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A POSTERIORI ERROR ESTIMATES FOR

APPROXIMATE SOLUTIONS OF THE

BARENBLATT-BIOT POROELASTIC MODEL

J.M. NORDBOTTEN1, T. RAHMAN2, S.I. REPIN3, AND J. VALDMAN4

Abstract — The paper is concerned with the Barenblatt-Biot model in the theory of
poroelasticity. We derive a guaranteed estimate of the difference between exact and ap-
proximate solutions in a combined norm that encompasses errors for the pressure fields
computed from the diffusion part of the model and errors related to stresses (strains)
of the elastic part. Estimates do not contain generic (mesh-dependent) constants and
are valid for any conforming approximation of the pressure and stress fields.
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1. Introduction

The standard mathematical model for diffusive flow in an elastic porous medium is the Biot
diffusion-deformation model of poroelasticity [8] based on the coupling between the pore-fluid
potential and the solid stress fields. The basic constitutive equations relate the total stress
to both the effective stress given by the strain of the structure and to the potential arising
from the pore fluid. The model consists of a momentum balance equation combined with
Hooke law for elastic deformation, and a continuity equation combined with the Darcy law.
Originally, the Biot model was designed for homogeneous porous media or single porosity
media. The representation of porosity and permeability in naturally occurring materials
often requires several distinct spatial scales. As for instance, in a reservoir model, the
presence of heterogeneities as highly permeable channels has a significant impact on the flow
properties of the reservoir rock. Two or more scales of permeability are usually observed,
which are also referred to as dual permeability models.

Studies show that even for a single-phase flow in relatively simple porous media, such as
sandstone, the fluid flows through a very small portion of the pore space, while its major
portion remains stagnant. A system of connected highly permeable channels characterized
by a relatively simple pore space geometry provides a fluid flow through the reservoir. The
remainder of the reservoir characterized by tortuous pores and pore throats is significantly
less permeable. The highly permeable channel component of the reservoir is relatively small,
and the remainder of the reservoir contains most of the fluid. This contrast leads to the dual
medium model of reservoir rock, originally proposed by Barenblatt et al. [6] in the rigid case.
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According to this model, the fluid flow in matrix blocks is local, and only the local exchange
of fluid between individual blocks and the surrounding high permeable channels is supported.
This model contains a system of two diffusion equations, one for each component, coupled
by a distributed exchange term that, in its simplest form, is proportional to the potential
difference between fluids in the two components.

A combination of the Barenblatt double–diffusion approach and the Biot diffusion–
deformation theory leads to what we call the Barenblatt - Biot poroelastic model representing
the double diffusion in elastic porous media. It takes the form

−∇ · (L ε(u)) + α1∇p1 + α2∇p2 = f(x, t),

c1ṗ1 −∇ · (k1∇p1) + α1∇ · u̇ + κ(p1 − p2) = h1(x, t), (1.1)

c2ṗ2 −∇ · (k2∇p2) + α2∇ · u̇ + κ(p2 − p1) = h2(x, t),

where u is the displacement of the solid skeleton and p1 and p2 are the fluid potentials in the
respective components. With the vector gradient operator ∇, the linear Green strain tensor
ε(·) is written as

ε(u) :=
1

2

(
∇u + (∇u)T

)
. (1.2)

The fourth-order elastic stiffness tensor L defines the stress tensor σ using the Hook law

σ := L ε(u).

In general, the permeabilities k1 and k2 may be heterogeneous and anisotropic tensors,
which may be functions of the deformation. Herein, we will neglect this dependence and
only consider constant, scalar, and homogeneous permeabilities. The constants α1 and α2

measure changes of porosities due to the applied volumetric strain. Mathematical analysis
of this model based on the theory of implicit evolution equations in Hilbert spaces was
performed in [21].

We note that multiple continua models are applicable to several other porous media
problems. We mention two cases in particular. Firstly, contaminant transport experiments
clearly indicate that the particle dispersion is non-Fickian, as reviewed in [7]. This makes
both dual and multiple continua models of interest, with dual media approaches already
common in applications. The use of more than two flowing continua was discussed by
Gwo et al. [11], and a single flowing continuum coupled to multiple non-flowing continua
(traps) was reviewed in [7]. The second application is the heat transfer in fractured rocks,
in particular, related to modelling of geothermal heat extraction. Here, the slow interaction
of diffusive heat transfer in the rock has to be modeled together with the fast fluid flow in
fractures. The approach is to use multiple continua, frequently as many as four or more [15].

The aim of this paper is not to develop a numerical solver for the Barenblatt-Biot poroe-
lastic model but to derive a reliable a posteriori estimate. In the last few decades, a posteriori
error estimates for linear elliptic and parabolic problems have been intensively investigated.
The reader will find discussions of the main approaches to the a posteriori error estima-
tion of finite element approximations (such as residual or gradient averaging methods) in
monographs [1, 4, 5, 23] and papers [2, 3, 10, 12, 13] and in the literature cited therein.

Here, we extend the techniques described in books [14, 18] and derive functional a pos-
teriori estimates for the static case of the Barenblatt-Biot system

−∇ · (L ε(u)) + α1∇p1 + α2∇p2 = f(x),

−∇ · (k1∇p1) + κ(p1 − p2) = h1(x), (1.3)

−∇ · (k2∇p2) + κ(p2 − p1) = h2(x),
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which is considered in a bounded connected domain Ω ⊂ Rd with the Lipschitz continuous
boundary Γ.

There are various boundary conditions motivated by hydrological applications, among
which four boundary conditions, applicable to different parts of the boundary Γ =

⋃
Γi

represent the most typical cases.
1. A saturated land surface, Γ1, with infiltration and evaporation is modeled as

σ(u)n = 0 (normal stress − free condition), (1.4)

ψΓ1 = n · (−k1∇p1 − k2∇p2) (normal fluid flux), (1.5)

where n is the unit outward normal vector and ψΓ1 is a given function. We fulfil this
boundary condition by specifying that the normal component of the potential gradients at
the boundary is

n · ∇(p1 − p2) = 0. (1.6)

In the case of constant k (considered in this paper), the condition (1.5) reads

ψΓ1 = −(k1 + k2)n · ∇p1 = −(k1 + k2)n · ∇p2, (1.7)

which is in fact a version of the Darcy law at the boundary.
2. Boundary to sea with a constant fluid potential (we call this boundary Γ2). The porous
medium is in contact with the ocean (or any other body of water with constant depth). This
is often the case for underground porous media on islands (sand to ocean) or coasts (aquifers
to ocean). Here we impose the normal stress as in (1.4), but the boundary conditions for
the potentials are of the Dirichlet type, i.e.,

p1 = p2 = pΓ2 . (1.8)

3. Internal boundary with a known head (Γ3). This may represent either a fixed poten-
tial pumping well or the potential at some measurement point. We model this as a no
displacement boundary with Dirichlet conditions for the potentials as at Γ3, i.e.,

u = 0, (1.9)

p1 = p2 = pΓ3 . (1.10)

4. Impermeable bedrock, Γ4. Here, we impose no displacement (as for Γ3) and a zero normal
flux (as for Eq. (1.5) with ψΓ4 = 0).

For the unique solvability of the diffusion problem, one has to assume that

meas(Γ2 ∪ Γ3) 6= ∅.

In this paper, we restrict ourselves to the case of Dirichlet type boundary conditions.
The outline of the paper is as follows. In Section 2, we present and analyze the double
diffusion problem and in Section 3 we provide its functional a posteriori error estimate. In
Section 4, we obtain the estimate of the static Barenblatt-Biot model in terms of combined
elasticity-diffusion norm.
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2. Variational formulation of the double diffusion system

Since the displacement u is only involved in the first equation of system (1.3), the double-
diffusion problem

−∇ · (k1∇p1) + κ(p1 − p2) = h1(x), (2.1)

−∇ · (k2∇p2) + κ(p2 − p1) = h2(x) (2.2)

is studied separately. It describes the steady flow of a slightly compressible fluid in a generally
heterogeneous medium consisting of two components. Henceforth, we consider this problem
with the Dirichlet boundary conditions p1 = p2 = pΓ on Γ. Let p̄ be a function with square
summable coefficients that satisfies this boundary condition. It is convenient to rewrite the
problem in terms of the new functions

p1 := p1 − p̄, p2 := p2 − p̄.

Then, a weak formulation of (2.1)-(2.2) leads to

Problem 1. Assume that (h1, h2) ∈ L2(Ω,R2). Find p = (p1, p2) ∈ H1
0 (Ω,R2) satisfy-

ing the system of variational equalities∫
Ω

k1∇p1 · ∇q1 +

∫
Ω

κ(p1 − p2)q1 dx =

∫
Ω

(h1(x)q1 − k1∇p̄ · ∇q1) dx

∫
Ω

k2∇p2 · ∇q2 +

∫
Ω

κ(p2 − p1)q2 dx =

∫
Ω

(h2(x)q2 − k2∇p̄ · ∇q2) dx

(2.3)

for all testing functions q = (q1, q2) ∈ H1
0 (Ω,R2).

This problem can be represented in general form (which also encompasses other, more com-
plicated models of porous media). For this purpose, we introduce the spaces

Q := H1
0 (Ω,R2), Y := L2(Ω,R2d), (2.4)

and the corresponding dual spaces

Q∗ := H−1(Ω,R2), Y ∗ := L2(Ω,R2d). (2.5)

Hereafter L2 norms of all functions in Ω are denoted by ‖·‖Ω. Duality pairings of (Q,Q∗) and
(Y, Y ∗) are denoted by 〈·, ·〉 and 〈〈·, ·〉〉, respectively. Also, we introduce a bounded linear
operator Λ ∈ L(Q, Y ) and its adjoint operator Λ∗ ∈ L(Y ∗, Q∗) by the relations

Λq := (∇q1,∇q2), Λ∗Y∗ = (− div y∗1,− div y∗2)T . (2.6)

The operators Λ and Λ∗ satisfy the relation representing integration by parts

〈〈Y∗,Λq〉〉 = 〈Λ∗Y∗,q〉 for all Y∗ ∈ Y ∗,q ∈ Q,

which can be written componentwise as∫
Ω

(Y∗1 · ∇q1 + Y∗2 · ∇q2) dx = −
∫
Ω

(q1 div Y∗1 + q2 div Y∗2) dx, (2.7)
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where q = (q1, q2) and Y∗ = (Y∗1,Y
∗
2). Now Problem 1 can be represented in the form: Find

p ∈ Q such that the equality

a(p,q) = l(q) (2.8)

holds for all q ∈ Q. The bilinear form a(·, ·) and the linear form l(·) are defined as

a(p,q) :=

∫
Ω

(Λp : (AΛq) + p · Bq) dx,

l(q) :=

∫
Ω

(h · q− CΛq) dx,

A, B and C are matrices formed by the material-dependent constants k1, k2, κ,

A :=

(
k1 0
0 k2

)
, B :=

(
κ −κ
−κ κ

)
, C :=

(
k1∇p̄ 0

0 k2∇p̄

)
and h is the right-hand side vector

h :=

(
h1

h2

)
.

Remark 2.1. We note that the symmetric matrix A is a positive definite matrix if k1 and
k2 are positive (since Aξ · ξ > min{k1, k2} ‖ξ‖2 for all ξ ∈ Rd). However, B is symmetric but
only positive semi-definite in the case of the positive parameter κ, and its one-dimensional
kernel is generated by the vector (1, 1)T .

Remark 2.2. If p̄ is sufficiently regular (so that Λ∗C belongs to Y ∗), then

l(q) :=

∫
Ω

(h · q− Λ∗Cq) dx =

∫
Ω

ĥ · q dx,

where

ĥ :=

(
h1 − div k1∇p̄
h2 − div k2∇p̄

)
.

It is easy to verify that (2.8) is the necessary condition for the minimizer of the following
convex variational problem.

Problem 2. Find p ∈ Q satisfying

F (p) +G(Λp) = inf
q∈Q
{F (q) +G(Λq)}, (2.9)

where

F : Q→ R, F (q) :=
1

2

∫
Ω

q · Bq dx− l(q), (2.10)

and

G : Y → R, G(Λq) :=
1

2

∫
Ω

Λq : (AΛq) dx. (2.11)
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Theorem 1 existence of a unique solution. Assume that k1, k2 > 0 and κ > 0.
Then, there exists a unique solution p ∈ Q of Problem 2, which also represents the solution
of Problem 1.

Proof. The existence of the unique minimizer follows from the known results in the
calculus of variations. Indeed, under the given assumptions, the functional F (·) + G(Λ·) is
strictly convex and coercive in the reflexive space Q.

3. A posteriori error estimate of the double diffusion system

In this section, we derive guaranteed and directly computable bounds of the difference be-
tween exact and approximate solutions. Our analysis is based upon a posteriori error esti-
mation methods suggested in [14, 18]. Following chapters 6 and 7 in [14], we first need to
find the explicit forms of the dual functionals

F ∗ : Q∗ → R, F ∗(Λ∗Y∗) := sup
q∈Q
{〈Λ∗Y∗,q〉 − F (q)},

G∗ : Y ∗ → R, G∗(Y∗) := sup
Λq∈Y
{〈〈Y∗,Λq〉〉 −G(Λq)},

(3.1)

and the corresponding compound functionals

DF : Q×Q∗ → R, DF (q,Λ∗Y∗) := F (q) + F ∗(Λ∗Y∗)− 〈Λ∗Y∗,q〉 ,
DG : Y × Y ∗ → R, DG(Λq,Y∗) := G(Λq) +G∗(Y∗)− 〈〈Y∗,Λq〉〉 .

(3.2)

By the the sum of DF and DG, we obtain the functional error majorant

M(q,Y∗) := DF (q,Λ∗Y∗) +DG(Λq,Y∗), (3.3)

which provides a guaranteed upper bound of the error

1

2
a(p− q,p− q) 6M(q,Y∗) for all Y∗ ∈ Y ∗. (3.4)

The majorant is fully computable and depends only on the approximation q ∈ Q and
arbitrary variable Y∗ ∈ Y ∗.

Lemma 3.1 dual functionals. For k1, k2 > 0 and κ > 0,

G∗(Y∗) =
1

2

∫
Ω

A−1Y∗ : Y∗ dx, (3.5)

F ∗(Λ∗Y∗) =

{
1

4κ

∫
Ω

(Λ∗Y∗ + h)2 dx if Λ∗Y∗1 + h1 + Λ∗Y∗2 + h2 = 0,

+∞ otherwise
hold. (3.6)

Proof. The derivation of G∗(Y∗) is straightforward (see [14]). The singularity of the
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matrix B makes the computation of F ∗(Λ∗Y∗) more technical.

F ∗(Λ∗Y∗) = sup
q∈Q
{〈q,Λ∗Y∗〉 − F (q)}

> sup
q∈Q:q1=q2

{〈q,Λ∗Y∗〉 − F (q)}

= sup
q1∈H1

0 (Ω)

{〈q1,Λ
∗Y∗1 + Λ∗Y∗2〉 − F (q1, q1)}

= sup
q1∈H1

0 (Ω)

{〈q1,Λ
∗Y∗1 + h1 + Λ∗Y∗2 + h2〉}

=

{
0 if Λ∗Y∗1 + h1 + Λ∗Y∗2 + h2 = 0,
+∞ otherwise.

Thus, the finite values of F ∗(Λ∗Y∗) are attained only on the subspace

Λ∗Y∗1 + h1 + Λ∗Y∗2 + h2 = 0, (3.7)

and we must specially consider this case. It holds

F ∗(Λ∗Y∗) = sup
q∈Q
{〈q,Λ∗Y∗〉 − F (q)} = sup

q∈Q
{〈q,Λ∗Y∗ + h〉 − 1

2

∫
Ω

Bq · q dx}

(use the constraint Λ∗Y∗2 + h2 = −(Λ∗Y∗1 + h1))

= sup
(q1,q2)∈Q

{〈q1 − q2,Λ
∗Y∗1 + h1〉 −

1

2

∫
Ω

κ(q1 − q2)2 dx}

(supremum is obtained for q1 − q2 = (Λ∗Y∗1 + h1)/κ)

=
1

2κ

∫
Ω

(Λ∗Y∗1 + h1)2 dx =
1

4κ

∫
Ω

[
(Λ∗Y∗1 + h1)2 + (Λ∗Y∗2 + h2)2

]
dx

=
1

4κ

∫
Ω

(Λ∗Y∗ + h)2 dx.

Remark 3.1. We note that (3.7) is a weaker restriction than the sum of two equilibrium
relations Λ∗Y∗1 +h1 = 0 and Λ∗Y∗2 +h2 = 0, which one would expect from the general theory.
In other words, our analysis shows that the strict equilibrium of the dual variables in the
componentwise sense is not required in the coupled system.

After the substitution of (3.5) and (3.6) into (3.2), we obtain explicit expressions for the
compound functionals

DG(Λq,Y∗) =
1

2

∫
Ω

A(Λq− A−1Y∗) : (Λq− A−1Y∗) dx, (3.8)

DF (q,Λ∗Y∗) =


1
2

∫
Ω

Bq · q dx+ 1
4κ

∫
Ω

(Λ∗Y∗ + h)2 dx

if Λ∗Y∗1 + h1 + Λ∗Y∗2 + h2 = 0,
+∞ otherwise.

(3.9)

In view of (3.4), the sharpest bound of a(p− q,p− q) is provided by the estimate

1

2
a(p− q,p− q) 6 inf

Y∗∈Y ∗
M(q,Y∗). (3.10)
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Since M(q,Y∗) = +∞ if Y∗ does not satisfy (3.7), we must restrict ourselves to arguments
Y∗ ∈ Y ∗h , where

Y ∗h := {(y∗1, y∗2) ∈ Y ∗ : Λ∗Y∗1 + h1 + Λ∗Y∗2 + h2 = 0 a.e. in Ω}. (3.11)

Constructing an element of Y ∗h requires an exact equilibration procedure which has been
studied for a Poisson problem in [9]. Below, we show a way to avoid the constraint (3.11)
by a special penalty term added to the functional majorant. We define

Y ∗div := {(Y∗1,Y∗2) ∈ Y ∗ : Λ∗Y∗1 + Λ∗Y∗2 ∈ L2(Ω)}, (3.12)

and note that Y ∗h ⊂ Y ∗div (since h1, h2 ∈ L2(Ω)). Further we decompose

Y∗ = Ŷ∗ + (Y∗ − Ŷ∗)

with Ŷ∗ ∈ Y ∗div and extend the dual functionals DG and DF by the new variable Ŷ∗. We
rewrite (3.8) as

DG(Λq,Y∗) =
1

2

∫
Ω

A(Λq− A−1Ŷ∗) : (Λq− A−1Ŷ∗) dx

+

∫
Ω

(Λq− A−1Ŷ∗) : (Y∗ − Ŷ∗) dx+
1

2

∫
Ω

A−1(Y∗ − Ŷ∗) : (Y∗ − Ŷ∗) dx,

and use the inequality 2M1 : M2 6 β1M1 : M1 + 1
β1
M2 : M2 valid for all matrices M1,M2

and for all β1 > 0 to bound the middle term as

(Λq− A−1Ŷ∗) : (Y∗ − Ŷ∗) = A1/2(Λq− A−1Ŷ∗) : A−1/2(Y∗ − Ŷ∗)

6
β1

2
A(Λq− A−1Ŷ∗) : (Λq− A−1Ŷ∗) +

1

2β1

A−1(Y∗ − Ŷ∗) : (Y∗ − Ŷ∗). (3.13)

Obviously, the middle term adds to the left and the right terms in DG(Λq,Y∗) above, and
the modified compound functional reads

DG(Λq,Y∗, Ŷ∗) :=
1 + β1

2

∫
Ω

A(Λq− A−1Ŷ∗) : (Λq− A−1Ŷ∗) dx

+ (
1

2
+

1

2β1

)

∫
Ω

A−1(Y∗ − Ŷ∗) : (Y∗ − Ŷ∗) dx.
(3.14)

It also contains a scalar factor β1 > 0 whose value can be chosen arbitrarily. A similar
technique is used to modify the compound functional DF (q,Λ∗Y∗). For the second integral
in (3.9), we have∫

Ω

(Λ∗Y∗ + h)2 dx 6 (1 + β2)

∫
Ω

(Λ∗Ŷ∗ + h)2 dx+ (1 +
1

β2

)

∫
Ω

(Λ∗(Y∗ − Ŷ∗))2 dx,

where β2 > 0. Therefore, the modified dual functional reads

DF (q,Λ∗Y∗,Λ∗Ŷ∗) :=
1

2

∫
Ω

Bq · q dx+
1

4κ
(1 + β2)

∫
Ω

(Λ∗Ŷ∗ + h)2 dx

+
1

4κ
(1 +

1

β2

)

∫
Ω

(Λ∗(Y∗ − Ŷ∗))2 dx.

(3.15)
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By adding (3.14) and (3.15), we extend the functional majorant (3.3) to

M(q,Y∗, Ŷ∗) := DF (q,Λ∗Y∗,Λ∗Ŷ∗) +DG(Λq,Y∗, Ŷ∗), (3.16)

in which the arbitrary variables satisfy the constraint

(Y∗, Ŷ∗) ∈ Y ∗h × Y ∗div.

Clearly, the original and extended majorants satisfy the inequality

1

2
a(p− q,p− q) 6M(q,Y∗) 6M(q,Y∗, Ŷ∗) (3.17)

for all Ŷ∗ ∈ Y ∗div, β1 > 0, β2 > 0. This estimate is sharp in the sense that there are no

irremovable gaps in the inequalities. Indeed, if we set Y∗ = Ŷ∗ = Λp and tend β1 and β2 to
zero, then M(q,Y∗, Ŷ∗) tends to M(q,Y∗) (and even to the exact error 1

2
a(p−q,p−q), cf.

(3.10)).

3.1. Upper estimate of M(q,Y∗, Ŷ∗)

Let us denote Y∗ = (Y∗1,Y
∗
2) and Ŷ∗ = (Ŷ∗1, Ŷ

∗
2) and consider a particular subspace

(Y∗, Ŷ∗) ∈ {Y ∗h × Y ∗div : Λ∗Y∗1 + h1 = 0,Y∗2 = Ŷ∗2 a.e. in Ω}. (3.18)

In this subspace,∫
Ω

(Λ∗(Y∗ − Ŷ∗))2 dx =

∫
Ω

(div(Ŷ∗1 −Y∗1))2 dx =

∫
Ω

(div Ŷ∗1 − h1)2 dx

holds (cf. (2.6)). Therefore, DF (q,Λ∗Y∗,Λ∗Ŷ∗) defined in (3.15) is simplified as Y∗-independent

DF (q,Λ∗Ŷ∗) :=
1

2

∫
Ω

Bq · q dx+
1

4κ
(1 + β2)

∫
Ω

(Λ∗Ŷ∗ + h)2 dx (3.19)

+
1

4κ
(1 +

1

β2

)

∫
Ω

(div Ŷ∗1 − h1)2 dx,

and only Y∗-dependent functional in DG(Λq,Y∗, Ŷ∗) defined in (3.14) writes∫
Ω

A−1(Y∗ − Ŷ∗) : (Y∗ − Ŷ∗) dx =

∫
Ω

k−1
1 (Y∗1 − Ŷ∗1) · (Y∗1 − Ŷ∗1) dx. (3.20)

Lemma 3.2. Let us define the space

Yh1 := {Y∗1 ∈ L2(Ω)d : Λ∗Y∗1 + h1 = 0 a.e. in Ω}.

Then, for all Ŷ∗1 ∈ H(div; Ω),

inf
Y∗

1∈Yh1

∫
Ω

∥∥∥Y∗1 − Ŷ∗1

∥∥∥2

dx 6 C2
∥∥∥div Ŷ∗1 + h1

∥∥∥2

holds, where C > 0 satisfies the Friedrichs inequality ‖w‖L2(Ω) 6 C ‖∇w‖L2(Ω) valid for all

w ∈ H1
0 (Ω).
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Proof. It follows from Theorem 6.1 in [20] by the modification related to the fact that
we consider vector arguments.

The application of Lemma 3.2 to (3.20) and the substitution back into (3.14) defines the
Y∗-independent dual functional

DG(Λq, Ŷ∗) :=
1 + β1

2

∫
Ω

A(Λq− A−1Ŷ∗) : (Λq− A−1Ŷ∗) dx

+ k−1
1 (

1

2
+

1

2β1

)C2
∥∥∥div Ŷ∗1 + h1

∥∥∥2

, (3.21)

which provides the upper estimate of the quantity

inf
Y∗∈Y ∗

h

DG(Λq,Y∗, Ŷ∗).

Therefore, the sum of (3.19) and (3.21) defines the Y∗-independent functional

Mβ1,β2(q, Ŷ∗) := DF (q,Λ∗Ŷ∗) +DG(Λq, Ŷ∗) (3.22)

that serves as an upper bound of M(q,Y∗, Ŷ∗), and provides a computable estimate

1

2
a(p− q,p− q) 6Mβ1,β2(q, Ŷ∗) for all Ŷ∗ ∈ Y ∗div. (3.23)

Remark 3.2 symmetric form of DG. If we replace subspace (3.18) by

(Y∗, Ŷ∗) ∈ {Y ∗h × Y ∗div : Λ∗Y∗2 + h2 = 0,Y∗1 = Ŷ∗1 a.e. in Ω}, (3.24)

then, instead of (3.21), we obtain

DG(Λq, Ŷ∗) :=
1 + β1

2

∫
Ω

A(Λq− A−1Ŷ∗) : (Λq− A−1Ŷ∗) dx

+ k−1
2 (

1

2
+

1

2β1

)C2
∥∥∥div Ŷ∗2 + h2

∥∥∥2

. (3.25)

4. A posteriori error estimate for approximations of the coupled
system (1.1)

Assume that the fluid pressures p1 and p2 are resolved exactly and substituted into the
elasticity equation (cf. (1.1))

−∇ · (L ε(u)) = f(x, t) + α1∇p1 + α2∇p2.

Let v be an approximation of u (this problem is considered in the same domain Ω as problem
(2.1)-(2.2)). We define the Dirichlet boundary condition by the function u0 ∈ H1(Ω;Rd)
and assume

v ∈ u0 +H1
0 (Ω;Rd).
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Lemma 4.1. For every function τ ∈ Q := {σ ∈ L2(Ω;Rd×d
sym) : div σ ∈ L2(Ω;Rd)},

‖ε(u− v)‖L ;Ω 6
∥∥ε(v)− L −1τ

∥∥
L ;Ω

+ C ‖div τ + f − α1∇p1 − α2∇p2‖Ω , (4.1)

holds, where the constant C > 0 satisfies the inequality

‖w‖Ω 6 C ‖ε(w)‖L ;Ω for all w ∈ H1
0 (Ω;Rd) (4.2)

and the norm ‖·‖ is defined as

‖ε‖2
L ;Ω :=

∫
Ω

L ε : ε dx.

Proof. The estimates in chapter 6.5 in [18] are applied to the linear elasticity problem
with the right-hand side f − α1∇p1 − α2∇p2. The existence of constant C follows from the
Korn and Friedrichs inequalities.

Remark 4.1. Estimate (4.1) is sharp with respect to the parameter τ . Indeed, the
choice of τ = L ε(u) satisfies the equilibrium condition

div τ + f = α1∇p1 + α2∇p2, (4.3)

and reduces therefore (4.1) to the equality.

Let q1 and q2 be approximations of the exact pressure fields p1 and p2 respectively. By
triangle inequalities, we obtain

‖div τ + f − α1∇p1 − α2∇p2‖Ω 6 ‖div τ + f − α1∇q1 − α2∇q2‖Ω

+ ‖∇(p1 − q1)‖Ω + ‖∇(p2 − q2)‖Ω . (4.4)

Use (4.4) and square both parts of (4.1) to obtain

‖ε(u− v)‖2
L ;Ω 6 (

∥∥ε(v)− L −1τ
∥∥
L ;Ω

+ C ‖div τ + f − α1∇q1 − α2∇q2‖Ω (4.5)

+ C ‖∇(p1 − q1)‖Ω + C ‖∇(p2 − q2)‖Ω)2.

By the algebraic inequality

(a+ b+ c)2 6 (1 + β4 + β5) a2 + (1 +
1

β4

+ β6) b2 + (1 +
1

β5

+
1

β6

) c2

valid for all scalars a, b, c and for all β4, β5, β6 > 0, inequality (4.5) and the following inequal-
ity (β3 is an arbitrary positive constant) yield

(‖∇(p1 − q1)‖Ω + ‖∇(p2 − q2)‖Ω)2

6 (1 + β3) ‖∇(p1 − q1)‖2
Ω + (1 +

1

β3

) ‖∇(p2 − q2)‖2
Ω

6 max{1 + β3

k1

,
1 + β3

k2β3

} a(p− q,p− q)

6 2 max{1 + β3

k1

,
1 + β3

k2β3

} Mβ1,β2(q, Ŷ∗). (4.6)
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Now we obtain the final estimate in terms of the coupled error norm

a(p− q,p− q) + ‖ε(u− v)‖2
L ;Ω 6 (1 + β4 + β5)

∥∥ε(v)− L −1τ
∥∥2

L ;Ω

+

(
1 +

1

β4

+ β6

)
C2 ‖div τ + f − α1∇q1 − α2∇q2‖2

Ω + 2Ĉ Mβ1,β2(q, Ŷ∗), (4.7)

where

Ĉ = 1 + C2

(
1 +

1

β5

+
1

β6

)
max

{
1 + β3

k1

,
1 + β3

k2β3

}
.

This estimate holds for all τ ∈ Q, Ŷ∗ ∈ Y ∗div and all β1, . . . , β6 > 0.

Remark 4.2. Finally, we comment on how this estimate can be used in practical compu-
tations. Assume that numerical solutions of the Barenblatt-Biot system (1.3) are obtained
on a certain finite dimensional subspace generated by the mesh Th. We denote them by
qh and vh. In the simplest case, we need to postprocess the functions qh := ∇qh and
τh := Lε(vh) in such a way that their post-processed images q̃h and τ̃h belong to Q and
Y ∗div, respectively. Then a guaranteed upper bound follows from (4.7) by direct substitution
and optimization with respect to the parameters β1, . . . , β6 > 0. A sharper estimate can be
obtained if the majorant is further minimized with respect to qh and τh with the help of some
direct minimization procedure (e.g., gradient descent). Examples of majorant minimization
techniques can be found in [19, 22]. Another way may be efficient if the problem is solved on
a sequence of refined meshes. Then, we can use the above procedure based on a relatively
simple postprocessing procedure for qh and τh but with one-step retardation, i.e., averaging
is performed on the mesh hk, but it is used in the error estimate for approximate solutions
computed on the mesh hk−1.
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