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A FOURIER PSEUDOSPECTRAL METHOD FOR SOLVING

COUPLED VISCOUS BURGERS EQUATIONS

ABDUR RASHID1 AND AHMAD IZANI BIN MD. ISMAIL1

Abstract — The Fourier pseudo-spectral method has been studied for a one-
dimensional coupled system of viscous Burgers equations. Two test problems with
known exact solutions have been selected for this study. In this paper, the rate of con-
vergence in time and error analysis of the solution of the first problem has been studied,
while the numerical results of the second problem obtained by the present method are
compared to those obtained by using the Chebyshev spectral collocation method. The
numerical results show that the proposed method outperforms the conventional one in
terms of accuracy and convergence rate.
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1. Introduction

The coupled viscous Burgers equations were derived by S.E. Esipov [9] to study the model of
polydispersive sedimentation. The coupled Burgers equations are described by the following
nonlinear partial differential equations:

∂u

∂t
− ∂2u

∂x2
+ ηu

∂u

∂x
+ α

∂

∂x
(uv) = 0, x ∈ Ω, t ∈ [0, T ], (1.1)

∂v

∂t
− ∂2v

∂x2
+ ξv

∂v

∂x
+ β

∂

∂x
(uv) = 0, x ∈ Ω, t ∈ [0, T ], (1.2)

with the initial conditions

u(x, 0) = f(x), v(x, 0) = g(x), x ∈ Ω, (1.3)

and the boundary conditions

u(−L, t) = u(L, t), v(−L, t) = v(L, t), t ∈ [0, T ], (1.4)

where Ω = [−L,L], η and ξ are real constants, α and β are arbitrary constants depending
on the system parameters such as the Péclet number, the Stokes velocity of particles due
to gravity, and the Brownian diffusivity [15]. This coupled system is a simple model of
sedimentation or evolution of scaled volume concentrations of two kinds of particles in fluid
suspensions or colloids under the effect of gravity. J.M. Burgers [4] and J.D. Cole [6] have
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found that Burgers equations describe various kinds of phenomena such as a mathematical
model of turbulence and the approximate theory of flow through a shock wave traveling in
viscous fluid.

This equation is of interest from the numerical point of views, because in general, an-
alytical solutions are not available. S.E. Esipov [9] presented numerical simulations for
(1.1)–(1.3) and compared the results with experimental data. D. Kaya [8] used the decom-
position method and obtained the solution of the homogenous and inhomogeneous coupled
viscous Burgers equations in the form of convergent power series. A.H. Khater et al. [13]
used the Chebyshev spectral collocation method for solving the coupled Burgers equations
and obtained approximate solutions. M. Dehghan, A. Hamidi, and M. Shakourifar [7] ob-
tained numerical results of coupled viscous Burgers equations by using the Adomian-Pade
technique.

Several authors studied mainly the exact solutions of nonlinear equations by using various
methods. For example, A. A. Soliman [17] obtained an exact solution of coupled viscous
Burgers equations by the modified extended tanh-function method. The variational iteration
method was used in [1] to solve one-dimensional (1D) Burgers and coupled Burgers equations;
the solution was obtained under a series of initial conditions and transformed into a closed
form.

Spectral methods are becoming increasingly popular in applied mathematics and scien-
tific computing for solving of partial differential equations. The main advantage of these
methods in their accuracy for a given number of unknowns. For problems whose solutions
are sufficiently smooth, they exhibit an exponential rate of convergence/spectral accuracy.
There are three most commonly used spectral versions, namely the Galerkin, tau and colloca-
tion methods. Among them, the spectral collocation/ pseudospectral method is particularly
attractive owing to its economy. Comprehensive discussions on spectral methods can be
found in review articles and monographs (see, for example, [2, 3, 11,14,16]).

In solving time-dependent partial differential equations numerically by spectral methods,
spectral differentiation is used in space, while the finite difference method is used in the time
direction. In principle, we have to sacrifice the spectral accuracy in time, but in practice
a small time step with a finite difference formula of order one or higher often results in a
satisfactory global accuracy. Small time steps are much more affordable than small space
steps, i.e., they affect the computation time but not the storage. Details are given in [5,10,18].

This paper presents a Fourier pseudospectral method for solving the coupled viscous
Burgers equations with a set of initial and periodic boundary conditions. Two test problems
with known exact solutions have been selected for this study. It is worth mentioning that the
numerical solutions of the first problem are not available in the literature, while the numerical
solutions of the second problem are available. The rate of convergence in time and the error
analysis of the first problem have been studied by the Fourier pseudospectral method. The
results obtained by the Fourier pseudospectral method for the second problem are compared
to those obtained by using the Chebyshev spectral collocation method. The numerical
results for the second problem demonstrate that the Fourier pseudospectral method gives
better results than those obtained by the Chebyshev spectral collocation method.

This paper is organized as follows: In Section 2, we describe the proposed pseudospec-
tral method. The numerical results are presented and discussed in Section 3. Finally the
conclusion is given in Section 4.
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2. Fourier pseudospectral discretization

In this Section, we will apply the Fourier pseudospectral method to (1.1)–(1.4). For sim-
plicity, we will consider the spatial domain [−L,L]. The Fourier pseudospectral method
involves two basic steps. First, we construct a discrete representation of the solution by
using a trigonometric polynomial to interpolate the solution at collocation points. Second,
the equations for the discrete values of the solution are obtained from the original equations.
This second step involves finding an approximation for the differential operator in terms of
the discrete values of the solution at collocation points. (For details, see [3, 5, 16]).

We approximate the exact solutions u(x, t) and v(x, t) by uN(x, t) and vN(x, t), respec-
tively, which interpolate u(x, t) and v(x, t) at the following set of collocation points:

−L = x0 < x1 < x2 < . . . < xN = L with xj = L

(
2j

N
− 1

)
, j = 0, 1, . . . , N,

where N is an even number.
The approximation uN(x, t) and vN(x, t) have the form

uN(x, t) =
N∑
j=0

ujgj(x), vN(x, t) =
N∑
j=0

vjgj(x), (2.1)

where uj = u(xj, t), vj = v(xj, t) and gj(xk) = δkj (= 1, if j = k, otherwise 0).
Therefore, we have uN(xj, t) = uj, vN(xj, t) = vj, j = 0, 1, . . . , N. In fact, gj(x) can be

chosen as

gj(x) =
1

N + 1

N/2∑
`=−N/2

1

c`
ei`µ(x−xj), (2.2)

where c` = 1(|`| 6= N/2), c−N/2 = cN/2 = 2, µ = π/L. By direct computations, we can easily
verify that gj(xk) = δkj . Substituting (2.2) into (2.1), we obtain

uN(x, t) =

N/2∑
`=−N/2

1

c`
ei`µx

1

N + 1

N∑
j=0

uje
−i`µxj , (2.3)

vN(x, t) =

N/2∑
`=−N/2

1

c`
ei`µx

1

N + 1

N∑
j=0

vje
−i`µxj . (2.4)

With the definition

û` =
1

c`(N + 1)

N∑
j=0

uje
−i`µxj , v̂` =

1

c`(N + 1)

N∑
j=0

vje
−i`µxj , (2.5)

(2.3), (2.4) becomes

uN(x, t) =

N/2∑
`=−N/2

û`e
i`µx, vN(x, t) =

N/2∑
`=−N/2

v̂`e
i`µx. (2.6)
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Therefore

uj = uN(xj, t) =

N/2∑
`=−N/2

û`e
i`µxj , vj = vN(xj, t) =

N/2∑
`=−N/2

v̂`e
i`µxj . (2.7)

In order to obtain the equations for uj and vj, we substitute (2.6) into (1.1), (1.2) and
require that (1.1), (1.2) are satisfied exactly at the collocation points, i.e.,[

∂

∂t
uN(x, t)− ∂2

∂x2
uN(x, t) + ηuN(x, t)

∂

∂x
uN(x, t) + α

∂

∂x
(uN(x, t)vN(x, t))

]
x=xj

= 0,

j = 0, 1, . . . , N, (2.8)[
∂

∂t
vN(x, t)− ∂2

∂x2
vN(x, t) + ξvN(x, t)

∂

∂x
vN(x, t) + β

∂

∂x
(uN(x, t)vN(x, t))

]
x=xj

= 0,

j = 0, 1, . . . , N. (2.9)

The crucial step is to obtain the values for the kth order derivatives ∂kuN(x, t)/∂xk and
∂kvN(x, t)/∂xk at the collocation points xj in terms of the value uj and vj, respectively. We
can do this by differentiating (2.1) and evaluating the resulting expressions at the points xj.

∂k

∂xk
uN(xj, t) =

N∑
n=0

un
dk

dxk
gn(xj, t) = (Dku)j, j = 0, 1, . . . , N, (2.10)

∂k

∂xk
vN(xj, t) =

N∑
n=0

vn
dk

dxk
gn(xj, t) = (Dkv)j, j = 0, 1, . . . , N, (2.11)

where (Dk) is an (N + 1)× (N + 1) matrix with elements

(Dk)j,n =
dk

dxk
gn(xj)

and

u = (u0, u1, . . . , uN)>, v = (v0, v1, . . . , vN)>.

We call (Dk) the kth-order spectral differentiation matrix.
Define SN as the space of trigonometric polynomials of degree up to N

SN = span

{
1√
L

exp

(
iπxj
L

)
: j = 0, 1, . . . , N

}
,

where i =
√
−1.

In order to approximate the nonlinear terms uN∂uN/∂x, vN∂vN/∂x and ∂(uNvN)/∂x
in the system of equations (2.8), (2.9) reasonably, we follow [12]. We define the operator
B : SN × SN −→ SN and the circle convolution as

uN ∗ vN =
N∑
j=0

N∑
k=0

ukvj−kgj(x).



416 Abdur Rashid and Ahmad Izani Bin Md. Ismail

Using the spectral differentiation matrix, we treat the nonlinear terms as follows:[
uN

∂uN
∂x

]
x=xj

= B(uj, uj) =
1

3
Pc

(
(D1u)j ∗ uj

)
+

1

3
(D1 (Pc(u ∗ u)))j , (2.12)

[
vN
∂vN
∂x

]
x=xj

= B(vj, vj) =
1

3
Pc ((D1v)j ∗ vj) +

1

3
(D1 (Pc(v ∗ v)))j , (2.13)[

∂

∂x
(uNvN)

]
x=xj

=

[
uN

∂vN
∂x

+ vN
∂uN
∂x

]
x=xj

= B(uj, vj) =

1

3
Pc

(
(D1v)j ∗ uj

)
+

1

3
(D1 (Pc(u ∗ v)))j +

1

3
Pc

(
(D1u)j ∗ vj

)
+

1

3
(D1 (Pc(v ∗ u)))j , (2.14)

where Pc is the interpolation operator.
Substituting the values of (2.12), (2.13) and (2.14) into (2.8), (2.9) and using the spectral

differentiation matrices, we obtain

d

dt
uj − (D2u)j + ηB(uj, uj) + αB(uj, vj) = 0, (2.15)

d

dt
vj − (D2v)j + ξB(vj, vj) + βB(uj, vj) = 0, (2.16)

where j = 0, 1, . . . , N . The system of equations (2.15), (2.16) is the standard Fourier pseu-
dospectral discretization for coupled Burgers equations. The above system of equations
forms a system of first-order ordinary differential equations in time. Therefore, to advance
the solution in time, we use an accurate ordinary differential equations solver such as the
classical fourth-order Runge — Kutta method. The classical Runge — Kutta method of
order four is given by

k1 = f(un, tn), k2 = f

(
un +

∆t

2
k1, tn +

1

2
∆t

)
, k3 = f

(
un +

∆t

2
k2, tn +

1

2
∆t

)
,

k4 = f(un + ∆tk3, tn), un+1 = un +
∆t

6
(k1 + 2k2 + 2k3 + k4),

where ∆t is the mesh spacing of the variable t. The time interval [0, T ] is divided into M
subintervals. The temporal grid points are given by tn = nT/M , n = 0, 1, . . . ,M .

Remark 2.1. We can also evaluate the derivatives by using the Fast Fourier Trans-
form (FFT) algorithm instead of the spectral differential matrix in O(N logN) operations
rather than in O(N2) operations. However, it is more convenient to investigate the Fourier
pseudospectral discretizations of coupled Burgers equations by using the spectral differential
matrices.

3. Numerical results

In this section, we present some numerical results of our scheme (2.15), (2.16) for the coupled
Burgers equations. All computations were carried out in Matlab 6.5 on a personal computer.
For describing the error, we define maximum error and the relative discrete L2-normed error
for u as follows:

‖E(u)‖∞ = max
06j6N

|u(xj, t)− uN(xj, t)|,
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and

‖E(u)‖2 =

( N∑
j=0

|u(xj, t)− uN(xj, t)|2
)1/2/( N∑

j=0

|u(xj, t)|2
)1/2

,

where uN(xj, t) is the solution of the numerical scheme (2.15), (2.16), whereas u(xj, t) is the
exact solution of (1.1), (1.2). Similarly we can define the maximum error and the relative
discrete L2-normed error for the variable v.

Problem (a): To examine the performance of the Fourier pseudospectral method for
solving viscous Burgers equations, we set the parameters η = −2, ξ = −2, α = 1, β = 1 and
L = π. The system of equations (1.1), (1.2) takes the following form

∂u

∂t
− ∂2u

∂x2
− 2u

∂u

∂x
+

∂

∂x
(uv) = 0, −π 6 x 6 π, t > 0, (3.1)

∂v

∂t
− ∂2v

∂x2
− 2v

∂v

∂x
+

∂

∂x
(uv) = 0, −π 6 x 6 π, t > 0, (3.2)

subject to the initial conditions

u(x, 0) = sin(x), v(x, 0) = sin(x), −π 6 x 6 π, (3.3)

and the exact solutions are taken from [8]

u(x, t) = e−t sin(x), v(x, t) = e−t sin(x), −π 6 x 6 π, t > 0. (3.4)

To see whether the proposed numerical scheme exhibits the expected convergence rates in
time, we perform a numerical experiment for various values of ∆t and a fixed value of N . In
this experiment, we take N = 64 for the present method to ensure that the spatial error is
negligible. The rate of convergence for the scheme is calculated by using the formula

rate of convergence ≈ ln(E(N2)/E(N1))

ln(N1/N2)
, (3.5)

where E(Nj) is the L2-error in using Nj subintervals. The convergence rates are shown in
Table 3.1. Because we have eliminated the spatial discretization errors, the errors in the
table are due to the time discretizations solely. The computed convergence rates agree well
with the expected rates when the fourth-order (classical Runge — Kutta) scheme is applied
to the viscous coupled Burgers equations in the time direction. It is seen from Table 3.1 that
the rate of convergence increases with a smaller time step.

Table 3.1. Convergence rates in time calculated from rela-
tive L2 errors of u and v for the proposed method, t = 1

∆t ‖E(u)‖2 Order ‖E(v)‖2 Order

0.0200 4.5353E-01 — 4.5351E-01 —
0.0100 2.8904E-02 3.9719 2.8902E-02 3.9719
0.0050 1.8153E-03 3.9930 1.8151E-03 3.9930
0.0020 4.6555E-05 3.9980 4.6553E-05 3.9980
0.0010 2.9114E-06 3.9992 2.9112E-06 3.9992
0.0005 2.2042E-07 3.7234 2.2043E-07 3.7232
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To see whether the pseudospectral scheme exhibits the expected convergence rate in
space, we performed some further numerical experiments for various values of N . In these
experiments, we take ∆t = 0.0001 to minimize temporal errors. The results are shown in
Table 3.2 for an increasing number of subintervals. We present the relative L2-errors and
Maximum errors for variables u and v. The pseudospectral scheme gives a good accuracy in
space as would be expected by the present method. The numerical results for the variable v
are similar to those for u, since problem (3.1), (3.2) with the initial conditions (3.3) is totally
symmetrical with respect to the two components u and v of the solution. The numerical
scheme (2.15), (2.16) preserves the same symmetry.

Table 3.2. Maximum errors and relative L2 errors for u and
v at t = 1

N ‖E(u)‖2 ‖E(u)‖∞ ‖E(v)‖2 ‖E(v)‖∞
4 1.520E-03 1.542E-03 1.520E-03 1.542E-03
8 2.958E-05 1.165E-05 2.890E-05 1.165E-05
16 2.943E-05 1.164E-05 2.943E-05 1.164E-05
32 2.929E-05 1.163E-05 2.929E-05 1.163E-05
64 2.912E-05 1.160E-05 2.912E-05 1.161E-05
128 2.887E-05 1.159E-05 2.886E-05 1.159E-05

The exact and approximate solutions for u and v are shown in Figure. It is seen that u
and v have similar behavior.

Graph of the approximate solution and the exact solution for the variable u and v at N = 32, t = 1

Problem (b): For this problem we consider the coupled Burgers equations with η = 2,
ξ = 2 and L = 10. The system of equations (1.1), (1.2) takes the following form:

∂u

∂t
− ∂2u

∂x2
+ 2u

∂u

∂x
+ α

∂

∂x
(uv) = 0, −10 6 x 6 10, t > 0, (3.6)

∂v

∂t
− ∂2v

∂x2
+ 2v

∂v

∂x
+ β

∂

∂x
(uv) = 0, −10 6 x 6 10, t > 0, (3.7)

subject to the initial conditions

u(x, 0) = a0 − 2A

(
2α− 1

4αβ − 1

)
tanh (Ax), −10 6 x 6 10, (3.8)
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v(x, 0) = a0

(
2β − 1

2α− 1

)
− 2A

(
2α− 1

4αβ − 1

)
tanh (Ax), −10 6 x 6 10, (3.9)

and the exact solutions are taken from A. Soliman [17]

u(x, t) = a0 − 2A

(
2α− 1

4αβ − 1

)
tanh (A(x− 2At)), −10 6 x 6 10, t > 0, (3.10)

v(x, t) = a0

(
2β − 1

2α− 1

)
−2A

(
2α− 1

4αβ − 1

)
tanh (A(x−2At)), −10 6 x 6 10, t > 0, (3.11)

where A = a0(4αβ− 1)/(4α− 2) and a0, α, β are arbitrary constants. In Tables 3.3 and 3.4,
we present a comparison between the numerical solutions of this problem obtained by the
proposed pseudospectral method and those obtained by the Chebyshev spectral collocation
method taken from [13]. Tables 3.3 and 3.4 give the maximum error and the relative L2

error for various values of t, α, and β. As is seen from Tables 3.3 and 3.4, the proposed
method is much more accurate than the the method presented in [13].

Table 3.3. Comparison of numerical results of the problem
(b) with the results obtained from Khater [13] for the

variable u with a0 = 0.05, N = 16

Present Method Khater (2008)
t α β

‖E(u)‖2 ‖E(u)‖∞ ‖E(u)‖2 ‖E(u)‖∞

0.5 0.1 0.3 3.2453E-5 9.6185E-4 4.38E-5 1.44E-3
0.3 0.03 2.7326E-5 4.3102E-4 4.58E-5 6.68E-4

1.0 0.1 0.3 2.4054E-5 1.1529E-3 8.66E-5 1.27E-3
0.3 0.03 2.8316E-5 1.2684E-3 9.16E-5 1.30E-3

Table 3.4. Comparison between the numerical results of
problem (b) and the results obtained in [13] for the

variable v with a0 = 0.05, N = 16

Proposed Method Khater (2008)
t α β

‖E(v)‖2 ‖E(v)‖∞ ‖E(v)‖2 ‖E(v)‖∞

0.5 0.1 0.3 2.7459E-5 3.3317E-4 4.99E-5 5.42E-4
0.3 0.03 2.4541E-4 1.1485E-3 1.81E-4 1.20E-3

1.0 0.1 0.3 3.7450E-5 1.1620E-3 9.92E-5 1.29E-3
0.3 0.03 4.5247E-4 1.6389E-3 3.62E-4 2.35E-3

4. Conclusions

In this paper, we have discussed the coupled Burgers equations. We proposed a numerical
scheme for solving the system of nonlinear Burgers equations by the Fourier pseudospectral
method. The numerical results given in the previous section demonstrate a good accuracy
of this scheme. For the test problems, the Fourier pseudospectral method provides more
accurate results than the Chebyshev spectral collocation method presented by A.H. Khater
[13]. The method is also capable of solving Burgers-type equations with periodic boundary
conditions.
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