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NUMERICAL SOLUTION OF A NONLOCAL PROBLEM

MODELLING OHMIC HEATING OF FOODS

C. V. NIKOLOPOULOS1

Abstract — An upwind and a Lax-Wendroff scheme are introduced for the solution
of a one-dimensional non-local problem modelling ohmic heating of foods. The schemes
are studied regarding their consistency, stability, and the rate of convergence for the
cases that the problem attains a global solution in time. A high resolution scheme is
also introduced and it is shown that it is total-variation-stable. Finally some numerical
experiments are presented in support of the theoretical results.
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1. Introduction

We consider the nonlocal initial boundary value problem

ut(x, t) + ux(x, t) = λf(u(x, t))

( 1∫
0

f(u(x, t)) dx

)−2

, 0 < x < 1, t > 0, (1.1a)

u(0, t) = 0, t > 0, (1.1b)

u(x, 0) = u0(x) > 0, 0 < x < 1, (1.1c)

where λ > 0. The function u(x, t) represents the dimensionless temperature when an electric
current flows through a conductor (e.g., food) with a temperature dependent on electrical
resistivity f(u) > 0, subject to a fixed potential difference V > 0. The (dimensionless) resis-
tivity f(u) may be either an increasing or a decreasing function of temperature depending
strongly on the type of the material (food). Problem (1.1) models one of the main methods
for sterilizing foods. Sterilization can occur by fast electrically heating of a food. The food is
passed through a conduit, part of which lies between two electrodes. A high electric current
flowing between the electrodes results in ohmic heating of the food which quickly gets hot.
This procedure can be modelled by problem (1.1). A detailed derivation of the model, (1.1),
can be found in [15].

The problem was considered initially in [19] where the stability of models allowing for
different types of flow was studied. More information on this type of the process can be
found in [4, 5, 9, 20, 22, 24]. In [15], problem (1.1) was also studied and it was found that
for f decreasing with

∫∞
0
f(s)ds < ∞, a blow-up occurs if the parameter λ (∝ V 2) is too
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large for the steady state to exist or if the initial condition is too big. If f is increasing with∫∞
0
ds/f(s) < ∞, then a blow-up is also possible. If f is increasing with

∫∞
0
ds/f(s) = ∞

or decreasing with
∫∞

0
f(s)ds =∞, then the solution is global in time ([15]).

In the following, we assume f to satisfy

f(s) > 0, f ′(s) < 0, s > 0, (1.2a)

∞∫
0

f(s) ds <∞ (1.2b)

, for instance, either f(s) = e−s or f(s) = (1 + s)−p, p > 1, satisfy (1.2). In addition, for
the initial data it is required that u0(x), u′0(x) be bounded and u0(x) > 0 in [0, 1] (the last
requirement is a consequence of the fact that for any initial data the solution u becomes
nonnegative over (0, 1] for some time t and thus, with an appropriate redefinition of t, we
can always make this assumption [13,15]).

The steady problem corresponding to (1.1) is

w′ = λ
f(w)(∫ 1

0
f(w) dx

)2 , 0 < x < 1, w(0) = 0, (1.3)

where w = w(x) = w(x;λ), (see [6, 8, 13–15]). For example, in the case that f(s) = e−s,
w(x) = ln (λx/µ2 + 1) for µ > 0 being the root of the equation

√
µ ln (λ/µ2 + 1) = λ.

Under assumptions (1.2), problem (1.3) has at least one classical (regular) stable solution
([15, 17]) w∗ = w(x;λ∗), (more than one w∗ may exist). In the following, we assume that
w∗ is unique and that the pair (w,w) at λ < λ∗ (λ close to λ∗) has the property: w = w1

is stable while w = w2 is unstable (since without loss of generality it may be required that
there exists at least one w∗ at λ∗ and that w(x) < w(x) for x in (0, 1] where w is the next
steady solution greater than w(x) at λ < λ∗).

It is known that if (1.2b) holds, then there exists a critical value of the parameter λ, which
can be identified, amongst other things, with the square of the applied potential difference V
(actually λ is proportional to V 2), say λ∗ <∞, such that for λ > λ∗ the solution u(x, t;λ)
to problem (1.1) blows up globally in finite time t∗ (u → ∞ for all x ∈ (0, 1] as t → t∗−,
[15]) and problem (1.3) has no solutions (of any kind). For a fixed λ ∈ (0, λ∗) there exist at
least two solutions w(x;λ) and a unique solution u(x, t;λ); u(x, t;λ) may either exist for all
times or blow up globally depending on the initial data (for the blow-up, u0 must be greater
than the greatest stable solution w(x;λ) and (1.2) holds) [13–15].

A numerical computation of problem (1.1) by using the upwind scheme has already been
presented in [17]. Although it has not yet appeared in the literature, a theoretical analysis of
finite difference schemes that can be applied for the numerical solution of non-local problems
having a form similar to (1.1). In the present work we first study two explicit finite difference
schemes: the upwind and Lax — Wendroff scheme, regarding their consistency, stability,
and convergence. Initially the upwind scheme is applied to problem (1.1) and it is shown
to be first-order convergent if we apply an appropriate discretization to the nonlocal source
term. As a next step, we apply the Lax — Wendroff scheme in order to get a more accurate
numerical approximation. This scheme is of second order accuracy. This accuracy is obtained
by the addition of extra correction terms in the discretization of the nonlocal source term.
The analysis for both methods holds in the case that f is a decreasing function, if (1.2b)
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holds for λ < λ∗, and for small initial data, or if
∫∞

0
f(s) ds = ∞, so that the solution to

problem (1.1) exists for all times. In addition, it should be noted that the results presented in
this work are valid, with minor modifications in the proofs, if we also consider an increasing
f . Moreover, a high-resolution method combining the above methods is presented and it is
shown that it is total-variation-stable.

In studying the numerical solution of such a nonlocal problem, it is interesting to inves-
tigate the effect of the non-local term in the numerical approximation of the solution. The
present analysis for these two methods indicates that other standard methods applied for
first-order homogeneous hyperbolic equations should result in the same order of convergence
to this nonlocal problem. This can be done if the nonlocal source term is discretized ap-
propriately, if necessary, with the addition of extra correction terms, and if the integration
method used to approximate the nonlocal term is of the same order. Moreover, as is obvi-
ous from the application of the Lax-Wendroff method to this problem, additional correction
terms associated with the derivatives of the nonlocal source term, must be included in the
scheme in order to obtain a second-order accuracy in both space and time. Similar analysis
for other nonlocal problems exists in (e.g, [1,7]). More specifically, in [1] an approach based
on the method of characteristics is given. In principle, it can also be used for solving problem
(1.1). For s = x+ t, Eq. (1.1b) becomes

du(s)

ds
= λf(u(s))

/[ 1+t∫
t

f(u(s))ds

]2

.

Then this equation can be integrated along the characteristics resulting, e.g., in a numerical
scheme of the form

Un+1
j+1 = Un

j + hλf(Un
j )/I2

h(Un),

where h is a time step. The analysis in [1] indicates that in our case, due to the fact that the

nonlocal term
∫ 1

0
f(u) dx is a function of time, extra care should be needed to obtain and

analyze a method of higher-order accuracy by the method of characteristics. In addition,
the upwind and the Lax — Wendroff methods can be generalized in a more natural way to
problems of the form ut + (g(u))x = λF (u). Thus, in the present work we will not consider
further this method.

Note also that error estimates for a method approximating the solution of the problem
in the case of blow-up are important for investigating the characteristics of the blow-up
phenomenon, e.g., the blow-up time, useful from the point of view of applications. Similar
investigations the convergence of the numerical solution during blow-up were carried out for
a parabolic problem in [2,3,11]. In our case, for example, for f being an increasing function
a discontinuity in the initial data may cause a blow-up of the solution [15]. In using a
similar approach as in [2,3] for a non-local problem such as problem (1.1), a high-resolution
method based on a combination of the upwind and the Lax-Wendroff method, which is also
introduced and analyzed in this work, would be useful (see [16], Chapter 6).

In Section 2, we present appropriate notations and definitions and consider the upwind
method regarding its consistency, stability, and convergence. In Section 3, we obtain similar
results for the Lax — Wendroff method and introduce a high-resolution method which is
shown to be TV-stable. Finally, in Section 4 we present some numerical experiments in
support of the results obtained in the previous Sections, and in Section 5 we present the
conclusions and some open problems for future studies.
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2. The Upwind Scheme

2.1. Notations. We introduce a spatial grid xj = j∆x, j = 0, 1, . . . , J , where ∆x = 1/J is
the mesh size and J is a positive integer. We also consider a fixed time interval 0 6 t 6 T .
The step length in time is denoted by ∆t and tn = n∆t, n = 0, 1, 2, . . . , N (with N = [T/∆t])
are discrete time levels. Also r = ∆t

∆x
.

We consider the set H = {∆x > 0 : ∆x = 1/J, J ∈ N} and for ∆x ∈ H we define
the vector spaces : X = Y = (RJ+1)N+1. Also, if V = (V0, V1, . . . , VJ) ∈ RJ+1 we define

‖V ‖∞ := max
06j6J

|Vj| and ‖V ‖1 :=
∑J ′′

j=0 ∆x|Vj|, where the ′′ means that the first and last terms

of the sum are halved, i.e., the trapezoidal rule is used. For V = (V 0, V 1, . . . , V N) ∈ X,
with V n ∈ RJ+1 we define the following norm on X, ‖V ‖X := max

06n6N
‖V n‖1. In addition, if

V ∈ Y , then we define the norm ‖V ‖Y := ‖V 0‖1 +
∑N

n=1 ∆t‖V n‖1. Let R be a fixed positive
constant and let us denote by B(uh, R) an open ball with center uh and radius R of the
space X endowed with the norm of X as defined above.

For a time step ∆t and ∆x ∈ H we consider the element uh ∈ X, uh = (u0, u1, . . . , uN) ∈
X, with un = (un

0 , u
n
1 , . . . , u

n
J) ∈ RJ+1 and un

j = u(xj, tn), where u is the exact solution of
problem (1.1). In a similar way we denote by Uh ∈ X the approximate numerical solution
of problem (1.1), with Un

j being the approximation of the solution at the point (xj, tn).

We also use the notations I(un) =
∫ 1

0
u(x, tn) dx and F (un

j ) = f(un
j )/I2(un). By Ih we

denote the numerical approximation of I, i.e., Ih(un) =
∑J ′′

j=0 ∆xun
j . In this case, we have∣∣Ih(un)− I(un)

∣∣ = O(∆x2).

Finally, we set Fh(un
j ) = f(un

j )/I2
h(un).

Note that C, c, ci,Mi, i = 1, 2, . . . will denote positive constants independent of ∆x,∆t, n
(0 6 n 6 N) and j, (0 6 j 6 J) having possibly different values at different places.

2.2. Formulation and analysis of the numerical method. The upwind scheme
applied to problem (1.1) gives

Un+1
0 = 0, (2.1a)

Un+1
j = Un

j − r
(
Un

j − Un
j−1

)
+ λ∆tFh(Un

j ), j = 1, . . . , J, (2.1b)

for 0 6 n 6 N − 1 and with U0 = (U0
0 , U

0
1 , . . . , U

0
J) known.

Next we introduce the mapping φh : B(uh, R) ⊂ X → Y defined by the equations

φh(V 0, V 1, . . . , V N) = (Z0, Z1, . . . , ZN), Z0 = V 0 − U0, Zn+1
0 = 0,

Zn+1
j =

1

∆t

(
V n

j −
∆t

∆x
(V n

j − V n
j−1) + ∆tλ

f(V n
j )

I2
h(V n)

− V n+1
j

)
, 1 6 j 6 J,

for 0 6 n 6 N − 1. Then Uh = (U0, U1, . . . , UN) is a solution of scheme (2.1) if and only if
φh(Uh) = (R0, R1, . . . , RN), with Rn = 0 ∈ RJ+1, 0 6 n 6 N .

In the following, we study the consistency, the stability, and the convergence of sche-
me (2.1).

2.3. Consistency. We define the local descretization error as lh = φh(uh) ∈ Y and we say
that the descritization is consistent if, as ∆x, ∆t→ 0, lim

∆x, ∆t→0
‖φh(uh)‖Y = lim

∆x, ∆t→0
‖lh‖Y =0.
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Proposition 2.1. Assuming that f satisfies condition (1.2a) and u is a C2 global bounded
solution of problem (1.1) (i.e., the initial data are smooth enough and λ 6 λ∗, u0(x) < w2(x)
if (1.2b) holds or

∫∞
0
ds/f(s) = ∞), then, if for u0(xj) = u0

j , j = 0, 1, . . . , J , we have
‖u0 − U0‖1 = o(1) and the local discretization error satisfies the condition

‖φh(uh)‖Y = O(∆t+ ∆x).

Proof. We set φh(uh) = (u0 − U0, τ 1, τ 2, . . . , τN), where τn, 1 6 n 6 N, are the local
truncation errors to be bounded. Indeed, for j = 1, . . . , J we have

|τn+1
j | = 1

∆t

∣∣∣∣un
j −

∆t

∆x

(
un

j − un
j−1

)
+ ∆t λFh(un

j )− un+1
j

∣∣∣∣ =

1

∆t

∣∣∣∣un
j −

∆t

∆x

(
un

j −un
j +∆xux

n
j −

1

2
∆x2uxx

n
j +· · ·

)
+∆tλFh(un

j )−un
j −∆tut

n
j −

1

2
∆t2utt

n
j +· · ·

∣∣∣∣=∣∣∣∣− ux
n
j − ut

n
j + λFh(un

j )− 1

2
∆t utt

n
j −

1

2
∆xuxx

n
j

∣∣∣∣+ · · ·

or

|τn+1
j | 6 1

2
∆t|utt

n
j |+

1

2
∆x|uxx

n
j |+ λf(un

j )

∣∣∣∣ 1

I2
h(un)

− 1

I2(un)

∣∣∣∣. (2.2)

Regarding the third term in Eq. (2.2), we have that

λf(un
j )

∣∣∣∣ 1

I2
h(un)

− 1

I2(un)

∣∣∣∣ = λf(un
j )

[Ih(un) + I(un)]

I2
h(un) I2(un)

∣∣Ih(un)− I(un)
∣∣. (2.3)

Since u is bounded in [0, 1] × [0, T ], there exists a constant Mu such that u(x, tn) 6 Mu,
0 6 n 6 N . Therefore f(un) > f(Mu) > 0 and

1

I2
h(un)

=

[ J ′′∑
j=0

∆xf(un
j )

]−2

6
1

f(Mu)2
.

Similarly

1

I2(un)
=

[ 1∫
0

f(un) dx

]−2

6
1

f(Mu)2
.

Also, for f decreasing and f(0) > 0 we have, f(un
j ) 6 f(0), Ih(un) =

∑J ′′

j=1 ∆xf(un
j ) 6 f(0)

and I(un) =
∫ 1

0
f(un)dx 6 f(0). Therefore, due to the fact that

∣∣Ih(un)− I(un)
∣∣ = O(∆x2)

we deduce that

λf(un
j )

∣∣∣∣ 1

I2
h(un)

− 1

I(un)2

∣∣∣∣ 6 2λf(0)2

f(Mu)4

∣∣Ih(un)− I(un)
∣∣ = O(∆x2). (2.4)

We have τn
0 = 0, for 1 6 n 6 N . Therefore, combining also Eqs. (2.2) and (2.4), we have

|τn
j | = O(∆t+ ∆x), 0 6 j 6 J, 1 6 n 6 N,

and hence, using the assumption that ‖u0−U0‖1 = o(1), we deduce that lim
∆x, ∆t→0

‖φh(uh)‖Y =

lim
∆x, ∆t→0

‖lh‖Y = 0 and that the scheme is consistent. �
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Remark 2.1. The previous proposition can easily be modified to include also the case
that f is an increasing function. Indeed, if f(s) > 0, f ′(s) > 0, for s > 0 and problem (1.1)
attains a C2 bounded global in time solution, u(x, t), then we have 0 < f(0) < f(u(x, t)) <
f(Mu), where Mu is an upper bound of u for 0 6 x 6 1 and t > 0. Therefore

1

I2
h(un)

=

[ J ′′∑
j=0

∆xf(un
j )

]−2

6
1

f(0)2

and

1

I2(un)
=

[ 1∫
0

f(un) dx

]−2

6
1

f(0)2
.

Also, f(un
j ) 6 f(Mu), Ih(un) =

∑J ′′

j=1 ∆xf(un
j ) 6 f(Mu) and I(un) =

∫ 1

0
f(un)dx 6 f(Mu).

Hence

λf(un
j )

∣∣∣∣ 1

I2
h(un)

− 1

I(un)2

∣∣∣∣ 6 2λf(Mu)2

f(0)4

∣∣Ih(un)− I(un)
∣∣ = O(∆x2).

Likewise, the rest of the propositions in this work can be modified in a similar manner to
include the case where f is increasing.

2.4. Stability. In the following, we show that the scheme is stable. For each ∆x and ∆t
let Mh > 0 be a constant. We say that the discretization (2.1) is stable for uh restricted to the
thresholds Mh if there exist two positive constants r0 and S such that for r = ∆t/∆x 6 r0,
B(uh,Mh) is contained in the domain of φh and for every V,W ∈ B(uh,Mh), ‖V −W‖X 6
S‖φh(V )− φh(W )‖Y .

Proposition 2.2. Under the hypotheses of proposition (2.1) the discretization (2.1) is
stable for r = ∆t/∆x 6 1.

Proof. Let V, W ∈ B(uh,Mh) of X with φh(V ) = Z and φh(W ) = S. We set En =
V n −W n ∈ RJ+1, 0 6 n 6 N . We have En

0 = 0, for 1 6 n 6 N and for 0 6 n 6 N − 1,
1 6 j 6 J , that ∣∣En+1

j

∣∣ =
∣∣V n+1

j −W n+1
j

∣∣ =∣∣∣∣V n
j −

∆t

∆x
(V n

j −V n
j−1)+∆tλFh(V n

j )−W n
j +

∆t

∆x
(W n

j −W n
j−1)−∆tλFh(W n

j )−∆t(Zn+1
j −Sn+1

j )

∣∣∣∣6
(1− r)|V n

j −W n
j |+ r|V n

j−1 −W n
j−1|+ λ∆t

∣∣Fh(V n
j )− Fh(W n

j )
∣∣−∆t

∣∣Zn+1
j − Sn+1

j

∣∣. (2.5)

By the assumptions on f we have that f is locally Lipschitz, i.e., |f(V n
j ) − f(W n

j )| 6
L|V n

j − W n
j | for a constant L > 0. In addition, 0 < f(V n

j ) 6 f(0) for f decreasing and
for V,W ∈ B(uh,Mh) we have that 1/Ih(V n)2 6 1/f(Mh)2, 1/Ih(W n)2 6 1/f(Mh)2 and

Ih(V n) 6 f(0), Ih(W n) 6 f(0). Also, |Ih(V n) − Ih(W n)| 6
∑J ′′

j=0 ∆x|f(V n
j ) − f(W n

j )| 6
L
∑J ′′

j=0 ∆x|V n
j −W n

j | = L‖En‖1. Thus,

∣∣Fh(V n
j )− Fh(W n

j )
∣∣ =

∣∣∣∣ f(V n
j )

Ih(V n)
−
f(W n

j )

Ih(W n)

∣∣∣∣ 6 ∣∣∣∣ f(V n
j )

Ih(V n)
−

f(V n
j )

Ih(W n)

∣∣∣∣+

∣∣∣∣ f(V n
j )

Ih(W n)
−
f(W n

j )

Ih(W n)

∣∣∣∣6
∣∣f(V n

j )
∣∣ ∣∣Ih(V n) + Ih(W n)

∣∣
I2
h(V n) I2

h(W n)

∣∣Ih(V n)− Ih(W n)
∣∣+

1

I2
h(W n)

∣∣f(V n
j )− f(W n

j )
∣∣ 6
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2f 2(0)

f 4(Mh)

∣∣Ih(V n)− Ih(W n)
∣∣+

L

f 2(Mh)

∣∣V n
j −W n

j

∣∣. (2.6)

Therefore, for 0 < r < 1, c1 = λL/f 2(Mh) and c2 = 2λLf 2(0)/f 4(Mh) we obtain

|En+1
j | 6 [(1− r) + c1∆t]|En

j |+ r|En
j−1|+ c2‖En‖1 + ∆t|Zn+1

j − Sn+1
j |. (2.7)

For c = max(c1, c2) we deduce that

‖En+1‖1 6 [(1− r) + c∆t]‖En‖1 + r‖En‖1 + ∆t‖Zn+1
j − Sn+1

j ‖1 6

(1 + c∆t)‖En‖1 + ∆t‖Zn+1 − Sn+1‖1. (2.8)

Applying the above relation recursively, we have

‖En+1‖1 6 C

(
‖E0‖1 + ∆t

n+1∑
m=1

‖Sm − Zm‖1

)
, (2.9)

for some constant C. Therefore, by the discrete Gronwall lemma we get

max
06n6N

‖En‖1 6 C

(
‖E0‖1 + ∆t

N∑
n=1

‖Sn − Zn‖1

)
= C‖φh(V )− φh(W )‖Y , (2.10)

and thus ‖V −W‖X 6 C‖φh(V )− φh(W )‖Y . �

2.5. Convergence. Regarding the convergence of the scheme, we have the following
proposition:

Proposition 2.3. Assuming that the hypotheses of proposition (2.1) hold and that U0 is
such that ‖u0 − U0‖1 = O(∆x), as ∆x → 0 then the numerical solution of the scheme Uh

satisfies
‖Uh − uh‖X = O(∆t+ ∆x),

and
‖Uh − uh‖∞ = O(∆t+ ∆x),

as ∆x, ∆t→ 0.

Proof. We have that φh is continuous and stable on B(uh,Mh). Hence (see [1,21]) there
exist inverse φ−1

h defined on B(uh,Mh/S) for S being the stability constant. We consider the
vector R = (R0, R1, . . . , RN) ∈ X such that φh(Uh) = R with Rn = 0 ∈ RJ+1, 0 6 n 6 N .
Then Uh exists and is a unique solution of the scheme.

By the consistency property and by the fact that ‖U0 − u0‖1 = O(∆x) we have that
‖φh(uh)−R‖Y = ‖φh(uh)‖Y = O(∆t+∆x). Thus, for ∆x, ∆t small enough Uh ∈ B(uh,Mh)
and by the stability property, i.e., ‖Uh − uh‖X 6 C‖φh(uh)− φh(Uh)‖Y , we have that

‖Uh − uh‖X 6 C‖φh(uh)− φh(Uh)‖Y = C‖φh(uh)−R‖Y = O(∆t+ ∆x).

It remains to prove that ‖Uh − uh‖∞ = O(∆t+ ∆x).
We set en := Un− un and L(V n

j ) := V n
j −∆t(V n

j −V n
j−1)/∆x+ ∆t λF (V n

j ). Then en
0 = 0

for 1 6 n 6 N and for 1 6 j 6 J we have

en+1
j = Un+1

j − un+1
j = L(Un

j )− un+1
j =
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(
L(Un

j )− L(un
j )
)

+
(
L(un

j )− un+1
j

)
= L(Un

j )− L(un
j ) + ∆t τn+1

j , (2.11)

where |τn+1
j | = O(∆t+ ∆x). Also

|L(Un
j )− L(un

j )| 6 (1− r)|en
j |+ r|en

j−1|+ λ∆t|Fh(Un
j )− Fh(un

j )|, (2.12)

and for ∆x, ∆t small enough Uh ∈ B(uh,Mh), so as it is stated in relation (2.6) we have
|Fh(Un

j )− Fh(un
j )| 6 c1|en

j |+ c2‖en‖1. Therefore,∣∣L(V n
j )− L(W n

j )
∣∣ 6 (1 + c∆t)‖en‖1, (2.13)

and

|en+1
j | 6 (1 + c∆t)‖en‖1 + ∆t |τn+1

j |, j = 1, . . . , J. (2.14)

Thus

‖en‖∞ = max
06j6J

|en| 6 (1 + c∆t)‖en‖1 +O(∆t+ ∆x) (2.15)

and, in addition, from Eq. (2.14) we have

‖en+1‖1 6 (1 + c∆t)‖en‖1 +O(∆t+ ∆x). (2.16)

Therefore, by relations (2.15) and (2.16) recursively we obtain

‖en‖∞ 6 C‖e0‖1 +O(∆t+ ∆x), (2.17)

for some constant C and for every n, 1 6 n 6 N . Finally, we deduce that

max
06n6N

‖en‖∞ = max
06n6N

‖Un − un‖∞ 6 C‖e0‖1 +O(∆t+ ∆x), (2.18)

and taking also into account that ‖e0‖1 = ‖U0 − u0‖1 = O(∆x), we get the required result

max
06n6N

‖en‖∞ = max
06n6N

‖Un − un‖∞ = O(∆t+ ∆x). (2.19)
�

3. The Lax — Wendroff Scheme

For the following analysis we will use the notations given in the previous section. Also,
for convenience we will denote by I1(u) :=

∫ 1

0
f ′(u)f(u)dx and, accordingly, I1h(Un) :=∑J ′′

j=0 f
′(Un

j )f(Un
j ). In the following, f ′ is assumed to be locally Lipschitz with constant L′

and bounded, i.e., |f ′(s)| 6M1 for s > 0 and some constant M1.
In order to derive a Lax - Wendroff Scheme for problem (1.1) we note that ut = −ux +

λF (u) and utt = uxx + λ(Ft(u) − Fx(u)). Thus, by expanding u(x, t + ∆t) about the point
(x, t) we obtain

u(x, t+ ∆t) = u(x, t)−∆tux(x, t) +
∆t2

2
uxx(x, t) + λ∆tF (u(x, t))+

λ
∆t2

2
(Ft(u(x, t))− Fx(u(x, t))) +O(∆t3). (3.1)
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Note also that by using the fact that ut = −ux + λF (u) we have G(u) := Ft(u) − Fx(u) =
G1(u) +G2(u)ux +G3(u) where the expressions for Gi, i = 1, 2, 3 are

G1(u) = λ
f ′(u)f(u)

I4(u)
, G2(u) = −2

f ′(u)

I2(u)
,

G3(u) = −2
f(u)

I3(u)

(
λ
I1(u)

I2(u))
− (f(u(1, t))− f(u(0, t))

)
.

Taking the central differences for the approximation of ux and uxx, we can derive the following
Lax — Wendroff scheme:

Un+1
0 = 0, (3.2a)

Un+1
j =

r

2
(1 + r)Un

j−1 + (1− r2)Un
j −

r

2
(1− r)Un

j+1 + λ∆tFh(Un
j ) + λ

∆t2

2
Gh(Un

j ), (3.2b)

Un+1
J =

(
1− 3r

2
+
r2

2

)
Un

J +(2r−r2)Un
J−1−

r

2
(1−r)Un

J−2+λ∆tFh(Un
J )+λ

∆t2

2
Gh(Un

J ), (3.2c)

for j = 1, . . . , J − 1, 0 6 n 6 N − 1 and U0 known. Also

Gh(Un
j ) = G1h(Un

j ) +G2h(Un
j )

(
Un

j+1 − Un
j−1

2∆x

)
+G3h(Un

j ), j = 1, . . . , J − 1,

Gh(Un
J ) = G1h(Un

J ) +G2h(Un
J )

(
3Un

J − 4Un
J−1 + Un

J−2

2∆x

)
+G3h(Un

J ),

where

G1h(Un
j ) = λ

f ′(Un
j )f(Un

j )

I4
h(Un)

, G2h(Un
j ) = −2

f ′(Un
j )

I2
h(Un

j )
,

G3h(Un
j ) = −2

f(Un
j )

I3
h(Un

j )

(
λ
I1h(Un)

I2
h(Un))

− (f(Un
J )− f(Un

0 )

)
.

Note that for the approximation of the solution at the J-th point the one-sided, second-
order approximation of the derivatives ux

n
J and uxx

n
J , i.e., the Beam Warming method, is

used to maintain the O(∆x2) accuracy of the scheme.
This scheme can give a more accurate approximation of the solution of order O(∆t2 +

∆x2), subject to the fact that for the integral of the source term a second order approximation
rule is used.

3.1. Consistency. In the present case, we redefine the mapping φh : B(uh, R) ⊂ X → Y
in the appropriate, for the Lax-Wendroff scheme, way

φh(V 0, V 1, . . . , V N) = (Z0, Z1, . . . , ZN), Z0 = V 0 − U0, Zn+1
0 = 0,

Zn+1
j =

1

∆t

(
r

2
(1+r)V n

j−1 +(1−r2)V n
j −

r

2
(1−r)V n

j+1 +λ∆tFh(V n
j )+λ

∆t2

2
Gh(V n

j )−V n+1
j

)
,

Zn+1
J =

1

∆t

((
1−3r

2
+
r2

2

)
V n

J +(2r−r2)V n
J−1−

r

2
(1−r)V n

J−2+λ∆tFh(V n
J )+λ

∆t2

2
Gh(V n

J )−V n+1
J

)
,

for j = 1, . . . , J − 1 and 0 6 n 6 N − 1.
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Proposition 3.1. If we assume that f satisfies (1.2a), with f ′ being locally Lipschitz,
and that u is a C3 global bounded solution of problem (1.1) (i.e. the initial data are smooth
enough and λ 6 λ∗, u0(x) < w2(x) if (1.2b) holds or

∫∞
0
ds/f(s) = ∞), then, if ‖u0(x) −

U0‖1 = o(1), the local discretization error for the scheme (3.2b), (3.2c) satisfies the relation

‖φh(uh)‖Y = O(∆t2 + ∆x2).

Proof. We have τn
0 = 0, for 1 6 n 6 N and for 0 6 n 6 N − 1, 1 6 j 6 J − 1 that

|τn+1
j | = 1

∆t

∣∣∣∣r2(1 + r)un
j−1 + (1− r2)un

j −
r

2
(1− r)un

j+1 + λ∆tFh(un
j ) + λ

∆t2

2
Gh(un

j )− un+1
j

∣∣∣∣.
Therefore,

|τn+1
j | = 1

∆t

∣∣∣∣r2(1 + r)

(
un

j −∆xux
n
j +

∆x2

2
uxx

n
j −

∆x3

6
uxxx

n
j + · · ·

)
+

(1− r2)un
j −

r

2
(1− r)

(
un

j + ∆xux
n
j +

∆x2

2
uxx

n
j +

∆x3

6
uxxx

n
j + · · ·

)
+ λ∆tFh(un

j )+

λ
∆t2

2
Gh(un

j )−
(
un

j + ∆tut
n
j +

∆t2

2
utt

n
j +

∆t3

6
uttt

n
j + · · ·

) ∣∣∣∣
or

|τn+1
j | = 1

∆t

∣∣∣∣−∆t(ut
n
j + ux

n
j ) + λ∆tFh(un

j ) +
∆t2

2
(uxx

n
j − utt

n
j + λGh(un

j ))−

∆t∆x2

6
uxxx

n
j +

∆t3

6
uttt

n
j + · · ·

∣∣∣∣ 6 ∣∣λ (Fh(un
j )− F (un

j )
) ∣∣+

∆t

2

(∣∣uxx
n
j − utt

n
j + λGh(un

j ))
∣∣)+

∆x2

6

∣∣uxxx
n
j

∣∣+
∆t2

6

∣∣uttt
n
j

∣∣+ · · ·

As is shown in Proposition 2.1, we have |Fh(un
j ) − F (un

j )| = O(∆x2). Also, utt = uxx +
λ(Ft(u)− Fx(u)) = uxx + λG(u), and uxx

n
j − utt

n
j + λGh(un

j ) = λG(un
j )− λGh(un

j ) and in a
similar way we have∣∣G1(un

j )−G1h(un
j )
∣∣ = λ

∣∣∣∣f ′(un
j )f(un

j )

I4(un)
−
f ′(un

j )f(un
j )

I4
h(un)

∣∣∣∣ 6 c1

∣∣∣∣ 1

I4(un)
− 1

I4
h(un)

∣∣∣∣ 6 O(∆x2),

for some constant c1 = 4λf 4(0)M1/f
8(Mu). Also,∣∣∣∣G2(un

j )ux
n
j −G2h(un

j )
un

j+1 − un
j−1

2∆x

∣∣∣∣ =

∣∣∣∣G2(un
j )ux

n
j −G2h(un

j )

(
ux

n
j +

∆x2

6
uxxx

n
j + · · ·

)∣∣∣∣ =

∣∣∣∣2f ′(un
j )

I2(un)
ux

n
j −

2f ′(un
j )

I2
h(un)

ux
n
j

∣∣∣∣+O(∆x2) 6 c2

∣∣∣∣ 1

I2(un)
− 1

I2
h(un)

∣∣∣∣+O(∆x2) 6 O(∆x2),

for some constant c2 = 2M1M2, with M2 = supux, x ∈ [0, 1]. Finally,

∣∣G3(un
j )−G3h(un

j )
∣∣ =

∣∣∣∣2 f(un
j )

I3(Un
j )

(
λ
I1(un)

I2(un))
− (f(un

J)− f(un
0 )

)
− 2

f(un
j )

I3
h(un

j )

(
λ
I1h(un)

I2
h(un))

−

(f(un
J)− f(un

0 )

)∣∣∣∣6c3

(∣∣∣∣ 1

I2
h(un)

− 1

I2(un)

∣∣∣∣+ |I1(un)− I1h(un)|+ |I(un)− Ih(un)|
)
6O(∆x2)
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for c3 = max{2λf(0)(1 +M1f(0)f 2(Mu))/f 5(Mu), 6λf 4(0)M1(1 + f(0)f 2(Mu))/f 8(Mu)}.
The last inequality is obtained by adding and subtracting the term 2f(un

j )(λI1h(un)/I2
h(un))−

(f(un
J)− f(un

0 ))/I3(un
j ), taking into account that

∣∣f(un
j )/I3(Un

j )− f(un
j )/I3

h(Un
j )
∣∣ 6 O(∆x2)

and that
∣∣I1(un)/I2(un)) − I1h(un)/I2

h(un))
∣∣ 6 O(∆x2). Therefore,

∣∣G(un
j ) − Gh(un

j )
∣∣ 6

O(∆x2). Thus, we obtain that for 1 6 n 6 N , |τn
j | = O(∆t2 + ∆x2). In addition

|τn+1
J |= 1

∆t

∣∣∣∣(1− 3r

2
+
r2

2
)un

J +(2r−r2)un
J−1−

r

2
(1−r)un

J−2+λ∆tFh(un
J)+λ

∆t2

2
G(un

J)−un+1
J

∣∣∣∣=
1

∆t

∣∣∣∣(1− 3r

2
+
r2

2
)un

J + (2r − r2)

(
un

J −∆xux
n
J +

∆x2

2
uxx

n
J −

∆x3

6
uxxx

n
j + · · ·

)
−

r

2
(1− r)

(
un

J − 2∆xux
n
J + 2∆x2uxx

n
J −

4∆x3

3
uxxx

n
J + · · ·

)
+ λ∆tFh(un

J)+

λ
∆t2

2
G(un

J)−
(
un

J + ∆t ut
n
J +

∆t2

2
utt

n
J +

∆t3

6
uttt

n
J + · · ·

) ∣∣∣∣
or in a similar way as before

|τn+1
J | = 1

∆t

∣∣−∆t(ut
n
J + ux

n
J) + λ∆tFh(un

J) + λ
∆t2

2
G(un

J)− ∆t2

2
utt

n
J +

∆t2

2
uxx

n
J+

∆t∆x2

3
uxxx

n
J +

∆t3

6
uttt

n
J + · · ·

∣∣ 6 λ
∣∣Fh(un

J)− F (un
J)
∣∣+ λ

∣∣G(un
J)−Gh(un

J)
∣∣+

∆x2

3

∣∣uxxx
n
J

∣∣+
∆t2

6

∣∣uttt
n
J

∣∣+ · · · = O(∆t2 + ∆x2).

Therefore, we have |τn
j | = O(∆t2 + ∆x2), for j = 0, . . . , J, n = 1, . . . , N and hence, using

also the assumption on the initial condition, the scheme is consistent and lim
∆x, ∆t→0

‖φh(uh)‖Y =

lim
∆x, ∆t→0

‖lh‖Y = 0. �

3.2. Stability.

Proposition 3.2. Under the hypotheses of proposition (3.1) the discretization (2.1) is
stable for r = ∆t/∆x 6 1.

Proof. Let V, W ∈ B(uh,Mh) of X with φh(V ) = Z and φh(W ) = S. We set En =
V n −W n ∈ RJ+1, 0 6 n 6 N . We have for j = 1, . . . , J − 1 that

|En+1
j | =

∣∣∣∣r2(1+r)V n
j−1+(1−r2)V n

j −
r

2
(1−r)V n

j+1+λ∆tFh(V n
j )+λ

∆t2

2
G(V n

j )− r
2

(1+r)W n
j−1−

(1− r2)W n
j +

r

2
(1− r)W n

j+1 − λ∆tFh(W n
j )− λ∆t2

2
G(W n

j )−∆t(Zn+1
j − Sn+1

j )

∣∣∣∣ 6
r

2
(1 + r)|En

j−1|+ (1− r2)|En
j |+

r

2
(1− r)|En

j+1|+ λ∆t
∣∣Fh(V n

j )− Fh(W n
j )
∣∣+

λ
∆t2

2

∣∣Gh(V n
j )−Gh(W n

j )
∣∣+ ∆t

∣∣(Zn+1
j − Sn+1

j )
∣∣.
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We have, as is shown in proposition (2.2), that
∣∣Fh(V n

j ) − Fh(W n
j )
∣∣ 6 c1|En

j | + c2‖En‖1,

j = 1, . . . , J . Then, regarding the term
∣∣Gh(V n

j )−Gh(W n
j )
∣∣ we obtain

|G1h(V n
j )−G1h(W n

j )|=λ

∣∣∣∣f ′(V n
j )f(V n

j )

I4
h(V n)

−
f ′(W n

j )f(W n
j )

I4
h(W n)

∣∣∣∣6λ∣∣∣∣f ′(V n
j )

I2
h(V n)

(Fh(V n
j )− Fh(W n

j ))

∣∣∣∣+
λ

∣∣∣∣f ′(W n
j )

I2
h(W n

j )

[
1

Ih(V n)
(f ′(V n

j )−f ′(W n
j )) + f ′(W n

j )

(
1

I2
h(V n

j )
− 1

I2
h(W n

j )

)]∣∣∣∣6c3|En
j |+ c4‖En‖1,

where c3 = max{λM1L/f
4(Mh), λf(0)L′/f 4(Mh)} and c4 = 2λM1f

2(0)L/f 6(Mh). Also∣∣∣∣G2h(V n
j )
V n

j+1 − V n
j−1

2∆x
−G2h(W n

j )
W n

j+1 −W n
j−1

2∆x

∣∣∣∣ =
1

2∆x

∣∣G2h(V n
j )(En

j+1 − En
j−1)+

(W n
j+1 −W n

j−1)
(
G2(V n

j )− V2(W n
j )
) ∣∣ 6 1

2∆x

[
c5

(∣∣En
j+1

∣∣+
∣∣En

j

∣∣+
∣∣En

j−1

∣∣)+ c6‖En‖1

]
,

where c5 = max{2M1/f
2(Mh), 4L′Mh/f

2(Mh), c6 = 8MhM1f(0)L/f 4(Mh). Finally,

∣∣G3h(V n
j )−G3h(W n

j )
∣∣ =

∣∣∣∣− 2
f(V n

j )

I3
h(V n)

(
λ
I1h(V n)

I2
h(V n)

− f(V n
J ) + f(V n

0 )

)
+

2
f(W n

j )

I3
h(W n)

(
λ
I1h(W n)

I2
h(W n)

− f(W n
J ) + f(W n

0 )

)
6 c7|En

j |+ c8‖En‖1) 6 c7|En
j |+ c8‖En‖1.

In this case,

c8 = max

{
4λf 3(0)M1L

f 7(Mh)
,
2λf(0)L

f 3(Mh)
,
2λf(0)L(M1L+ f(0)L′)

f 5(Mh)
,
6λf 4(0)M1L

f 8(Mh)
,
6f 4(0)L

f 6(Mh)

}
,

c7 =
2Lf(0)

f 3(Mh)

(
λM1

f 2(Mh)
+ 1

)
.

Note also that here the fact that
∣∣I1h(V n)) − I1h(W n)

∣∣ 6 (M1L + f(0)L′)
∣∣∣∣En

∣∣∣∣
1

and that
|En

J | 6 ‖En‖1 was used.
Thus, by denoting C ′1 = max{c1, c2, λrc5/4, λrc6/4}, C2 = (λ/2) max{c3, c4, c7, c8} and

given that r 6 1 we obtain

|En+1
j | 6

[
r

2
(1 + r) + C ′1∆t

]
|En

j−1|+ [(1− r2) + C ′1∆t+ C2∆t2]|En
j |+[

r

2
(1− r) + C ′1∆t

]
|En

j+1|+ [C ′1∆t+ C2∆t2]‖En‖1 + ∆t
∣∣(Zn+1

j − Sn+1
j )

∣∣. (3.3)

for 1 6 j 6 J − 1. In a similar way we deduce that

|En+1
J |6

(
1− 3r

2
+
r2

2

)∣∣En
J

∣∣+ (2r − r2)
∣∣En

J−1

∣∣+
r

2
(1− r)|En

J−2|+

λ∆t
∣∣Fh(V n

J )− Fh(W n
J )
∣∣+ λ

∆t2

2

∣∣Gh(V n
J )−Gh(W n

J )
∣∣+ ∆t

∣∣(Zn+1
J − Sn+1

J )
∣∣,

or

|En+1
J | 6

[(
1− 3r

2
+
r2

2

)
+ C ′′1 ∆t+ C2∆t2

]
|En

J |+ [(2r − r2) + C ′′1 ∆t]|En
J−1|+
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[
r

2
(1− r) + C ′′1 ∆t

]
|En

J−2|+ [C ′′1 ∆t+ C2∆t2]‖En‖1 + ∆t
∣∣(Zn+1

J − Sn+1
J )

∣∣, (3.4)

where

C ′′1 = max

{
c1, c2, c9, c10

}
, c9 = max

{
8M1

f 2(Mh)
,
64M1L

′

f 2(Mh)

}
, c10 =

32f(0)MhM1L

f 4(Mh)
.

Note that the terms |En
j |, j = 1, . . . , J − 1 can be bounded in the following way:

|En+1
j | 6 2r|En

j−1|+ [(1− r2) + C ′1∆t+ C2∆t2]|En
j |+

[
r

2
(1− r) + C ′1∆t

]
|En

j+1|+

[C ′1∆t+ C2∆t2]‖En‖1 + ∆t
∣∣(Zn+1

j − Sn+1
j )

∣∣. (3.5)

Then, observing that

r

2
(1 + r)|En

J−2|+ (2r − r2)|En
J−1|+

r

2
(1− r2)|En

J−2| =

r|En
J−2|+ (2r − r2)|En

J−1| 6 2r(|En
J−2|+ |En

J−1|+ |En
J |)

and that

(1− r2)|En
J−1|+

(
1− 3r

2
+
r2

2

)
|En

J | 6 (1− r2)(|En
J−1|+ |En

J |),

we can combine Eqs. (3.4) and (3.5), with C1 = max{C ′1, C ′′1}, to obtain

‖En+1‖1 6 [2r + C1∆t]‖En‖1 + [(1− r2) + C1∆t+ C2∆t2]‖En‖1+[
r

2
(1− r) + C1∆t

]
‖En‖1 + ∆t

∣∣∣∣(Zn+1 − Sn+1)
∣∣∣∣

1

or

‖En+1‖1 6

[(
1 +

5r

2
− 3r2

2

)
+ C1∆t+ C2∆t2

]
‖En‖1 + ∆t

∣∣∣∣(Zn+1 − Sn+1)
∣∣∣∣

1
.

Therefore by a standard recursive argument we obtain

max
06n6N

‖En‖1 6 C

(
‖E0‖1 + ∆t

N∑
n=1

‖(Zn − Sn)‖1

)
= C‖φh(V )− φh(W )‖Y , (3.6)

for some constant C. Thus ‖V −W‖X 6 C‖φh(V )− φh(W )‖Y , and the scheme is stable. �

3.3. Convergence. Regarding the convergence of the scheme, we have the following
proposition:

Proposition 3.3. Assuming that the hypotheses of proposition (3.1) hold and that U0 is
such that ‖U0 − u0‖1 = O(∆x2) as ∆x → 0, then the numerical solution of the scheme Uh

satisfies
‖Uh − uh‖X = O(∆t2 + ∆x2),

and
‖Uh − uh‖∞ = O(∆t2 + ∆x2),

as ∆x, ∆t→ 0.



404 C. V.Nikolopoulos

Proof. Given that ‖U0−u0‖1 = O(∆x2) and using the same arguments as in proposition
(2.3), we have that ‖Uh − uh‖X = O(∆t2 + ∆x2).

The relation
‖Uh − uh‖∞ = max

06n6N
‖en‖∞ = O(∆t2 + ∆x2),

also holds. Indeed, for en = Uh
n − uh

n we have |en
0 | = 0, for 1 6 n 6 N and

en+1
j = Un+1

j − un+1
j = L(Un

j )− L(un
j ) + L(un

j )− un+1
j ,

for 0 6 n 6 N − 1, where

L(Un
j ) :=

r

2
(1+r)Un

j−1+(1−r2)Un
j −

r

2
(1−r)Un

j+1+λ∆tFh(Un
j )+λ

∆t2

2
Gh(Un

j ), j=1, . . . , J−1,

L(Un
J ) :=

(
1− 3r

2
+
r2

2

)
Un

J + (2r − r2)Un
J−1 −

r

2
(1− r)Un

J−2 + λ∆tFh(Un
J ) + λ

∆t2

2
Gh(Un

J ).

Hence

|en+1
j | 6 |L(Un

j )− L(un
j )|+ ∆t|τn+1

j | (3.7)

for j = 1, . . . , J . Then, following a similar procedure as for the derivation of Eqs. (3.4),
(3.5), we obtain∣∣L(Un

j )− L(un
j )
∣∣ 6 r

2
(1 + r)|en

j−1|+ [(1− r2)]|en
j | −

r

2
(1− r)|en

j+1|+

λ∆t
∣∣Fh(Un

j )− Fh(un
j )
∣∣+ λ

∆t2

2

∣∣Gh(Un
j )−Gh(un

j )
∣∣, j = 1, . . . , J − 1,∣∣L(Un

J )− L(un
J)
∣∣ 6 (1− 3r

2
+
r2

2

)
|en

J |+ (2r − r2)|en
J−1| −

r

2
(1− r)|en

J−2|+

λ∆t
∣∣Fh(Un

J )− Fh(un
J)
∣∣+ λ

∆t2

2

∣∣Gh(Un
J )−Gh(un

J)
∣∣.

Thus, for constant C0 > (2 + 5r − 3r2)/2 we have∣∣L(Un
j )− L(un

j )
∣∣ 6 (C0 + C1∆t+ C2∆t2)‖en‖1, j = 1, . . . , J.

Hence, by Eq. (3.7) we obtain

‖en‖∞ 6 (C0 + C1∆t+ C2∆t2)‖en‖1 +O(∆t2 + ∆x2). (3.8)

On the other hand, we can also derive the relation

‖en+1‖1 6 (C0 + C1∆t+ C2∆t2)‖en‖1 +O(∆t2 + ∆x2). (3.9)

By relations (3.8) and (3.9) we deduce that, for some constant C,

‖en‖∞ 6 C‖e0‖1 +O(∆t2 + ∆x2),

for every n, 1 6 n 6 N and

max
O6n6N

‖en‖∞ 6 C‖e0‖1 +O(∆t2 + ∆x2).

Finally, provided that ‖e0‖1 = O(∆x2), we have

max
O6n6N

‖en‖∞ = O(∆t2 + ∆x2).
�
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Remark 3.1. Note that in the above Lax — Wendroff scheme omitting the term λ∆t2×
G(u)/2 will result in a scheme that is of order O(∆t+∆x2). This can easily be seen if in the
relevant proofs G(u) = 0 is set. Moreover, a modification of scheme (3.2) can be obtained
by using the Beam Warming approximation for j = 2, . . . , J and the Lax — Wendroff
approximation for j = 1. Such a scheme will have the same stability properties as (3.2).

3.4. High-resolution scheme. In the following, motivated by the analysis in [18], we
will introduce a high-resolution method. This method will allow for better behaviour of the
numerical solution near the discontinuities with the use of the upwind method and a higher
order of accuracy in the smooth parts of the solution with the use of the Lax — Wendroff or
the Beam-Warming method. For simplicity, we will consider the Lax — Wendroff approach
only for the linear part of the equation (i.e., setting G = 0 in (3.2)) which gives accuracy
O(∆t+ ∆x2) for the smooth parts of the solution.

We can construct a finite volume scheme by integrating Eq. (1.1a) over the set
[xj−1/2, xj+1/2]× [tn, tn+1], where xj+a := xj + a∆x. Indeed in such a way we obtain

xj+1/2∫
xj−1/2

(u(x, tn+1)− u(x, tn)) dx=−
tn+1∫
tn

(u(xj+1/2, t)− u(xj−1/2, t)) dt+ λ

tn+1∫
tn

xj+1/2∫
xj−1/2

F (u(x, t)) dx dt.

(3.10)
Equation (3.10) defines a weak solution for problem (1.1). As a next step, we consider
numerical methods of the form

Un+1
j = Un

j − r[Φ(Un; j)− Φ(Un; j − 1)] + λ∆tFh(Un
j ), (3.11)

where Φ(un; j) := Φ(Un
j−2, U

n
j−2, U

n
j−1, U

n
j , U

n
j+1). Φ(Un; j) = Un

j for the upwind method,

Φ(Un; j) =
1

2
(Un

j+1 + Un
j )− r

2
(Un

j+1 − Un
j )

for the Lax — Wendroff method and for the Beam Warming method

Φ(Un; j) = Un
j +

1

2
(1− r)(Un

j − Un
j−1).

Then method (3.11) is consistent with Eq. (3.10) if Φ reduces to the true homogeneous flux
for constant flow.

In order to investigate the stability of this method, we need the following definitions. For
a grid function Un ∈ RJ+1 we define the total variation by TV (Un) :=

∑J
j=1 |Un

j −Un
j−1|. We

can also extend the grid function Uh ∈ X by defining a piecewise constant function uh(x, t) :=
Un

j for (x, t) ∈ [xj−1/2, xj+1/2) × [tn, tn+1), for r fixed. In this case, for uh(x, tn) = un
h,

TV (un
h) = TV (Un). Also we define the total variation TVT (Uh), of Uh ∈ X in both space and

time in the following way : TVT (Uh) :=
∑[T/∆t]

n=0

∑J
j=1

[
∆t|Un

j − Un
j−1|+ ∆x|Un+1

j − Un
j |
]
=∑[T/∆t]

n=0 (∆t TV (Un) + ‖Un+1 − Un‖1), and TVT (uh) = TVT (U). Note that the set KT :=
{v ∈ L1,T ([0, 1]) : TVT (v) 6 R, R > 0} is a compact subset of L1 T ([0, 1]) := {v, [0, 1]→ R, :
‖v‖1 T :=

∫ T

0

∫ 1

0
v(x, t)dxdt <∞}.

Proposition 3.4. For a method of the general form (3.11), if the numerical homogeneous
flux Φ is Lipschitz continuous, r < 1 and for the initial data U0 we have TV (U0) <∞, then
the method is TV-stable.
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Proof. We know ([16, Theorem 12.2]) that for a numerical method with a Lipschitz
continuous numerical flux, if for any initial data u0 there exist some ∆t0 and R > 0 such
that TV (Un) < R for every n and ∆t with ∆t < ∆t0, n∆t 6 T , then the method is
TV -stable.

In our case, first, we have to show that the relation TV (Un) 6 R (and consequently
|Un| 6 R/2) implies that ‖Un+1 − Un‖1 6 c∆t. By Eq. (3.11) we have

‖Un+1 − Un‖1 = ∆t

[ J∑
j=1

|Φn
j+1/2 − Φn

j−1/2|+ λ∆xFh(Un
j )

]
6

∆t

[
K

J∑
j=1

1∑
i=−2

|Φn
j+1/2 − Φn

j−1/2|+ λ

J∑
j=1

∆xFh(Un
j )

]
6 c∆t,

for c = 4KR + λf(0)/f 2(R/2).
Thus, now it is sufficient to show that TV (Un) 6 R which can be implied by the relation

TV (Un+1) < (c1 + c2∆t)TV (Un) for some constants c1, c2 independent of ∆t. Note also
that according to [15], the discontinuities in the initial condition simply propagate along the
characteristics and even in this case the solution remains bounded if u0 is bounded. Thus,
we may assume, by consistency, that Un is also bounded by some constant M. We have

J∑
j=1

|Un+1
j − Un+1

j−1 | =
J∑

j=1

∣∣Un
j − r[Φ(Un; j)− Φ(Un; j − 1)] + λ∆tFh(Un

j )− Un
j−1+

r[Φ(Un; j − 1)− Φ(Un; j − 2)]− λ∆tFh(Un
j−1)

∣∣ 6 J∑
j=1

[
|Un

j − Un
j−1|+

rc1

1∑
i=−2

|Un
j+i − Un

j+i−1|+ c2|Un
j − Un

j−1|
]
6 (c3 + c2∆t)

J∑
j=1

|Un
j − Un

j−1|,

for some constant c1, c2 = λL/f 2(M), and c3 = 1 + 4rc2. Hence method (3.11) is TV -
stable. �

Therefore, a method of the form (3.11), which generates a numerical solution Uh, con-
sistent with the conservation law (3.10) is convergent to an element w ∈ KT . From the
Lax-Wendroff theorem we know that w is also a weak solution of (3.10) ([16]). The method
converges in the sense that dist(U,W)→ 0 as ∆t→ 0 for W = {w, w is a weak solution of
(3.10)}, dist (U,W) := infw∈W ‖U − w‖ (Theorem 12.3 in [16]).

In the following, we can introduce a high-resolution method by specifying the form of Φ
with the use of appropriate limiters. We consider a specific form of (3.11)

Un+1
j =Un

j −r(Un
j −Un

j−1)+λ∆tfh(Un
j )−1

2
r(1−r)

[
φ(θj+1/2)(Un

j+1−Un
j )+φ(θj−1/2)(Un

j −Un
j−1)

]
.

(3.12)
The limiter φ(θj) is defined for the minmod method in the following way:

φ(θ) = minmod (1, θ) =


1, for 1 < |θ|, θ > 0,

θ, for |θ| < 1, θ > 0,

0, for θ 6 0,
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for j = 2, . . . , J − 2 and θn
j := (Un

j−1 − Un
j−2)/(Un

j − Un
j−1). Note that for φ(θ) = 1 we use

the Lax — Wendroff method, for φ(θ) = θ the Beam Warming method, and for φ(θ) = 0
the upwind method. To ensure that for j = 2 we have the Lax — Wendroff approximation
and that for j = J we have the Beam Warming approximation, we set φ(θ1+1/2) = φ(θ1/2) =
max{0, sgn (θ)} and φ(θJ−1/2) = φ(θJ−1−1/2) = max{0, θ}. Different choices of limiters
([16,18]) can be treated in a similar way. For simplicity, here we consider only the minimod
method.

Such a method, as is stated by Harten’s theorem [10], is TV-stable if r < 1 and 0 6
φ(θ) 6 minmod (2, 2θ). These conditions are clearly satisfied by scheme (3.12).

4. Numerical Results and Comparison

In this section we present the results of numerical experiments obtained by the upwind
(UWM), the Lax — Wendroff (LWM) and the high-resolution method. All the methods
were implemented in MATLAB programs using double precision arithmetic.

We present the numerical solution of the problem for f(s) = e−s. The problem was solved
numerically on a uniform grid consisting of J = 20, 40, 80, or 160 subintervals, for r = 1/2,
λ = 0.5476 = λ∗ − 0.1 < λ∗ = 0.6476 (the value of λ∗ is for this specific form of f , [17]),
and in a time interval [0, T ] with T = 10. The time T is chosen as to ensure, in all of the
following simulations, ‖UN −UN−1‖∞ < 10−7, that the numerical solutions reach the steady
state. Also the initial condition was taken to be u0(x) = u(x, 0) = 0.

We compare the solution at the time level tN = T with the steady state solution w(x)
which is known. More specifically, by the smaller positive root, µ of the equation

√
µ ×

ln(λ/µ2 + 1) = λ we can obtain the steady solution w(x) = w(x) = ln (λx/µ2 + 1), i.e., the
lower stable solution of the steady problem in which, starting with zero initial data, we know
that the solution of problem (1.1) converges [15]. We set ‖eN‖∞ = ‖UN − w(x)‖∞ where
w(x) is evaluated at the points 0 = x0, x1, . . . , xJ = 1.

We present in Table 4.1 the values of the calculated numerical solution at the time T
with both methods together with the exact solution and their error. In this experiment,
J = 160, r = 1/2 and ∆t = 0.0031.

T a b l e 4.1. Calculated values of Uh together with the exact solution for J = 160

x Exact Upwind UWM error Lax — Wendroff LWM error

0.1 0.13112200724761 0.12982943696673 1.2926(−3) 0.13111091697485 1.1090(−5)
0.2 0.24702705481565 0.24477407267762 2.2530(−3) 0.24700780161837 1.9253(−5)
0.3 0.35088263653835 0.34789418183696 2.9885(−3) 0.35085713563715 2.5501(−5)
0.4 0.44495981994690 0.44139433305167 3.5655(−3) 0.44492938370692 3.0436(−5)
0.5 0.53094253734067 0.52691523080510 4.0273(−3) 0.53090809842761 3.4439(−5)
0.6 0.61011401350040 0.60571090144046 4.4031(−3) 0.61007625426600 3.7759(−5)
0.7 0.68347461117119 0.67876134637587 4.7133(−3) 0.68343404251149 4.0569(−5)
0.8 0.75181930597843 0.74684695435876 4.9724(−3) 0.75177631742049 4.2989(−5)
0.9 0.81579032767599 0.81059926081556 5.1911(−3) 0.81574522030464 4.5107(−5)
1.0 0.87591394710144 0.87053653743357 5.3774(−3) 0.87586696953442 4.6978(−5)

Note that the error of both methods increases as x increases and attains its maximum value
at the point x = 1.

In addition, Fig. 4.1 shows the numerical solution of the problem with the Lax —
Wendroff method, u(x, t), 0 6 x 6 1, 0 6 t 6 T , versus the space and time. In this figure,
J = 20.
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F i g. 4.1. Numerical solution of problem (1.1) with the Lax — Wen-
droff method, versus the space and time

Figure 4.2,a shows also the maximum in the space of the numerical solution, i.e. u(1, t),
with both the upwind and Lax — Wendroff methods, versus the time, Fig. 4.2,b gives the
profile of the numerical solution at time T , again with both methods, is plotted against
space, together with the steady state w(x), 0 6 x 6 1.

a b

F i g. 4.2. Profiles of the numerical solution of problem (1.1) by the upwind and Lax — Wendroff methods
plotted together with the steady state solution: u(1, t), 0 6 t 6 T (a) and u(x, T ), 0 6 x 6 1 (b)

In Table 4.2, we present the error, the CPU time, the relative CPU time (in brackets),
and the rate of convergence for these two methods. We see that the rate converges to 1 for
the upwind method and to 2 for the Lax — Wendrof method. The maximum error of the
Lax-Wendroff method is much smaller and the CPU time for the upwind method is shorter.

T a b l e 4.2. Rates of convergence of the Upwind and Lax — Wendroff methods

J ‖Un − wh‖UP
∞ Rate CPU time, sec ‖Un − wh‖LW

∞ Rate CPU time, sec

20 3.9975(−2) 0.0492 (1) 2.6903(−3) 0.1886 (3.8338)
40 2.0816(−2) 0.9414 0.0739 (1.5009) 6.9895(−4) 1.9445 0.5815 (11.8187)
80 1.0635(−2) 0.9689 0.1370 (2.7827) 1.7930(−4) 1.9628 3.9824 (80.9441)
160 5.3774(−3) 0.9838 0.4757 ( 9.6614) 4.6978(−5) 1.9324 27.5828 (560.6251)

In Fig. 4.3 the problem is solved by both the high-resolution (with a minimod limiter)
method defined by Eq. (3.11) in 4.3,a and the Lax — Wendroff method defined in 4.3,b.
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The values of the parameters are the same as for the previous simulations, but for the
initial condition we took u(x, 0) = 0 for 0 < x < 1/4 and x > 1/2 and u(x, 0) = 1 for
1/4 6 x < 1/2, r = 0.8 and ∆t = 0.005. As is stated also in [15], the discontinuities of
the initial condition propagate along the characteristics. This can be seen in both Figs 4.3,a
and 4.3,b. More specifically, in Fig. 4.3,a produced by the Lax — Wendroff method it can
be seen that oscillations appear at the discontinuities in the direction of the characteristics
and the high-resolution method has a much better behaviour with no oscillations.

a b

F i g. 4.3. Numerical solution of problem (1.1) by the Lax — Wendroff method (a) and the high-resolution
method (b) versus the space and time for a discontinuous initial condition

This is more clear in Fig. 4.4 where the profiles of the numerical solutions presented in
Fig. 4.3 obtained by both methods are given versus the space at time t0 = 0.045.

F i g. 4.4. Profiles of the numerical solution of problem (1.1) obtained
by both the high-resolution method (solid line) and the Lax — Wen-

droff method (dashed line) for t0 = 0.045

5. Conclusions

In the present work, an upwind and a Lax — Wendroff schemes have been introduced for the
solution of a one-dimensional nonlocal problem modelling the ohmic heating of foods. These
numerical schemes are studied regarding their consistency, stability and rate of convergence
for the cases in which the problem attains a global solution in time. It has been found that
the upwind scheme is of order O(∆t + ∆x) and the Lax — Wendroff scheme is of order
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O(∆t2 + ∆x2). Also, a high resolution method has been introduced and shown to be total-
variation-stable, as well as data of some numerical experiments are presented to verify the
theoretical results.

The results of this work have shown that other finite difference methods can be adapted
to this problem having the same order of convergence as for the relevant linear problem,
in the absence of the source term, as far as an appropriate discretization is used for the
non-local term. Moreover, in order to obtain a higher-order accuracy, higher-order terms
associated with the derivatives of the non-local source term should be included. These
numerical methods can serve as a tool for investigating the behaviour of the solution of the
problem during the blow-up which is characteristic of many non-local problems like problem
(1.1). It is possible that a high-resolution method like the one introduced here, together with
the relevant theoretical analysis, will give more accurate results in the cases that singularities
can be developed during the blow-up. It is also interesting to investigate similar numerical
schemes for generalizations of problem (1.1) such as ut+(G(u))x = λF (u), where the function
G may depend on u also in a non-local way ([12,23]) as well as in parabolic problems of the
form ut = uxx + λF (u) [13, 14].

Acknowledgements. The author wishes to thank Dr. K. Housiadas for various discus-
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