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RUNGE-KUTTA NYSTROM METHOD OF ORDER

THREE FOR SOLVING FUZZY DIFFERENTIAL

EQUATIONS
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Abstract — In this paper we present a numerical algorithm for solving fuzzy differ-
ential equations based on Seikkala’s derivative of a fuzzy process. We discuss in detail
a numerical method based on a Runge-Kutta Nystrom method of order three. The
algorithm is illustrated by solving some fuzzy differential equations.
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1. Introduction

The fuzzy set theory is a tool that makes it possible to describe vague and uncertain notions.
The concept of the fuzzy derivative was first introduced by Chang and Zadeh [4]. Later
Dubois and Prade [5] defined and used the extension principle. Other methods have been
discussed by Puri and Ralescu [12]. Fuzzy differential equations have been suggested as
a way of modelling uncertain and incompletly specified systems and were studied by many
researchers [7, 8, 9]. The existence of solutions of fuzzy differential equations has been studied
by several authors [2, 3]. It is difficult to obtain an exact solution for fuzzy differential
equations and, therefore, several numerical methods were proposed [10, 11]. Abbasbandy
and Allahviranloo [1] developed numerical algorithms for solving fuzzy differential equations
based on Seikkala’s derivative of the fuzzy process introduced in [14]. In this paper, we apply
the Runge-Kutta Nystrom method of order three to solve fuzzy differential equations and
have established that this method is better than the Euler method. The structure of the
paper is organized as follows:

In Section 2, we give some basic definitions and results. In Section 3, we define the initial
value problem and discuss the Runge-Kutta Nystrom method of order three. In Section 4,
we apply the third order Runge-Kutta Nystrom method to solve the initial value problem
and give the convergence result. Finally, in Section 5, we give some examples to illustrate
our results.
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2. Preliminaries

Consider the initial value problem

{

y′(t) = f(t, y(t)); a 6 t 6 b,

y(a) = α.
(2.1)

The point of all Runge-Kutta method is to express the difference between the value of y
at tn+1 and tn as

yn+1 − yn =
m
∑

i=1

wiki, (2.2)

where wi’s are constants and for i = 1, 2, · · ·m,

ki = hf

(

tn + cih, yn + h

i−1
∑

j=1

aijkj

)

. (2.3)

Equation (2.2) must be exact for powers of h through hm, because it must be coincident
with Taylor series of order m. Therefore, the truncation error Tm, can be writtern as

Tm = γmh
m+1 +O(hm+2).

The true value of γm will generally be much less than the bound of Theorem 2.1. Thus, if
the O(hm+2) term is small compared to γmh

m+1 for small h, then the bound on γmh
m+1 will

usually be a bound on the error as a whole. The famous nonzero constants ci, aij in the
Runge-Kutta Nystrom method of order three are

c1 = 0, c2 = 2/3, c3 = 2/3, a21 = 2/3, a32 = 2/3,

where m = 3. Hence we have (see [6])

k1 = hf
(

ti, yi

)

,

k2 = hf
(

ti +
2h
3
, yi +

2

3
k1
)

,

k3 = hf
(

ti +
2h
3
, yi +

2

3
k2
)

,

yi+1 = yi +
1

8
(2k1 + 3k2 + 3k3),

(2.4)

where

a = t0 6 t1 6 · · · 6 tN = b and h =
(b− a)

N
= ti+1 − ti. (2.5)

Theorem 2.1. Let f(t, y) belong to C3[a, b] and its partial derivatives be bounded and
let us assume that there exist positive constants L,M, such that

|f(t, y)| < M,

∣

∣

∣

∣

∂i+jf

∂ti∂yj

∣

∣

∣

∣

<
Li+j

M j−1
, i+ j 6 m,

then in the Runge-Kutta Nystrom method of order three, we have (see [13])

y(ti+1)− yi+1 ≈ γ3h
4 + O(h5),

y(ti+1)− yi+1 ≈ 25

108
h4ML3 + O(h5).
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The triangular fuzzy number v is defined by three numbers a1 < a2 < a3, where the graph
of v(x) (a membership function of the fuzzy number v) is a triangle with the base on the
interval [a1, a3] and vertex at x = a2. We specify v as (a1/a2/a3). We will write (2.1) v > 0
if a1 > 0; (2.2) v > 0 if a1 > 0; (2.3) v < 0 if a3 < 0; and (2.4) v 6 0 if a3 6 0.

Let E be the set of all upper semicontinuous normal convex fuzzy numbers with bounded
r−level intervals. This means that if v ∈ E, then the r−level set

[v]r = {s | v(s) > r}, 0 < r 6 1,

is a closed bounded interval denoted by

[v]r = [v1(r), v2(r)].

Let I be a real interval. The mapping x : I → E is called a fuzzy process and its r−level
set is denoted by

[x(t)]r = [x1(t; r), x2(t; r)], t ∈ I, r ∈ (0, 1].

The derivative x′(t) of the fuzzy process x(t) is defined by

[x′(t)]r = [x′

1(t; r), x′

2(t; r)], t ∈ I, r ∈ (0, 1],

provided that this equation defines a fuzzy number, as in [14].

Lemma 2.1. Let v, w ∈ E and s be a scalar, then for r ∈ (0, 1]

[v + w]r = [v1(r) + w1(r), v2(r) + w2(r)],

[v − w]r = [v1(r)− w1(r), v2(r)− w2(r)],

[v · w]r = [min{v1(r) · w1(r), v1(r) · w2(r), v2(r) · w1(r), v2(r) · w2(r)},
max{v1(r) · w1(r), v1(r) · w2(r), v2(r) · w1(r), v2(r) · w2(r)}],

[sv]r = s[v]r.

3. Fuzzy Cauchy Problem

Consder the fuzzy initial value problem

{

y′(t) = f(t, y(t)); t ∈ I = [0, T ],

y(a) = y0,
(3.1)

where f is a continuous mapping from R+ ×R onto R and y0 ∈ E with r-level sets

[y0]r = [y1(0; r), y2(0; r)], r ∈ (0, 1].

The extension principle of Zadeh leads to the following definition of f(t, y) when y = y(t) is
a fuzzy number:

f(t, y)(s) = sup{y(τ)|s = f(t, r)}, s ∈ R.

It follows that
[f(t, y)]r = [f1(t, y; r), f2(t, y; r)], r ∈ (0, 1],

where
f1(t, y; r) = min{f(t, u)| u ∈ [y1(r), y2(r)]},
f2(t, y; r) = max{f(t, u)| u ∈ [y1(r), y2(r)]}.

(3.2)
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Theorem 3.1. [14] Let f satisfy

|f(t, v)− f(t, v)| 6 g(t, |v − v|), t > 0, v, v ∈ R,

where g : R+ × R+ is a continuous mapping such that r → g(t, r) is nondecreasing and the
initial value problem

u′(t) = g(t, u(t)), u(0) = u0, (3.3)

has a solution on R+ for u0 > 0 and that u(t) = 0 is the only solution of (3.3) for u0 = 0.
Then the fuzzy initial value problem (3.1) has a unique solution.

4. Third-order Runge-Kutta Nystrom method

Let the exact solution [Y (t)]r = [Y1(t; r), Y2(t; r)] be approximated by some [y(t)]r =
[y1(t; r), y2(t, r)]. From (2.2),(2.3) we define

y1(tn+1; r)− y1(tn; r) =
3
∑

i=1

wiki,1(tn, y(tn; r)),

y2(tn+1; r)− y2(tn; r) =
3
∑

i=1

wiki,2(tn, y(tn; r)),

(4.1)

where wi’s are constants and

[ki(t, y(t; r))]r = [ki,1(t, y(t; r), ki,2(t, y(t; r))], i = 1, 2, 3

ki,1(tn, y(tn; r)) = hf

(

tn + cih , y1(tn) +
i−1
∑

j=1

aijkj,1(tn, y(tn; r))

)

,

ki,2(tn, y(tn; r)) = hf

(

tn + cih , y2(tn) +
i−1
∑

j=1

aijkj,2(tn, y(tn; r))

)

,

(4.2)

and

k1,1(t, y(t; r)) = min
{

hf (t, u) |u ∈ [y1(t; r), y2(t; r)]
}

,

k1,2(t, y(t; r)) = max
{

hf (t, u) |u ∈ [y1(t; r), y2(t; r)]
}

,

k2,1(t, y(t; r)) = min
{

hf
(

t+ 2

3
h, u
)

∣

∣

∣
u ∈ [z1,1(t, y(t; r)), z1,2(t, y(t; r)]

}

,

k2,2(t, y(t; r)) = max
{

hf
(

t+ 2

3
h, u
)

∣

∣

∣
u ∈ [z1,1(t, y(t; r)), z1,2(t, y(t; r)]

}

,

k3,1(t, y(t; r)) = min
{

hf
(

t+ 2

3
h, u
)

∣

∣

∣
u ∈ [z2,1(t, y(t; r)), z2,2(t, y(t; r)]

}

,

k3,2(t, y(t; r)) = max
{

hf
(

t+ 2

3
h, u
)

∣

∣

∣
u ∈ [z2,1(t, y(t; r)), z2,2(t, y(t; r)]

}

,

(4.3)
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where in the third-order Runge-Kutta method

z1,1(t, y(t; r)) = y1(t; r) +
2

3
k1,1(t, y(t; r)),

z1,2(t, y(t; r)) = y2(t; r) +
2

3
k1,2(t, y(t; r)),

z2,1(t, y(t; r)) = y1(t; r) +
2

3
k2,1(t, y(t; r)),

z2,2(t, y(t; r)) = y2(t; r) +
2

3
k2,2(t, y(t; r)).

(4.4)

Define

F [t, y(t; r)] = 2k1,1(t, y(t; r) + 3k3,1(t, y(t; r)) + 3k3,1(t, y(t; r)),

G[t, y(t; r)] = 2k1,2(t, y(t; r) + 3k3,2(t, y(t; r)) + 3k3,1(t, y(t; r)).
(4.5)

The exact and approximate solutions at tn, 0 6 n 6 N are denoted by [Y (tn)]r =
[Y1(tn; r), Y2(tn; r)] and [y(tn)]r = [y1(tn; r), y2(tn; r)], respectively. The solution is calcu-
lated by the grid points (2.5). By (4.1),(4.5) we have

Y1(tn+1; r) ≈ Y1(tn; r) +
1

8
F [tn, Y (tn; r)] ,

Y2(tn+1; r) ≈ Y2(tn; r) +
1

8
G [tn, Y (tn; r))] .

(4.6)

We define

y1(tn+1; r) = y1(tn; r) +
1

8
F [tn, y(tn; r)] ,

y2(tn+1; r) = y2(tn; r) +
1

8
G [tn, y(tn; r)] .

(4.7)

The following lemmas will be applied to show the convergence of these approximations.
That is

lim
h→0

y1(t; r) = Y1(t; r),

lim
h→0

y2(t; r) = Y2(t; r).

Lemma 4.1. [10] Let the sequence of numbers {Wn}Nn=0 satisfy

|Wn+1| 6 A|Wn|+ B, 0 6 n 6 N − 1,

for some given positive constants A and B. Then

|Wn| 6 An|W0|+ B
An − 1

A− 1
, 0 6 n 6 N.

Lemma 4.2. [10] Let the sequence of numbers{Wn}Nn=0, {Vn}Nn=0 satisfy

|Wn+1| 6 |Wn|+ Amax{|Wn|, |Vn|}+ B,

|Vn+1| 6 |Vn|+ Amax{|Wn|, |Vn|}+ B,

for some given positive constants A and B, and denote

Un = |Wn|+ |Vn|, 0 6 n 6 N.

Then

Un 6 A
n
U0 + B

A
n − 1

A− 1
, 0 6 n 6 N,

where A = 1 + 2A and B = 2B.
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Let F (t, u, v) and G(t, u, v) be obtained by substituting [y(t)]r = [u, v] into (4.5),

F [t, y(t; r)] = 2k1,1(t, y(t; r) + 3k3,1(t, y(t; r)) + 3k3,1(t, y(t; r)),

G[t, y(t; r)] = 2k1,2(t, y(t; r) + 3k3,2(t, y(t; r)) + 3k3,1(t, y(t; r)).

The domain where F and G are defind is therefore

K = {(t, u, v)|0 6 t 6 T, −∞ < v < ∞ , −∞ < u 6 v}.

Theorem 4.1. Let F (t, u, v) and G(t, u, v) belong to C3(k) and let the partial deriva-
tives of F and G be bounded over K. Then, for arbitrary fixed r, 0 6 r 6 1, the approximate
solutions (4.6) converge to the exact solutions Y1(t; r) and Y2(t; r) uniformly in t.

Proof. It suffices to show
lim
h→0

y1(tN ; r) = Y1(tN ; r),

lim
h→0

y2(tN ; r) = Y2(tN ; r),

where tN = T . For n = 0, 1, · · · , N − 1, by using the Taylor theorem we get

Y1(tn+1; r) = Y1(tn; r) +
1

8
F [tn, Y (tn; r)] +

25

108
h4ML3 +O(h5),

Y2(tn+1; r) = Y2(tn; r) +
1

8
G [tn, Y (tn; r))] +

25

108
h4ML3 +O(h5),

(4.8)

Wn = Y1(tn; r)− y1(tn; r),

Vn = Y2(tn; r)− y2(tn; r).

Hence from (4.7) and (4.8)

Wn+1 = Wn +
1

8
{F [tn, Y1(tn; r), Y2(tn; r)]− F [tn, y1(tn; r), y2(tn; r)]}

+
25

108
h4ML3 +O(h5),

Vn+1 = Vn +
1

8
{G [tn, Y1(tn; r), Y2(tn; r)]−G [tn, y1(tn; r), y2(tn; r)]}

+
25

108
h4ML3 +O(h5).

Then

|Wn+1| 6 |Wn|+
1

4
Ph ·max{|Wn|, |Vn|}+

25

108
h4ML3 +O(h5),

|Vn+1| 6 |Vn|+
1

4
Ph ·max{|Wn|, |Vn|}+

25

108
h4ML3 +O(h5),

for t ∈ [0, T ] and P > 0 is a bound for the partial derivatives of F and G. Thus, by Lemma 4.2

|Wn| 6 (1 +
1

2
Ph)n|U0|+

(

25

54
h4ML3 +O(h5)

)

(1 + 1

2
Ph)n − 1
1

2
Ph

,

|Vn| 6 (1 +
1

2
Ph)n|U0|+

(

25

54
h4ML3 +O(h5)

)

(1 + 1

2
Ph)n − 1
1

2
Ph

,
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where |U0| = |W0|+ |V0|. In particular

|WN | 6 (1 +
1

2
Ph)N |U0|+

(

25

28
h3ML3 +O(h4)

)

(1 + 1

2
Ph)

T

h − 1

P
,

|VN | 6 (1 +
1

2
Ph)N |U0|+

(

25

28
h3ML3 +O(h4)

)

(1 + 1

2
Ph)

T

h − 1

P
.

Since W0 = V0 = 0, we obtain

|WN | 6
25

28
ML3

(

e
1

2
Ph − 1

P

)

h3 +O(h4),

|VN | 6
25

28
ML3

(

e
1

2
Ph − 1

P

)

h3 +O(h4),

and if h → 0, we get WN → 0 and VN → 0 which completes the proof.

5. Numerical Examples

Example 5.1. Consider the fuzzy differential equation

{

y′(t) = −y(t), t > 0,

y(0) = [0.96 + 0.04r, 1.01− 0.01r].
(5.1)

The exact solution is given by

Y (t; r) =
[

(0.96 + 0.04r)e−t, (1.01− 0.01r)e−t
]

.

At t = 0.1 we get

Y (0.1; r) =
[

(0.96 + 0.04r)e−0.1, (1.01− 0.01r)e−0.1
]

.

With the use of the third-order Runge-kutta Nystrom method the approximate solution is

y1(tn+1; r) = y1(tn; r)

(

1− h+
h2

2!
− h3

3!

)

,

y2(tn+1; r) = y2(tn; r)

(

1− h+
h2

2!
− h3

3!

)

.

The exact and approximate solutions obtained by the Euler method and by the third-orde
Runge-Kutta Nystrom method are compared and plotted in Fig. 5.1.

Example 5.2. Consider the fuzzy differential equation

{

y′(t) = ty(t), t ∈ [0, 1]

y(0) =
[√

e− 0.5(1− r),
√
e+ 0.5(1− r)

]

.
(5.2)
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Fig. 5.1. (h=0.2)

The exact solution is given by Y (t; r) =
[

(
√
e− 0.5(1− r))e

t
2

2 , (
√
e+ 0.5(1− r))e

t
2

2

]

.

At t = 0.1 we get Y (0.1; r) = [(
√
e− 0.5(1− r))e0.005, (

√
e+ 0.5(1− r))e0.005] . The exact

and approximate solutions obtained by the third-order Runge-Kutta Nystrom method (Eqs.
(4.3) - (4.7)), are compared and plotted in Fig. 5.2.
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Fig. 5.2. (h=0.5)

6. Conclusions

In this work, we have used the third-order Runge-Kutta Nystrom method to find a numerical
solution of fuzzy differential equations. Taking into account the convergence order of the
Euler method is O(h) (as given in [10]), a higher order of convergence O(h3) is obtained by
the proposed method. Comparison of the solutions of examples 5.1 and 5.2 shows that the
proposed method gives a better solution than the Euler method does.
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