(4πx2))>. According to the
discussion in (i) and (ii) above, a SUPG-stabilisation is questionable whereas an ”optimised”
value of the grad-div stabilisation leads to even (much) better results as for the standard
SUPG/PSPG stabilisation. Nevertheless, we have to admit that the simplified parameter
design δK = δ0h

2
K , γK = γ0 may be not optimal.

Now, we consider the influence of the parameter σ on the error of the discrete problem
with SUPG-stabilisation (without grad-div stabilisation). From Fig. 4.4 we draw mainly the
same conclusions for the errors in the H1-seminorm and L2-norm of the velocity as for the
corresponding norms in Subsection 3.2: both errors are robust in an increasing range of the
scaling parameter δ0 for increasing values of σ and again numerical instabilities for larger
values of δ0.
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F i g. 4.4. Errors in H1-seminorm and L2-norm vs. the scaling SUPG-parameter δ0 (without grad-div
stabilisation) for Example 3.1 with ν = 10−6, h = 1/64 and different values of σ

Remark 4.1. Additionally, we checked the behaviour of the grad-div stabilisation for an
inf-sup pair with discontinuous pressure approximation. For the Q2/P

disc
1 -pair we observed

similar results of the errors as in Fig. 4.3.

As a second example, let us consider a problem with (u · ∇)u = (b · ∇)u ≡ 0.

Example 4.1. We solve the Oseen problem (1.2) on Ω = (0, 1)2 for viscosity ν = 10−6

and σ = 0, with the flow field b(x) = (sin(πx2), 0)>, the source term f(x) ≡ νπ2b(x) −
(2πν, 0)>, and with inhomogeneous Dirichlet data u(x) = b(x) on ∂Ω. The exact solution is
u(x) = b(x) and p(x) = −2πνx1 + πν. (We did not use the standard Poiseuille flow as the
flow solution is contained in the discrete space.)

The errors in the H1-seminorm and L2-norm are again plotted against the scaling param-
eters δ0 and γ0. Surprisingly, we observe in Fig. 4.5 a similar error behaviour for increasing
values of δ0 if only SUPG-stabilisation (with γ0 = 0) is applied. This means, in partic-
ular, that the method is unable to reflect the behaviour of the continuous solution with
∇p = ν∆u and (b · ∇)u ≡ 0. There is seemingly some gain for an increasing value of the
SUPG-parameter but this observation is corrupted by the arising instabilities of the discrete
solution. (Let us remark that the maximal value of the errors on the coarsest grid with
δ0 ≈ 10 was of the order of 1012 (not shown in Fig. 4.5)).

F i g. 4.5. Errors in the H1-seminorm and L2-norm vs. the SUPG-scaling parameter δ0 (without grad-div
stabilisation) for Example 4.1 with ν = 10−6, σ = 0 and different values of h



386 G. Matthies, G. Lube, and L. Röhe

The tests for the grad-div stabilisation, i.e., with δ0 = 0, reflect again the robustness of the
discrete solution with respect to γ0 ∈ (0, 100) (see Figure 4.6). Compared to the unstabilised
case γ0 = 0, we observe for an optimal value of γ0 a reduction of the H1-seminorm error
by a factor 5 − 8. This reduction is much less pronounced as in Example 3.1 according to
a discussion in case (ii) and formula (4.4) above. This is also reflected by comparison of
Figs. 4.6 and 4.5.

F i g. 4.6. Errors in the H1-seminorm and L2-norm vs. the scaling parameter γ0 of grad-div stabilisation
(without SUPG) for Example 4.1 with ν = 10−6, σ = 0 and different values of h

Finally, we consider the influence of the parameter σ on the error of the discrete problem
with SUPG-stabilisation (without grad-div stabilisation). From Fig. 4.7 we mainly draw the
same conlusions as for Example 3.1. �

F i g. 4.7. Errors in the H1-seminorm and L2-norm vs. the scaling SUPG-parameter δ0 (without grad-div
stabilisation) for Example 4.1 with ν = 10−6, h = 1/64 and different values of σ

As the last example, we consider the problem with a boundary layer proposed by
S. Berrone [2].

Example 4.2. We solve the Oseen problem (1.2) on Ω = (0, 1)2 with b = u and the
solution

u1(x) =

(
1− cos

(
2π(eR1x1 − 1)

eR1 − 1

))
sin

(
2π(eR2x2 − 1)

eR2 − 1

)
R2

2π

eR2x2

(eR2 − 1)
,
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u2(x) = − sin

(
2π(eR1x1 − 1)

eR1 − 1

)(
1− cos

(
2π(eR2x2 − 1)

eR2 − 1

))
R1

2π

eR1x1

(eR1 − 1)
,

p(x) = R1R2 sin

(
2π(eR1x1 − 1)

eR1 − 1

)
sin

(
2π(eR2x2 − 1)

eR2 − 1

)
eR2x1eR2x2

(eR1 − 1)(eR2 − 1)
.

The velocity field resembles a counter-clockwise vortex with the center at

(x01, x02) =

(
1

R1

log

(
eR1 + 1

2

)
,

1

R2

log

(
eR2 + 1

2

))
.

The parameters are chosen as R2 = 0.1 leading to x02 = 0.5125 and R1 such that x01 =
1 − ν1/4, i.e., the centre moves with decreasing ν to the right boundary. This leads to a
ν-dependent solution with ‖∇u‖0 ∼ ν−0.35 and ‖p‖0 ∼ ν−0.12.

First we present the results for σ = 0 and ν = 10−4. The value of the viscosity allows
a resolution of the boundary layer on the finest meshes. The errors in the H1-seminorm
and L2-norm are again plotted against the scaling parameters δ0 and γ0. We again observe
in Fig. 4.8 (with sampling for 385 values of δ0) a similar behavior of the errors in the H1-
seminorm and L2-norm for increasing values of δ0 if only SUPG-stabilisation (with γ0 = 0)
is applied. A gain by a factor of 3 is obtained for an optimal value of δ0 compared to the
unstabilised case δ0 = 0 (not shown). Let us remark that the maximal value of the errors
on the coarsest grid with δ0 ≈ 10 was of the order of 1012 (not shown in Fig. 4.8).

F i g. 4.8. Errors in the H1-seminorm and L2-norm vs. the SUPG-scaling parameter δ0 (without grad-div
stabilisation) for Example 4.2 with ν = 10−4, σ = 0 and different values of h

The tests for the grad-div stabilisation, i.e., with δ0 = 0, and sampling for 49 values
of γ0 reflect again the robustness of the discrete solution with respect to γ0 (see Fig. 4.9).
In comparison to the unstabilised case γ0 = 0, we observe for an optimal value of γ0 a
reduction of the errors on the finer meshes by a factor of nearly 10−2. This reduction is
clearly pronounced as in Example 3.1.
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F i g. 4.9. Errors in the H1-seminorm and L2-norm vs. the scaling parameter γ0 of grad-div stabilisation
(without SUPG) for Example 4.2 with ν = 10−4, σ = 0 and different values of h

Finally, let us consider the influence of the viscosity parameter ν. Figure 4.10 shows
the h-convergence for |[u− uh]| and ‖p− ph‖0 (scaled by appropriate Sobolev norms of the
solution) for the optimised value of γ0 and δ0 as above for different values of ν = 10−i,
i = 2, 3, 4, 5, 6 and σ = 0. We observe that the second-order accuracy is reached for the
larger values of ν and for the smaller values at least on sufficiently fine grids as an absolute
accuracy can only be obtained for a mesh which resolves the boundary layer at x1 = 1.

F i g. 4.10. Convergence plots for different values of ν, σ = 0 and δ0 = 0.1, γ0 = 0.2

5. Summary. Outlook

In the present paper, we have considered stabilised finite element methods for the generalised
Oseen problem. For inf-sup stable discretisations of velocity and pressure, we have proved
the unique solvability based on a modified stability condition and an error estimate. The
main results are as follows:

• First of all, we emphasize the role of an additional stabilisation of the divergence
constraint via grad-div stabilisation. It is robust in a wide range of the stabilisation
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parameter γK and might be important, in particular, for flows with strong inertia if
the parameters are optimised.

• Secondly, the analysis of the streamline-diffusion (SUPG) stabilisation requires an
upper bound on the SUPG-stabilisation parameter δK 6 Ch2

K with a data-dependent
constant C = C(ν, σ, ‖b‖L∞(Ω)d). This scaling implies that SUPG-stabilisation is less
important in the case of inf-sup velocity-pressure pairs. Numerical results on slightly
distorted quasi-uniform meshes indeed show that numerical instabilities may occur.

• Thirdly, our analysis extends the result in [7] on quasi-uniform meshes and continuous
pressure approximations to general shape-regular meshes and to discontinuous pressure
interpolation.

Summarising, the application of the SUPG-stabilisation for inf-sup stable elements with-
out PSPG-stabilisation and/or without grad-div-stabilisation cannot be recommended to
practitioners.

Let us finally mention some open problems:

• We didn’t discuss the dependence on the polynomial degree of the finite elements. This
appears in the stability estimate of Lemma 3.1 and in the upper bound of δK .

• The upper bound of the SUPG-parameter δK in formula (3.2) that stems from the
stability analysis is not convincing. Let us emphasize that such restriction does not
exist for the symmetric stabilisation of local projection type (see e.g., [15]).

• Further research is necessary for the design of the grad-div stabilisation parameters
γK . The results of [12] indicate that this might depend on the local behaviour of the
flow.

• The grad-div stabilisation with γ ∼ O(1) may lead to problems for iterative solvers of
the mixed algebraic problem as the kernel of the div -operator is large. To a certain
extent, this is discussed for the Stokes model in [17] and for the Oseen problem in [1].
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