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POTENTIALITIES OF THE ROBUST MULTIGRID

TECHNIQUE

S. I. MARTYNENKO1

Abstract — The present paper discusses the parallelization of the robust multigrid
technique (RMT) and the possible way of applying this to unstructured grids. As op-
posed to the classical multigrid methods, the RMT is a trivial method of parallelization
on coarse grids independent of the smoothing iterations. Estimates of the minimum
speed-up and parallelism efficiency are given. An almost perfect load balance is demon-
strated in a 3D illustrative test. To overcome the geometric nature of the technique, the
RMT is used as a preconditioner in solving PDEs on unstructured grids. The procedure
of auxiliary structured grids generation is considered in details.
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Introduction

Multigrid algorithms are a fast and efficient method for solving a wide class of integral and
partial differential equations. The main field of application of multigrid solvers is large-scale
problems where the computational efficiency is critical. For many problems, it is possible to
prove that the execution time of the classical multigrid methods (CMM) is asymptotically
optimal.

Parallelization of CMM is carried out in a standard fashion by dividing the domain into
subdomains (one for each processor). Each processor is then responsible for updating the
unknowns associated within its subdomain only. However, the parallel efficiency of CMM can
degrade due to the coarse grid smoothing. Situations can be reached where the number of
processors exceeds the number of coarse grid points. As a result, some processors stand idle
during these computations. One way of overcoming the poor computation-to-communication
ratio on coarse grids is multiple coarse grid corrections. The best known algorithms were
proposed by P. Frederickson and O. McBryan [2], W. Hackbusch [3] and W. Mulder [7].
Nevertheless the choice of appropriate multigrid components and their efficient parallel im-
plementation is highly problem-dependent in CMM.

Another multigrid method based on multiple coarse grid corrections is the robust multi-
grid technique (RMT) where the transfer operators are problem-independent for black box
applications [5]. Although the RMT is not optimal in computational work, the absence of
interpolation and presmoothing jointly with the powerful coarse grid correction strategy
makes it possible to use the RMT for solving many applied (non)linear problems in the black
box manner.
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The present paper gives details of RMT parallelization on coarse levels. The multigrid
structure of the RMT gives a direct way of obtaining full parallelism independent of the
smoothing procedure in addition to the black box robustness.

Another important problem is the development of multigrid methods for unstructured
grids. Although now algebraic multigrid algorithms (AMG) are used for such applications,
it is desirable to solve PDEs on (un)structured grids in a unified manner.

1. Parallelization of the robust multigrid technique

The following properties of the coarse grids of the RMT are attractive for parallel implemen-
tation [5]:

1) all coarse grids of the same level have no common vertices and faces

GL
n ∩GL

m = ∅ , n 6= m, L = 1, . . . , L+,

therefore, the smoothing iterations can be performed on coarse grids in parallel;
2) the fixed number of coarse grids on each level allows to predict the number of processors

for efficient parallelization of the RMT;
3) the almost the same number of vertices and faces on the coarse grids (≈ 3−NLN̄)

results in a perfect load balance;
4) the absence of interpolation errors makes it possible to use well-parallelizable (weak)

smoothers on the finest grid.
Since the L-th level consists of 3NL grids, the number of processors should be 3Nk, where

k = 1, . . . , L+ is the order of parallelism. Consequently, we can consider the simplest case
k = 1 or the first order parallelism. In this case, the number of processors is p = 3N , N = 2, 3.

The parallel implementation of the RMT is subdivided into incomplete and complete
parallelization. The incomplete parallelization uses the parallel properties of the multigrid
structure without parallelization of the smoothing iterations on the finest grid. Actually, the
incomplete parallelization is intended for estimating the minimum speed-up and efficiency.

1.1. Incomplete parallelization. For the sake of simplicity, we design a hypothetical
multiprocessor for incomplete parallelization of the RMT. The multiprocessor consists of 3N

processors for parallelization of the smoothing iterations of the coarse grids and the main
processor for the smoothing iterations of the finest grid (Fig. 1.1). In fact, each of the 3N

processors can be used instead of the main processor. As a result, the main processor will
not accounted at minimum speed-up and efficiency estimation.

F i g. 1.1. Hypothetical multiprocessor for incomplete parallelization
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Since all coarse grids of the first level have no common vertices and faces, the grid
distribution between the processors in the first order parallelism is shown in Fig. 1.2. Figure
1.3 shows the incomplete parallelization of the multigrid iterations of the RMT. Efficient
parallelization of the CMM is hampered by the poor computation-to-communication ratio on
the coarse grids. As opposed to the CMM, the RMT is a trivial method for parallelization on
coarse grids.

F i g. 1.2. Coarse grid distribution between the processors

F i g. 1.3. Incomplete parallelization of the multigrid iteration

The numerical test is intended to illustrate a perfect load balance in the parallelization
of the smoothing iterations of the coarse grids. We start from the 3D Dirichlet boundary
value problem (N = 3) for the Poisson equation
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with the exact solution ua(x, y, z) = exp((x+y+z)/3) in a unit cube. The five-level structure
(L+ = 4) with a 201× 201× 201 finest grid (h = 1/200) is used in the test, the smoother is
a variant of the preconditioned conjugate gradient (PCG) method offered in [4].

Let Ti be the execution time for the PCG-smoothing on the ith processor (i = 1, 2, . . . , 3N).
We define the average execution time 〈T 〉 in the first order parallelism as

〈T 〉 =
1

3N

3N∑
i=1

Ti .

The load unbalance (δmax) can be defined by

δmax = max
i=1,...,3N

|δi| , where δi =
〈T 〉 − Ti

〈T 〉 .

Figure 1.4 shows the distribution of the relative execution time (δi) on the coarse levels
(L = 1, 2, 3, 4) in the first multigrid iteration starting from iterand zero. The results of the
test show that δmax ≈ 1%, i.e., the RMT has an almost perfect load balance. It should be
emphasized that the parallelization is smoother-independent.

F i g. 1.4. Relative execution time (δi) in the numerical test

The first order of incomplete parallelism supposes that p processors are used for paral-
lelization of the smoothing iterations on the coarse grids and a single processor is used for
parallelization of the smoothing iterations on the finest grid (i.e., p− 1 processors stay idle).
Neglecting the efforts for data communication, we obtain the following expression for the
minimum speed-up (Sp

min) and efficiency of parallelism (Ep
min)

S
p
min =

∑L+

l=0 Tl

T0 + p−1
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l=1 Tl

, E
p
min =

1

p
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∑L+

l=1 Tl

,

where Tl is the execution time on lth level. If the same smoother is used on all levels, we
obtain Tl = const and the minimum speed-up and efficiency are given by

S
p
min =

L+ + 1

1 + L+/p
= p E

p
min .
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For the first order of incomplete parallelism (p = 3N) the estimate takes the form

S
p
min = 3N L+ + 1

L+ + 3N
< Sp < 3N , E

p
min =

L+ + 1

L+ + 3N
< Ep < 1 .

The estimates show that the total parallelism efficiency strongly depends on the paralleliza-
tion of the smoothing iterations on the finest grid.

1.2. Complete parallelization. Parallelization of the smoothing iterations on the
finest grid in the RMT can be performed in a traditional manner. Since the prolongation
operator of the RMT does not put errors to the coarse grid correction, it makes the task of
the smoother the least demanding. As a result, well-parallelizable (weak) smoothers can be
used on the finest grid jointly with the RMT.

2. Unstructured grids

The computational fluid dynamics is a discipline to which multigrid has been applied most
widely and shown to be useful [8,9]. Numerical simulation of incompressible fluid flows results
in a large-scale saddle point problem [1]. In spite of intensive researches, many challenges
remain.

Some promising approaches can be developed for solving the Navier — Stokes equations
on structured grids. For example, the pressure splitting

p(t, x, y, z) = px(t, x) + py(t, y) + pz(t, z) + pxyz(t, x, y, z)

is proposed in [6] for efficient pressure computation. One-dimensional (in spatial directions)
components px(t, x), py(t, y) and pz(t, z) can be computed using mass conservation equations
by the effective numerical methods developed for simplified Navier — Stokes equations.
However, the approach cannot be generalized directly for unstructured grids.

On the other hand, unstructured grids seem to be more preferable for complex domains.
Constructing coarse grids from fine grids is easy when the fine grid is structured, but not if
the fine grid is unstructured [9].

Combining the advantages of structured and unstructured approaches, it is possible to
use different methods for approximating the left and right sides of the Σ-modified boundary
value problems [5], i.e., to use the RMT as a preconditioner. Let us reduce the problem to

L(u) = f ,

where L is the linear operator. The Σ-modification of the solution

u = c + û

leads to the Σ-modified form of the initial problem

L(c) = f − L(û) . (2.1)

Assume that the auxiliary structured grid (G¢) is generated for the approximation of the
left side of the Σ-modified boundary value problem (2.1) and the unstructured grid (G£) is
generated for the approximation of the right side. It results in a system of linear equations
denoted by

Wc = Rr̂, (2.2)
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where r̂ = b̂− Âû is a residual computed on G£, R is a transfer operator from G£ onto G¢,
the matrices W and A have arisen from the approximation of the linear operator L on G¢
and G£, respectively. Hence, α̂ means that α is defined on G£. Then the solution of (2.2)
(correction)

c = W−1Rr̂

is interpolated from G¢ to G£
ĉ = Qc ,

where Q is a transfer operator from G¢ onto G£. The interpolated correction is added to
the approximation of the solution

û := û + ĉ , c = 0 .

The algorithm can be rewritten in the matrix form as follows:

û(n+1) = (I − QW−1RÂ)û(n) + QW−1Rb̂ .

Unfortunately, all multigrid methods for unstructured grids should include such a problem-
dependent component as interpolation. In a nonlinear case (for example, the Navier —
Stokes equations), not only the residual (r̂), but also approximation of the solution (û)
should be interpolated from G£ to G¢. The more advanced algorithm includes smoothing
on the unstructured grid for reducing the interpolation error.

Note that the grid mapping can result in an increase in the condition number of matrix
W . This leads to a decrease in the multigrid efficiency. An example of the RMT convergence
deterioration on nonuniform grids is given in [5, test 4].

Generation of auxiliary structured grids. The initial unstructured grid and the
auxiliary structured grid should have approximately the same number of nodes and the same
refinement in the subdomains. Assume that a domain Ω is submerged in an N -dimensional
unit cube. An example of triangulation of a 2D domain is shown in Fig. 2.1. The set of grid
vertices is denoted by Υ(xk, yk), k = 1, 2, . . . , K. We can form an ordered set

Υ̃x = {xi | 0 = x1 < x2 < . . . < xi < xi+1 < . . . < xK̃x
= 1}, K̃x 6 K .

by deleting the coincident vertex abscissas and ordering the remaining abscissas. Further a
uniform grid is generated as

Υ̂x = {x̂i | x̂i = (i− 1)/(K̃− 1), i = 1, 2, . . . , K̃x}.

F i g. 2.1. Example of initial triangulation
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The manager function F̂ : x̂i → xi is a uniform grid in the computational domain
mapped onto ordered set of abscissas as shown in Fig. 2.2. However, the number of vertices
on the auxiliary structured grid will be ∼ K2, which requires an unpracticable amount of
computational work.

To avoid this problem, a second uniform structured grid Ῡx is generated

Ῡx = {x̄i | x̄i = (i− 1)(K̄x − 1), i = 1, 2, . . . , K̄x},

where K̄x = [
√

K̃x] + 1, square brackets mean the integer part. The spatial position of the

second grid vertices can be determined using a spline interpolant of the manager function F̂

as shown in Fig. 2.3.
Structured grids in other spatial directions are generated in the same manner. For the

given example the number of auxiliary structured grid vertices is somewhat larger than the
number of vertices of the initial triangulation. Fig. 2.4 presents the generated auxiliary
structured grid.

F i g. 2.2. Manager function F̂ : x̂i → xi F i g. 2.3. Grids in computational and physical do-
mains

F i g. 2.4. Initial triangulation and auxiliary structured grid
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As an example, the partial differential equation

∂

∂x
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∂
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∂
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∂z

)
= −f(x, y, z)

in the computational domain is transformed to the form
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.

Derivatives x̄′x, ȳ′y and z̄′z can be computed by differentiating the spline interpolants of the
corresponding manager functions.

Conclusions

The multigrid structure of the RMT makes it possible to obtain full parallelism on coarse levels
at an almost perfect load balance independent of the smoother procedure. The application
of the RMT as a preconditioner can be considered as a promising way to extend the approach
to unstructured grids.
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