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MULTI-SCALE METHOD FOR THE CRACK PROBLEM IN

MICROSTRUCTURAL MATERIALS

R.H.W.HOPPE1 AND S. I. PETROVA2

Abstract — The paper deals with the numerical computation of a crack problem
posed on microstructural heterogeneous materials containing multiple phases in the
microstructure. The failure of such materials is a natural multi-scale effect since cracks
typically nucleate in regions of defects on the microscopic scale. The modeling strategy
for solving the crack problem concerns simultaneously the macroscopic and microscopic
models. Our approach is based on an efficient combination of the homogenization tech-
nique and the mesh superposition method (s-version of the finite element method). The
homogenized model relies on a double-scale asymptotic expansion of the displacement
field. The mesh superposition method uses two independent (global and local) finite
element meshes and the concept of superposing the local mesh arbitrarily on the global
continuous mesh. The crack is treated by the local mesh and the homogenized mate-
rial model is considered on the global mesh. Numerical experiments for problems on
biomorphic microcellular ceramic templates with porous microstructures of different
materials constituents are presented.
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1. Introduction

Various heterogeneous (porous and composite) materials with multiple scales and multiple
phases in the microstructure have been produced in recent years. Due to the advanced
manufacturing technologies and scientific computations they have found a lot of applications
and wide use in the automotive and aerospace industries, in chemistry, and in medicine as
implants for replacing traditionally used material structures.

The asymptotic homogenization theory (cf., e.g., [2,5,18,29]) has been successfully used
in the last three decades for solving multi–scale problems on computational regions occupied
by heterogeneous microstructural materials. In general, the microscopic and macroscopic
models are considered simultaneously supposing a strong scale separation, i.e., a large gap
in the length scale between the macroscopic component and the microstructure. In practical
applications the microscopic length scales are orders of magnitude smaller than the physical
macroscopic length scale. The main assumption in the homogenization approach is that the
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original heterogeneous material workpiece is composed of periodically distributed microstruc-
tures of various constituents (or different phases). For convenience, the microstructures are
chosen as microscopic unit cells. The microscopic scale is typically characterized by the inner
heterogeneity, and the macroscopic scale concerns the global dimension of the structure. A
double–scale asymptotic expansion for the displacement field and a homogenization proce-
dure by taking a zero limit of the scale ratio are applied to come up with computationally
feasible macromodels. The asymptotic homogenization theory is nowadays used as a pow-
erful tool in the materials science and the computational mechanics for optimal design of
composite structures [1, 4, 12].

The homogenization theory based on the averaging procedures and effective constitutive
laws can be treated as a part of the heterogeneous multi–scale method, recently presented in
[8] as a general methodology for the computation of problems with multi–scales and multi–
physics. The method relies on the analysis and efficient coupling of different physical models
(for instance, macroscopic and microscopic ones) on different scales and different meshes.
Several examples and a large variety of real–life multi–scale problems are discussed in detail
in the latter paper.

Mechanical failure due to the initiation and propagation of cracks in places of high pore
density in the microstructure is considered in this study. In the vicinity of microcracks the
microscopic periodicity in the macromodel is lost. The fracture of the materials causes a
local heterogeneity and discontinuities in the crack region for which the asymptotic homog-
enization theory cannot be applied in a standard fashion. In this case, the model relies on
a failure zone model in the crack vicinity incorporating microstructural information on the
pore growth processes combined with the homogenized model of the failure zone. The main
difficulty in the computational simulation of discrete fracture models is the proper mea-
surement of microscopic variables and characteristic quantities which requires a substantial
amount of data from experimental investigations. Moreover, the spatial discretization has to
be correctly adjusted to the changing topology of the domain which typically appears in the
failure zone. Hence, special methods have to be developed to implicitly model the internal
discontinuities. Previous studies on multi–scale modeling of crack and damage propagation
in composite materials can be found in [21,27].

The asymptotic homogenization theory together with the mesh superposition method
(s-version of the Finite Element Method), first introduced in [9] and developed later on in
[11, 13], is used for the multi–scale analysis of our microstructural materials. The crack
problem is modeled by the global–local approach in which different regions of the problem
domain are covered by different discrete meshes. For early applications of the superposition
method to problems with mechanical failures we refer the reader to [28, 30]. Recently, an
enhanced mesh superposition method involving homogenization has been applied in [31] for
porous ceramics with microscopic cracks. In [22], a hybrid method is considered in which the
superposition approach is applied only for the crack tips and the rest of the crack is treated
by the eXtended Finite Element Method (XFEM). The latter method has been recently
proposed (see the pioneering work [24]) as a numerical technique which facilitates crack
propagation simulations to be conducted without explicitly meshing the crack surfaces or
remeshing as the crack grows.

The remaining of this paper is organized as follows. The multi–scale method for the crack
problem in heterogeneous materials is formulated in Section 2. The method is based on the
combination of the asymptotic homogenization theory and the mesh superposition method.
The homogenized material model is considered in the global mesh. However, it cannot be
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applied in the local discontinuous region since the microscopic periodicity assumption fails
in the vicinity of cracks. The heterogenous microstructures are modeled using the material
properties of the microstructural constituents. Within the framework of the s-version of the
FEM, the local mesh generated near the crack is arbitrarily superimposed onto the global
mesh. The homogenized macroscopic model is presented in Section 3. We assume that both
macro- and microscales are well separated. The homogenization approach requires that: 1)
the elasticity partial differential equation be solved in the unit microstructure in order to
find the periodic displacements needed to compute the effective (homogenized) coefficients
and 2) the macroscopic homogenized problem on the whole domain be solved. The effec-
tive macroscopic material properties are predicted from the properties of the constituents
assuming a periodical distribution of the microstructures. The generation of global and local
meshes and the multi–scale solution algorithm are discussed in Section 4. Section 5 gives a
brief description of the XFEM in which the finite element space is enriched by adding special
functions to the approximation through the notion of partition of unity [23]. Some numeri-
cal experiments for biomorphic cellular ceramics with porous microstructures produced from
natural wood are presented in [6]. More computational results are given in the last section.

Everywhere throughout this study bold–face symbols indicate variables of tensorial cha-
racter. The Einstein convention of summation over repeated indices has been adopted, so
that we have, for instance, (σ n)i = σij nj and σij = Eijkl ekl.

2. Multi–scale method for the crack problem

2.1. Cracking failure. Heterogeneous microstructural materials with porous microstruc-
tures are considered in this paper. Bending effects such as initiation and propagation of
micro– and macrocracks may activate various failure mechanisms in these materials. Failure
typically occurs in the case of bending loads in places of high pore density and can be viewed
as a material–dependent local phenomenon in regions parallel to the pore channel orienta-
tion. For the simulation of macrocrack initiation and propagation, microscopic effects such
as the nucleation and growth of microcracks in ductile materials have to be incorporated
(see Fig. 2.1). For these materials a relatively large plastic zone exists at the macrocrack
front. Microcracks can appear within this plastic zone. In the vicinity of microcracks the
material becomes softer and tougher due to the increasing pore size. This has the effect of
shielding the macrocrack from the applied load.

Macrocrack

MicrocracksEnvelope

l l l l
F i g. 2.1. Evolution of microcracks near the crack tip

(ductile materials)

In Section 6, we consider brittle ceramic materials without plastic zones. Note that the
approach proposed in the paper is not restricted to the above materials but can also be
applied to ductile materials. In general, methods of fracture mechanics can be used for a



72 R.H. W. Hoppe and S. I. Petrova

finite amount of microscopic discrete defects, while methods of damage mechanics hold for
materials of wide–spread distributed defects. Various failure models and more sophisticated
damage models are discussed in [19].

In what follows, we emphasize the necessity of multi–scale algorithms and global–local
analysis to describe the local microstructural phenomena accurately.

2.2. Global–local approach for heterogeneous materials. Consider a domain
Ω ⊂ Rd, d = 2, 3, occupied by a heterogeneous material with microstructures of period-
ically distributed constituents. Suppose that the boundary of Ω denoted by Γ consists of a
prescribed displacement boundary ΓD (meas ΓD > 0) and a prescribed traction boundary
ΓT , such that Γ = ΓD ∪ ΓT , ΓD ∩ ΓT = ∅, as shown in Fig. 2.2.

ΓT

ΓD
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Unit microstructure

Homogenized cell

Periodic structure

Ω

crack

ΓC

Homogenized material model

F i g. 2.2. Crack in the macroscopic homogenized material model

Assume that the material macrostructure is composed of periodically repeated cells. The
unit microstructure consists of different material constituents and a pore. Both the macro-
scopic and microscopic scales are well separated, i.e., the size of the microstructure in the
heterogeneous material is much smaller than those of the macroscopic component. The
asymptotic homogenization theory is applied to find the effective (homogenized) properties
of the material and to derive the homogenized macroscopic model. Details are given in Sec-
tion 3. The main idea for the homogenization of a heterogeneous material with a periodical
distribution of microstructures is illustrated in Fig. 2.2.

We allow the domain Ω to contain discontinuities and consider the crack problem with a
crack ΓC (see Fig. 2.2). The crack is a multi–scale effect which typically appears in regions
with microstructures of increasing porosity. This effect is shown on the microscopic level in
Fig. 2.3. The periodicity fails for those microstructures cut by the crack. Therefore, a new
finite element analysis has to incorporate microstructural information about the nucleation
and growth of micropores. This has to be done in such a way that the computational results
do not depend on the granularity of the underlying finite element mesh (mesh independence).

F i g. 2.3. Local heterogeneity near the microcrack

We rely on the mesh superposition method (known as the s-version of the FEM), in-
troduced in [9] and developed later in [11, 13]. The method is based on a finite element
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approximation using two independent meshes: a global mesh for the entire domain (also
called in the literature the background mesh) and a local mesh in the critical region near
the crack (also called the patch mesh). The local mesh is arbitrarily superimposed on the
global mesh without taking care of the matching between nodes in both meshes.

We consider first the following governing equations in the domain Ω:

− div σ(u) = b in Ω, (2.1)

u = g on ΓD, (2.2)

σ n = t on ΓT , (2.3)

where σ is the second order symmetric stress tensor, u is the unknown displacement field, b
is the body force, g is the prescribed displacement on ΓD, t is the prescribed traction on ΓT ,
and n is the unit normal to the boundary ΓT . A traction-free surface σ n = 0 is assumed
on the crack ΓC .

In the case of small strains and displacements, the second-order strain tensor e is

e = e(u) =
(∇u + (∇u)T

)
/2, (2.4)

where ∇u is the gradient operator. If linear elasticity is assumed, then the constitutive
relation is given by the linearized Hooke law

σ = E e, (2.5)

where E is the forth-order elasticity tensor depending on material constants like Young’s
modulus and Poisson’s ratio.

For convenience, further in this section, due to the symmetry of the stress and strain
tensors, we consider the strain in the vector form e = B u, where B is the gradient operator
(also called the strain-displacement matrix). The weak form of the governing equation (2.1)
then reads: Find u ∈ U such that

∫

Ω

eT (v) σ(u) dΩ =

∫

Ω

vT b dΩ +

∫

ΓT

vT t dΓ, ∀ v ∈ U0, (2.6)

where the set of admissible displacement fields is defined by

U = {v | v ∈ V, v = g on ΓD, v discontinuous on ΓC} (2.7)

and the test function space is defined by

U0 = {v | v ∈ V, v = 0 on ΓD, v discontinuous on ΓC}. (2.8)

Here, the space V is related to the regularity of the solution in Ω and allows for discontinuous
functions across the crack. At each point x ∈ Ω we consider a finite element discretization
of (2.6) with a basis taken from the test function space U0 and nodal shape functions N(x)
constructed by the Galerkin method.

We denote the local critical region on which the local mesh is superimposed by ΩL, ΩL ⊂
Ω, a subset of Ω, containing the crack. Let ΩG = Ω \ΩL be the rest of the domain excluding
discontinuities. The domains Ω and ΩL are discretized independently by separate sets of
finite elements ΩG

e and ΩL
e , such that

⋃
ΩG

e = Ω and
⋃

ΩL
e = ΩL. Here, the superscript G
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relates to the global (underlying) mesh and L to the local (superimposed) mesh. ΓGL is the
boundary between the two meshes excluding external boundaries, i.e., Γ ∩ ΓGL = ∅.

Let uG be the global displacement field defined in Ω and uL be the local displacement
field defined in the local region ΩL. Note that the superimposed field uL is in general
discontinuous due to the discontinuity across the crack faces. The total displacement field u
is constructed by superposition of both displacement fields on the separate meshes and can
be written as follows:

u =

{
uG on ΩG, ΓGL

uG + uL on ΩL.
(2.9)

To ensure displacement compatibility between the global and local finite element meshes,
we assume homogeneous boundary conditions on the boundary of the patch, i.e.,

uL = 0 on ΓGL. (2.10)

Denote by BG and BL the strain-displacement matrices for the global and local meshes,
respectively. Then, the strain can be expressed as follows:

e =

{
eG = BGuG on ΩG

eL = BGuG + BLuL on ΩL.
(2.11)

Following (2.5), we get the following constitutive relations for the global and local meshes:

σ = E e =

{
σG = EG (BGuG) on ΩG

σL = EL (BGuG + BLuL) on ΩL,
(2.12)

where EG and EL are the elasticity tensors corresponding to the different constitutive laws.
By using shape functions NG(x) on the global mesh and shape functions NL(x) on the
local mesh (both presented in a matrix notation), one can get from the standard weak form
(2.6) the following two equations:

∫

ΩG

(BG(x))T σG(u) dΩ =

∫

ΩG

(NG(x))T b dΩ +

∫

ΓG
T

(NG(x))T t dΓ, (2.13)

∫

ΩL

(BL(x))T σL(u) dΩ =

∫

ΩL

(NL(x))T b dΩ +

∫

ΓL
T

(NL(x))T t dΓ, (2.14)

where ΓG
T = ΓT ∩ ΩG and ΓL

T = ΓT ∩ ΩL. Substituting (2.9)–(2.12) into equations (2.13),
(2.14), we obtain the following discrete system:

[
KG KGL

(KGL)T KL

]{
uG

uL

}
=

{
fG

fL

}
, (2.15)

where KG and KL are the stiffness matrices corresponding to the global and local meshes,
respectively, and KGL is the matrix corresponding to the interaction between the two meshes

KG =

∫

ΩG

(BG(x))T EG BG(x) dΩ +

∫

ΩL

(BG(x))T EL BG(x) dΩ, (2.16)
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KGL =

∫

ΩL

(BG(x))T EL BL(x) dΩ, (2.17)

KL =

∫

ΩL

(BL(x))T EL BL(x) dΩ. (2.18)

The force vectors fG and fL are computed from the right-hand sides of (2.13) and
(2.14) as

fG =

∫

ΩG

(NG(x))T b dΩ +

∫

ΓG
T

(NG(x))T t dΓ (2.19)

fL =

∫

ΩL

(NL(x))T b dΩ +

∫

ΓL
T

(NL(x))T t dΓ. (2.20)

Note that NG(x) stand for the shape functions corresponding to the finite elements in
the global mesh on which a continuous displacement field uG is considered. Furthermore,
NL(x) denote the discontinuous shape functions of the elements chosen on the local domain
to model the crack. The elements of the global and local meshes should not coincide. The
cracked mesh is superimposed on the continuous mesh in ΩL by using the s-method. The
main difficulty of this method is the numerical integration based on Gauss quadratures when
solving system (2.15). An attractive approach has been proposed recently in [22] where only
the near–tip crack fields are modeled on a superimposed patch (overlaid mesh) and the
rest of the crack is treated within the framework of the XFEM by introducing additional
discontinuous enrichment functions for elements completely cut by the crack (see [24]).

3. Homogenized computational model

In this section, we briefly explain the derivation of the homogenized computational model
on the macroscale by using the asymptotic homogenization theory (see, cf., [2, 5, 18, 29]).
The homogenized model for our original heterogeneous material occupying the domain Ω,
Ω ⊂ Rd, d = 2, 3, is illustrated in Fig. 2.2. The main idea of the homogenization is to replace
the heterogeneous material by an equivalent homogenized material, extracting information
for the material properties of various microstructural constituents. To couple properly the
micro- and macroscales, a representative volume element (RVE) or a unit microstructure is
considered.

We suppose a periodical distribution of microcells of different phases and a pore inside the
unit microstructure (see Fig. 2.2). Homogenization is possible if the macro- and microscales
are well separated, i.e., we assume that the periodic cells in the macrostructure are infinitely
many but infinitely small and repeated periodically through the medium. We introduce
two space variables x (macroscopic variable) and y (microscopic variable) and denote by ε,
y = x/ε, ε ¿ 1, the scale parameter (dimensionless number) which, in fact, represents the
periodicity under the assumption that ε is very small with respect to the size of Ω, i.e., there
exists a large scale gap between the microstructure and the macroscopic component.

The parameter ε allows us to define the macrofunctions in terms of the microstructural
behavior and vice versa. Thus, for any state function f(y) := f(x/ε), one can compute the
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spatial derivatives by using the following differentiation rule:

d

dx
f

(
x,

x

ε

)
=

∂f(x,y)

∂x
+ ε−1∂f(x,y)

∂y
.

Denote by Y = [0, 1]d, d = 2, 3, the unit microstructure and consider the elasticity
equation

− div σ(u) = F in Y (3.1)

with a load vector F. Here, σ is the microscopic symmetric stress, u ∈ H1(Y ), is the
corresponding displacement at point y ∈ Y , and e is the microscopic symmetric strain with
components

eij(u(y)) =
1

2

(
∂ui(y)

∂yj

+
∂uj(y)

∂yi

)
. (3.2)

Problem (3.1) is subject to periodic boundary conditions on the outer part of ∂Y , Neu-
mann boundary conditions around the pore, and continuity conditions [u] = 0 and [σ n̄] = 0
on the interfaces between different phases (see Fig. 6.2). The symbol [ ] denotes the jump
of the function across the corresponding interface with a normal vector n̄ (cf., e.g., [2]).

Assuming linearly elastic constituents, the unit microstructure is governed by the Hooke
law σ = E e with componentwise (i, j, k, l = 1, . . . , d) constitutive relations as follows:

σij(u) = Eijkl(y) ekl(u(y)). (3.3)

The 4th order elasticity (also called plain-stress) tensor E(y) with components Eijkl(y)
characterizes the behavior of the material at point y and depends on material constants like
Young’s modulus and Poisson’s ratio. Note that E(y) is zero if y is located in the porous
subdomain of the microstructure and coincides with the elasticity tensor of the material
if y is located in the corresponding microstructural constituent. The elasticity tensor is
symmetric in the following sense:

Eijkl = Ejikl = Eijlk = Eklij (3.4)

and satisfies the following ellipticity conditions:

Eijkl χijχkl > c χ2
ij, ∀χij = χji,

for a constant c > 0 (cf., e.g., [2, 5, 18]).
Denote by uε(x) := u(x/ε) the unknown macroscopic displacement vector and consider

the following family of elasticity problems:

− div σε(uε) = b in Ω, (3.5)

subject to a macroscopic body force b and a macroscopic surface traction t applied to
the portion ΓT ⊂ ∂Ω. Here, σε(uε) := Eε(x) e(uε(x)) is the stress tensor for x ∈ Ω
and Eε(x) := E(x/ε) = E(y) is the piecewise constant elasticity tensor defined in Y .
Following, for instance, [5] for the basic concepts of the homogenization method, the unknown
displacement vector is expanded asymptotically as

uε(x) = u(0)(x,y) + ε u(1)(x, y) + ε2 u(2)(x,y) + . . . y = x/ε, (3.6)
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where u(i)(x,y), i > 0, are Y−periodic in y, i.e., take equal values on opposite sides of
Y . Consider the space H := {u|u ∈ (H1(Ω))d, u = 0 on ΓD}. Under the assumptions of
symmetry and ellipticity of the elasticity coefficients, it was shown in the homogenization
theory that the sequence {uε} of solutions of (3.5) tends weakly in H as ε → 0 to a function
u(0)(x) ∈ H, the solution of the following macroscopic homogenized problem with a constant
elasticity tensor:

− div σ(u(0)) = b in Ω, (3.7)

where σ(u(0)) := EH e(u(0)(x)), x ∈ Ω, and EH stands for the homogenized elasticity
tensor. Note that u(0)(x) depends only on the macroscopic variable x and is independent of
the microscopic scale y. The leading term u(0) in (3.6) is called a macroscopic displacement
and the remaining terms u(i), i > 0 are considered as perturbed displacements.

The homogenization method requires finding periodic functions ξkl satisfying the follow-
ing problem in a weak formulation to be solved in the microscopic unit cell:

∫

Y

Eijpq(y)
∂ξkl

p

∂yq

∂φi

∂yj

dY =

∫

Y

Eijkl(y)
∂φi

∂yj

dY, (3.8)

where φ ∈ H1(Y ) is an arbitrary Y−periodic variational function. The function ξkl, also
referred to as the characteristic displacement, is found by solving (3.8) in Y with periodic
boundary conditions, i.e., assuming the same values on opposite sides of ∂Y . After computing
ξkl, one defines the homogenized coefficients by the following formulas (we refer to [2, 5, 18]
for details):

EH
ijkl =

1

|Y |
∫

Y

(
Eijkl(y)− Eijpq(y)

∂ξkl
p

∂yq

)
dY. (3.9)

Due to the symmetry conditions (3.4), the 4th order homogenized elasticity tensor EH :=
(EH

ijkl) can be written as a symmetric and usually dense matrix. The computation of the
homogenized elasticity coefficients can be done analytically for some specific geometries as,
for instance, layered materials or checkerboard structures. In the case of more complicated
microstructures, the computation of EH

ijkl has to be done numerically through a suitable
microscopic modeling.

Once the constant homogenized coefficients from (3.9) have been computed, one comes
up with the homogenized macroscopic equation (3.7) given in a weak form analogously to
(2.6) as follows:

∫

Ω

eT (v) σ(u(0)) dΩ =

∫

Ω

vT b dΩ +

∫

ΓT

vT t dΓ, ∀ v ∈ U0, (3.10)

where u(0)(x) := u(0)(x,y) is the homogenized solution, the leading term in (3.6).

Remark 3.1. The classical homogenization method as described above neither can be
used for the suitable modeling of microstructural size effects nor does it appropriately reflect
the physics in local regions of large gradients, since it relies on the assumption of uniformity
of the macroscopic stress-strain fields. These drawbacks can be overcome by an extension
of the classical homogenization method using a gradient-enhanced computational approach
that leads to a higher-order macroscopic continuum (cf., e.g., [20] and the references therein).
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4. Implementation of the multi–scale method

In this section, we comment on the implementation of the proposed multi–scale method based
on the asymptotic homogenization theory together with the mesh superposition method. The
homogenization approach is used on the global domain excluding the vicinity of the crack
where the periodicity of the microstructures is lost and this approach is not applicable.
The crack is considered in the local domain (patch). Two independent (global and local)
meshes are generated in the global and local domains, respectively, avoiding matching of
the nodes in the two meshes. The patch is allowed to have an arbitrary geometry with
respect to the underlying global finite elements. As explained in Section 2, the local mesh is
superimposed on the global mesh in such a way that both meshes not necessarily coincide.
The total displacement field from (2.9) is approximated by adding global (underlying) and
local (superimposed) fields and hence it is discontinuous across the crack.

With the help of the homogenization technique discussed in Section 3 the homogenized
macroscopic problem (3.7) defined in Ω is involved in the governing equation (2.1). Further-
more, introducing global and local meshes, the global displacement field uG is expressed by
the homogenized displacement u(0), the leading term in the asymptotic expansion form (3.6).
The homogenized elasticity problem in a weak form (3.10) is transformed to the solution of
system (2.15) with a symmetric and, usually, sparse stiffness matrix coupling the integrands
on the global and local meshes. Note that the elasticity (constitutive) tensor EG in the
expression (2.16) is replaced now by the homogenized elasticity tensor EH with components
computed by (3.9).

The multi–scale procedure is realized by the following algorithm.

Multi–Scale Algorithm (MSA)

Step 1. Select a unit microstructure Y in the heterogeneous material.

Step 2. Solve the elasticity equation (3.8) to find the characteristic displacement fields ξkl.

Step 3. Compute the homogenized elasticity coefficients by (3.9) and set EG = EH .

Step 4. Generate a global finite element mesh in Ω on the macroscopic homogenized model.

Step 5. Introduce a local (discontinuous) mesh in the vicinity of the crack ΓC .

Step 6. Solve (2.15) to find uG and uL, the displacements on the global and local meshes.

Step 7. Substitute uG and uL into (2.11) and (2.12) to find the strains and stresses.

From the algorithm above, one can see that three finite element meshes have to be
generated on three different domains. First, Step 1 requires a finite element mesh in the
unit microstructure. Due to the singularities around the pore located at the center of the
microcell, adaptive mesh refinement is used based on reliable and efficient a posteriori error
estimators. Numerical experiments are presented in the last section. Second, a global finite
element mesh by a decomposition of Ω into triangles/tetrahedra is generated in Step 4.
Third, a local mesh has to be introduced in Step 5 in the vicinity of the crack. This mesh
usually contains discontinuities. Recently, the XFEM has become a popular method for
modeling cracks (see, e.g., [22, 24] and the references therein). The method is based on
a standard displacement finite element approximation which is enriched near the crack by
incorporating both discontinuous fields and near–tip asymptotic fields through a partition
of unity property [23]. Details are given in the next Section 5.

Another difficult problem that arises in the mesh superposition method is the numerical
integration using Gauss quadratures. The problem appears due to the arbitrary patching of
the local mesh incorporating a discontinuous field across the crack faces. The use of standard
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Gauss quadrature may not adequately integrate the discontinuous fields to represent the
jump in displacement across the crack line. The modeling of discontinuous fields by means
of the s-version of the FEM is discussed in [10]. For instance, the numerical integration of
(2.17) requires that BG(x) to be evaluated at the Gauss points in the local mesh. However,
the Gauss quadrature points of the global and local meshes do not coincide due to the
arbitrary geometry of the patch. Various approaches to the numerical integration of the
weak form over the overlapped finite elements can be found in [10,22,24,28,31].

5. The extended finite element method

The eXtended Finite Element Method (XFEM) [3,24] allows treating crack problems without
meshing the discontinuity surface. This is possible through enrichment of the standard
polynomial finite element space with special functions: discontinuous, to account for the
displacement jump, and crack–tip fields to reduce the mesh density required for accurate
fracture parameter computations. The method is now becoming quite mature, and has
already been applied to industrial fracture mechanics problems (see, cf. [7] and the references
therein).

Some finite elements are split by a crack and others contain crack tips. Denote by Ncr

the set of nodes whose support is cut by a crack and by Ntip the set of nodes whose support
contains the crack tip. In Fig. 5.1 the circled nodes (set of nodes Ncr) are enriched with the
step function whereas the squared nodes (set of nodes Ntip) are enriched with the crack tip
functions.

F i g. 5.1. Selection of enriched nodes on: a structured mesh
(left); an unstructured mesh (right)

The XFEM approximation reads

uh(x)=
∑

I∈N

NI(x)uI +
∑

J∈Ncr

ÑJ(x)(H(x)−H(xJ))aJ +
∑

K∈Ntip

ÑK(x)
4∑

α=1

(Cα(x)−Cα(xK))cαK ,

(5.1)
where uI are unknown discrete displacements, and aJ and cαK are enrichment nodal vari-
ables. Here, we consider the scalar finite element shape functions which, for convenience, are
chosen equal with respect to each displacement component. Note that the shape functions
ÑJ(x) associated with the enrichment can differ from the shape functions NI(x) used for
the standard part of the displacement approximation. H(x) is a modified Heaviside function
which takes on the value +1 above the crack and -1 below the crack, i.e.,

H(x) =

{
+1, if (x− x∗) · n > 0,

−1, otherwise,
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where x is a sample point, x∗ (lies on the crack) is the closest point projection of x, and n
is the unit outward normal to the crack at x∗. The crack tip enrichment functions Cα(x),
which span the near tip asymptotic field, are defined as

C ≡ [C1, C2, C3, C4] =

[√
r sin

θ

2
,
√

r cos
θ

2
,
√

r sin
θ

2
cos θ,

√
r cos

θ

2
cos θ

]
. (5.2)

Here, r and θ are polar coordinates in the local crack tip coordinate system. Note that
the first function

√
r sin(θ/2) in (5.2) is discontinuous across the crack and thus represents

the discontinuity near the crack (see, cf. [24]). The remaining three functions in (5.2) are
continuous. They are added to get accurate results on relatively coarse meshes.

From the enriched approximation (5.1) the Bubnov — Galerkin procedure gives discrete
equations of the form Ku = f with a stiffness matrix K and a force vector f . Numerical
integration for split elements is done here by partitioning the elements into subtriangles
within the Delaunay triangulation. For each subtriangle high-order Gauss quadrature rule
is used. Interested readers can refer to [7] for details.

6. Numerical experiments

Preforms of natural materials like wood permit the manufacturing cellular ceramics with
unidirectional porous structures. The natural wood morphologies are characterized by an
open porous system of tracheidal cells providing transportation paths for water and minerals
in living plants (cf., e.g., [26]). The inherent cellular highly open porous system, accessible for
infiltration of various liquid or gaseous metals is used to design novel porous ceramics. The
transformation of carbonized wood into porous carbide ceramics can be done by infiltration-
reaction processes with various carbide forming metals (e.g., Si, Ti).

In recent years, a great deal of research has been focused on the production of sili-
con carbide (SiC)–based biomorphic microcellular ceramics. For details of the processing
scheme and mechanical properties, we refer the reader to [14]. The production process relies
on advanced biotemplating methods and comprises several processing steps ranging from
the preparation of appropriate carbonized preforms using high-temperature pyrolysis via
chemical reactions by liquid- or gaseous-phase infiltrants to postprocessing such as cutting
and etching. After the first step of processing, the total porosity of the resulting graphite-
like carbon preform is approximately 25% less than the initial porosity of the dried wood
and features a multimodal pore size distribution with pores of a diameter between 1µm to
200µm. However, despite the shrinkage, the porous microstructure of the carbonized wood
is retained after high-temperature pyrolysis (see Fig. 6.1 in the case of a pyrolyzed pine
specimen for both Si-gas and Si-polymer infiltration). We note that different kinds of wood
exhibit different microstructures.

F i g. 6.1. SiC ceramics derived from pine wood: Si-gas infiltration (left);
Si-polymer infiltration (right)
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The new bioorganic ceramic materials aroused considerable interest in many research
fields, primarily in materials science and engineering. They have found a lot of practical
applications as filters and catalysts in chemical processing, heat exchangers, and thermal
insulation devices.

In Step 1 of the algorithm MSA we consider a stationary microstructure with a geomet-
rically simple tracheidal periodicity cell Y = [0, 1]d, d = 2, 3, (see Fig. 6.2) consisting of an
outer layer of carbon (C), an inner layer of silicon carbide (SiC), and a centered pore channel
(P, no material). A two–dimensional unit periodicity cell for SiC ceramics is presented in
Fig. 6.2,b. One can also deal with the so–called pure SiC ceramics when enough silicon is
infiltrated in the pore channel as a result of the reaction between carbon and silicon (see
Fig. 6.2,c for d = 2). Assume that the macroscopic material is constructed by introducing an
infimum of periodically distributed infinitesimal microstructures. For simplicity, we suppose
homogeneous and isotropic constituents in terms of carbon and SiC. The Young modulus E
(in GPa) and the Poisson ratio ν of our two materials are, respectively, E = 10, ν = 0.22
for carbon and E = 410, ν = 0.14 for SiC.

a) b) c)

Carbon
SiC

Pore

SiC

Pore

F i g. 6.2. 3-D unit periodicity cell Y (a), 2-D unit periodicity cell Y =
P ∪ SiC ∪ C (SiC ceramics) (b), 2-D unit periodicity cell Y = P ∪ SiC

(pure SiC ceramics) (c)

The computation of the characteristic displacement fields ξkl (Step 2) and the homog-
enized elasticity coefficients (Step 3) requires the solution of linear elastic boundary value
problems with the periodicity cell Y as the computational domain. Due to the composite
character of the cell there are material interfaces where the solution changes significantly.
Hence, local refinement of the underlying finite element mesh is strongly advised.

We use an adaptive grid refinement strategy based on a posteriori error estimator of the
Zienkiewicz — Zhu type [32] obtained by local averaging of the computed stress tensor. In
particular, in the case of conforming P1 finite elements with respect to a simplicial triangula-
tion Th of Y that aligns with the multilayer structure, the computed stress σ̂ is discontinuous
across the interior element boundaries. We compute a continuous recovered stress σ∗ with
continuous, piecewise linear components as follows: for a node P , we compute σ∗(P ) by av-
eraging the stresses over the elements that share P as a common vertex. We use the L2-norm
ηT := ‖σ∗− σ̂‖0,T , T ∈ Th, as a local recovery estimator and obtain a refine triangulation by
using the longest edge bisection for those elements T ∈ Th for which ηT > (maxT ′∈Th

ηT ′)/2
(for further details see [17]). Hence, the adaptivity procedure is local and computationally
cheap. In [15], we presented some numerical experiments on a plane microstructure by us-
ing an adaptive mesh-refinement technique for the computation of recovered stresses. In
the case of 3-d implementations, we decompose the periodic microcell Y first in hexahedra
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and further we use continuous, piecewise linear finite elements on tetrahedral shape regular
meshes, as shown in Fig. 6.3. Due to the symmetry of the periodic displacements ξkl = ξlk,
Eq. (3.8) in Step 2 is computed numerically 3 times in the case d = 2 and, accordingly, 6
times in the case d = 3.

The discrete elasticity problem in the microstructure is solved iteratively by using the
Preconditioned Conjugate Gradient (PCG) method with Incomplete Cholesky (IC) or Alge-
braic MultiGrid method (AMG) as a preconditioner. Various approaches to the construction
of a preconditioner for the stiffness matrix and numerous computational results for the con-
vergence history of both preconditioners are discussed in [16].

F i g. 6.3. Adaptive refinement of 3-D unit periodicity cell Y (left),
cross section of Y (right)

Denote the global density of the solid material part in the microstructure by µ, 0 <
µ < 1. If µ is relatively small, we speak of early wood (grown in spring and summer) and,
accordingly, of late wood (grown in autumn and winter) for values of µ, close to 1. In
Table 6.1 we report some values of the computed 3–dimensional homogenized coefficients
with respect to the adaptive refinement level for early wood with a density of 36% and late
wood with a density of 84%.

Ta b l e 6.1. Homogenized elasticity coefficients

Early wood, density µ = 36% Late wood, density µ = 84%

Level EH
1111 EH

2222 EH
3333 EH

1212 EH
2323 EH

1313 EH
1111 EH

2222 EH
3333 EH

1212 EH
2323 EH

1313

1 176.1 188.6 215.9 64.9 73.6 63.0 167.8 174.0 180.1 62.7 66.5 61.8
2 193.8 223.4 232.7 78.7 96.3 75.9 179.6 193.4 195.8 75.5 80.0 71.4
3 174.5 185.4 224.0 59.6 71.7 66.5 167.8 180.5 187.4 63.5 70.8 68.8
4 190.0 171.7 234.0 69.8 78.8 79.4 171.9 158.1 193.9 53.7 60.0 70.9
5 190.5 174.0 230.6 43.4 69.8 61.8 154.6 155.3 193.0 50.3 63.7 62.6
6 155.7 166.9 225.9 38.8 68.1 59.1 154.3 127.0 190.6 38.0 51.1 49.7
7 185.7 166.5 235.0 49.1 58.8 58.9 120.4 110.6 190.8 37.2 46.1 49.3
8 157.8 147.1 231.1 39.6 60.8 57.0 105.4 102.8 189.7 31.1 46.1 47.3
9 142.2 144.2 225.3 29.3 58.7 53.6 96.1 91.1 189.0 27.1 43.8 45.0
10 132.6 140.9 227.1 27.9 55.3 56.0 89.0 87.5 188.1 26.3 43.6 43.7

Our experience from [16] shows that the AMG-preconditioner has a much better efficiency
compared to the IC-preconditioner as to both the number of iterations and the CPU-time.
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Some convergence results for various values of the density and more details about the dis-
cretization parameters on successive adaptive refinement levels are presented in Table 6.2.
Here, we have denoted by NT the number of tetrahedra, by NN the number of nodes, by
NDOF the number of degrees of freedom after eliminating the points with prescribed dis-
placements, by ITER the number of iterations by the PCG method, and by CPU the time
in seconds for the iterative solver using the AMG-preconditioner.

Ta b l e 6.2. Convergence results with the AMG preconditioner

Density Level 4 5 6 7 8 9 10

µ = 19% NT 613 968 1595 2175 3187 3546 7262
NN 217 294 428 549 764 844 1623

NDOF 207 354 588 846 1314 1533 3417
ITER 15 19 24 42 50 53 93
CPU 0.1 0.2 0.5 0.9 1.7 2.1 7.4

µ = 91% NT 823 1257 2122 4196 7046 12190 20822
NN 266 365 552 984 1660 2660 4267

NDOF 276 486 792 1740 3369 5667 9528
ITER 13 17 24 31 43 49 59
CPU 0.1 0.4 0.7 2.1 4.8 10.1 21.7

The failure of biotemplated microcellular SiC ceramics from wood by the formation and
propagation of cracks has been investigated experimentally in [14]. The failure is due to the
higher sensitivity of the bending strength (compared to the elasticity) on the microstructural
anisotropy and depends on the loading conditions. During the uniaxial compression testing,
the specimen was deformed in a linear elastic mode up to a critical stress where the crack
growth started (see Fig. 5.1(right)). In the case of two different loading orientations parallel
to the axial direction, large unfilled tracheidal pores are oriented perpendicular to the normal
tensile stress and are usually zones of crack initiation as soon as a critical load is reached. The
crack propagates in planes with a high pore density parallel to the pore channel orientation.

For the local critical region containing a crack, the approximation of the displacement
field has to be enhanced by additional shape functions taking into account the discontinuities
across the crack. We rely on the XFEM introducing specific discontinuous displacement
functions defining the crack and the singularities at the crack-tips. Computations of the
fracture mechanics are performed using the XFEM library [7]. As a first attempt, we consider
a crack in the macroscopic homogenized model. Table 6.3 presents the evaluated data for
the homogenized Young modulus EH(in GPa) and the homogenized Poisson ratio νH in the
case of pure SiC ceramics. The density of the SiC layer is denoted by µSiC and thus the
porosity is determined by meas(Y )−µSiC . As would be expected, EH and νH decrease with
increasing porosity, i.e., the mechanical and elasticity properties of the ceramic materials are
strongly influenced by the porosity and decrease when it becomes higher.

In all problems, for both crack tips we define the energy release rate as

G =
1

E ′ (K
2
I + K2

II) with E ′ =
EH

1− (νH)2

in the case of plane strains. In our experiments, the material characteristics EH and νH in
the macroscopic homogenized model are computed preliminarily. During the brittle fracture
in the obtained homogenized material, the energy release rate remains a constant depending
only on the material. In general, the fracture energy depends on the microstructure and
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should be obtained by taking into account the microscopic characteristics as an additional
step.

The stress intensity factors (SIFs), KI and KII , for modes I and II, respectively, are
determined using the domain form of the interaction integrals [25]. We are interested in the
effect of porosity on the energy release rate. Consider a center crack in an infinite plate
under remote, unit, uniaxial tension. The geometry of the plate is (2x6), the crack length
is 0.25, and the mesh, completely regular and non–conforming to the crack, contains 2701
four–node quadrilateral elements. The radius of the circular interaction integral domain is
twice the size of the element containing the tip. Note that in this case, the exact SIFs are
actually known analytically. The computed SIFs are within one percent of the exact values.

Ta b l e 6.3. Homogenized material con-
stants for pure SiC ceramics

Porosity µSiC EH(GPa) νH

0.9025 0.0975 216.10 0.016
0.7225 0.2775 231.94 0.040
0.5625 0.4375 248.93 0.062
0.4225 0.5775 267.94 0.083
0.3025 0.6975 289.27 0.104
0.2025 0.7975 314.16 0.124
0.1225 0.8775 342.27 0.138
0.0025 0.9975 409.14 0.139

The evolution of the energy release rate G as a function of porosity in the case of pure
SiC ceramics is given in Fig. 6.4. One can observe that for relatively dense materials, with a
porosity close to 0, the energy release rate G remains at the same level and increases slightly
(by an order of magnitude 10−4) with increasing porosity, i.e., with increasing brittleness of
the material.
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F i g. 6.4. Porosity versus the energy release rate G for pure SiC ceramics

7. Conclusions

We have considered the failure of microstructural materials due to the initiation and prop-
agation of cracks in places of a high porosity in the microstructure. For such materials, the
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asymptotic homogenization theory cannot be applied in a standard way, since in the vicinity
of the crack the microscopic periodicity is lost. The modeling of the crack problem relies
on a combination of the homogenization approach for the macroscopic model and the mesh
superposition method, also known as the s−version of the FEM. The latter method relies on
the simultaneous use of independent (global and local) meshes and a superposition technique
in the critical region near the crack. The global mesh covers the entire domain where the
homogenized macroscopic material model is considered. The local mesh in the vicinity of
the crack uses discontinuous shape functions and is arbitrarily superimposed on the global
continuous mesh. A multi–scale algorithm is proposed for the solution of the crack prob-
lem. Numerical experiments with the use of the XFEM in preliminary homogenized brittle
ceramic materials are discussed. A brief description of the XFEM enriched with additional
functions by partitioning the unity property is presented.
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