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A NATURAL ADAPTIVE NONCONFORMING FEM

OF QUASI-OPTIMAL COMPLEXITY

H.RABUS1

Abstract � In recent years, the question on the convergence and optimality in the
context of adaptive �nite element methods has been the subject of intensive studies.
However, for nonstandard FEMs such as mixed or nonconforming ones, the lack of
Galerkin's orthogonality requires new mathematical arguments. The presented adap-
tive algorithm for the Crouzeix-Raviart �nite element method and the Poisson model
problem is of quasi-optimal complexity. Furthermore it is natural in the sense that
collective marking rather than a separate marking is applied or the estimated error
and the volume term.
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1. Introduction

This paper introduces an adaptive algorithm for the nonconforming �nite element method
(FEM) for the Poisson model problem, which is proven to be of quasi-optimal complexity.

For given f ∈ L2(Ω), the Poisson model problem with the unknown solution u reads

∆u = −f in Ω, u = 0 on ∂Ω.

Let ∇` be the piecewise action of the gradient on the triangulation T` and P1(T ) be the
space of a�ne functions on an element T ∈ T` and the conforming and nonconforming �nite
element spaces be given by

P1(T`) :=
{
v` ∈ L2(Ω) | v`|T ∈ P1(T ) for T ∈ T`

}
,

PC
1 (T`) :=P1(T`) ∩ C(Ω),

PNC
1 (T`) := {v` ∈ P1(T`) | v` continuos in mid(E) for E ∈ E`} ,
PNC

1,0 (T`) :=
{
v` ∈ PNC

1 (T`) | v`(mid(E)) = 0 for E ⊆ ∂Ω
}
.

The discrete weak formulation reads: Seek uNC` ∈ PNC
1,0 (T`), such that for all vNC` ∈ PNC

1,0 (T`)(
∇`u

NC
` ,∇`v

NC
`

)
L2(Ω)

=
(
f, vNC`

)
L2(Ω)

. (1.1)

The adaptive �nite element methods consists in general of successive loops of the sequence

Solve → Estimate → Mark → Refine.
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The regions where the error is estimated to be large are re�ned locally, while the others may
stay relatively coarse. Thus, the element size does not necessarily tends to zero all over Ω.

The convergence and optimality of adaptive algorithms has been studied in detail in
recent years. For mixed �nite elements there are some results on quasi-optimal convergence
of adaptive algorithms in the sense of Stevenson [11] established for conforming methods.
They include adaptive schemes based on separate marking strategies [7] and strategies where
oscillations are reduced separately by some preprocessing algorithm [1, 9].

The contraction property for adaptive nonconforming �nite element methods of [6] in-
volves small volume contributions ‖h`f‖L2(Ω). As a �rst approach optimal convergence is
obtained in [2] by two alternative separate bulk criteria, which appears unnatural in view
of [8]. To overcome the disadvantage of separate marking, this work here follows the idea of
[6] with one re�nement indicator combining the volume term and the edge terms. Optimal
convergence is achieved in terms of the weighted term

ξ2
` := η2

` + α ‖h`f‖2
L2(Ω) + βε2

`

of the edge-based error estimator η`, the volume term ‖h`f‖L2(Ω), and the �ux error ε` with
proper weights α and β. Parallel to this work is [10] without the discrete Poincaré inequality
(Lemma 4.1) for nonconforming �nite element functions.

The main result of this paper is Theorem 3.1, which proves that the outcome of the
subsequent adaptive algorithm Ancfem is quasi-optimal in the sense of Stevenson [11] with
respect to the approximation class

As :=
{

(u, f) | ‖(u, f)‖As <∞
}

and its norm

‖(u, f)‖As := sup
N∈N

(
N s inf

|T |−|T0|6N

(
ε2
T + ‖hT f‖2

L2(Ω)

)1/2
)
.

Here and in the sequel, T` is a regular triangulation of the domain Ω into triangles T ∈ T`
with its set of all edges EΩ

` and interior edges E`. The set of edges of a triangle is denoted by
E(T ). One of the edges of a triangle is designated to be its reference edge E(T ). The �ux

error is ε2
` :=

∥∥pNC` − p
∥∥2

L2(Ω)
with the discrete and exact �uxes pNC` := ∇`u

NC
` , and p := ∇u.

Furthermore, |·| is context-sensitive and denotes the number of elements of some �nite set or
the area of some domain. A . B represents A 6 CB for some mesh-independent, positive
generic constant C, whereas A ≈ B represents A . B . A. Moreover, the standard notation
of Lebesgue and Sobolev spaces is employed.

Given a subset F ⊆ E` ∪T` of interior edges E` and elements, the re�nement indicator µ`
is given via

µ2
`(F) :=

∑
T∈F∩T`

‖h`f‖2
L2(T ) +

∑
E∈F∩E`

hE
∥∥[pNC` ]E · τE

∥∥2

L2(E)
.

with the edge contributions η`

η` := η`(E`), η2
` (F) :=

∑
E∈F∩E`

η2
` (E),

η`(E) := |E|1/2
∥∥[pNC` ]E · τE

∥∥
L2(E)

for any E ∈ E`

with [pNC` ]E := pNC`
∣∣
T+
−pNC`

∣∣
T−

denoting the jump of the discrete �ux pNC` across the interior

edge E = T+ ∩T− shared by the two elements T± ∈ T`, and ωE := T+ ∪T−. Note that η`(E)
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vanishes at all boundary edges EΩ
` \E`. In addition, νE = νT+ is the unit normal vector exterior

to T+ along E and τE is the unit tangential vector along E|T+ , respectively. The piecewise
constant jump vector allows a decomposition

∣∣[pNC` ]E
∣∣2 = ([pNC` ]E · νE)2 + ([pNC` ]E · τE)2 [6].

Let h` be a piecewise constant mesh-size function with h`|T := |T |1/2 depending on the
area of the elements T ∈ T`. The volume part for the right-hand side f ∈ L2(Ω) is de�ned
via

‖h`f‖2
F :=

∑
T∈F∩T`

‖h`f‖2
L2(T ) , thus ‖h`f‖L2(Ω) = ‖h`f‖T` .

Finally, the total error is denoted by µ2
` = η2

` + ‖h`f‖2
L2(Ω).

The algorithm Ancfem reads as follows.

Input: Initial coarse triangulation T0, 0 < θ < θ0 6 1, cf. Theorem 3.1.
Loop: For ` = 0, 1, . . .

Solve problem (1.1) on T`.
Estimate the re�nement indicator µ2

` .
Mark Compute a quasi-minimal subsetM` ⊆ E` ∪ T` of elements and interior
edges satisfying the bulk criterion, i.e.,

θµ2
` 6 µ2

` (M`) and (1.2)

|M`| ≈ min
{
|F|
∣∣θµ2

` 6 µ2
`(F), F ⊆ E` ∪ T`

}
. (1.3)

Refine all edges in the closure C`(ME
` ) withME

` := (M` ∩ E`) ∪E(M` ∩ T`),

and
{
E(T ) ∈ E`

∣∣T ∈ T` and E(T ) ∩ C`
(
ME

`

)
6= ∅

}
⊆ C`

(
ME

`

)
using Newest-Vertex-Bisection (NVB) to generate a new regular triangulation
T`+1. The possible re�nements of a triangle T ∈ T` are depicted in Fig. 1.1 and
depend on the set of edges in E(T ) ∩ C`(ME

` ).
Output: Sequence of triangulations (Tk), and discrete solutions (uNCk ).

U
p
d
a
te

`

The remaining part of the paper is organized as follows. Section 2 summarizes the
necessary preliminaries in order to prove the contraction property and optimal convergence of
Ancfem in Section 3. The technical proof of discrete reliability of Theorem 2.1 is postponed
to the last section.

T green(T )

blueL(T )

blueR(T )

bisec3(T ) bisec5(T )

F i g. 1.1. Possible re�nements of a triangle T on one level using NVB. The reference edges of T
and each subtriangle are accented. In the case that E(T ) ⊆ C`(ME

` ), either bisec3(T ) or bisec5(T )
can be applied
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2. Preliminaries

To prove the convergence and optimal rates, this section discusses such important charac-
teristics as e�ciency, reliability, quasi-orthogonality and discrete reliability. The proofs can
be found in the given references, and in the case of discrete reliability in Section 4.

Throughout this section, let T` be a triangulation of Ω and T`+k be some NVB-re�nement
of T` on k > 1 levels of re�nement, and F := T` \ T`+k ∪ E` \ T`+k be the elements and edges
that have been re�ned from level ` to `+ k.

Lemma 2.1 (Reliability & E�ciency). For positive, generic constants ce�, Crel there
is e�ciency and reliability of η` [2, 5, 6]

ce�η
2
` 6 ε2

` 6 Crel

(
η2
` + ‖h`f‖2

L2(Ω)

)
.

Thus, e�ciency and reliability hold for the re�nement indicator µ` as follows:

ce�

(
µ2
` − ‖h`f‖

2
L2(Ω)

)
6 ε2

` 6 Crelµ
2
` . (2.1)

Lemma 2.2 (Quasi-orthogonality). Let K := F ∩ T`. The CR-solutions pNC` ∈
PNC

1,0 (T`) and pNC`+k ∈ PNC
1,0 (T`+k) of (1.1) satisfy the quasi-optimality [2]∣∣∣(p− pNC`+k, pNC` − pNC`+k

)
L2(Ω)

∣∣∣ 6 C1/2
qo ε`+k ‖h`f‖K .

This leads to ∥∥pNC`+k − pNC` ∥∥2

L2(Ω)
6 ε2

` − ε2
`+k + 2C1/2

qo ‖h`f‖F ε`+k,

ε2
` − ε2

`+k 6
∥∥pNC`+k − pNC` ∥∥2

L2(Ω)
+ 2C1/2

qo ‖h`f‖F ε`+k.

Lemma 2.3 (Bounding the Overhead of Closure). Let T` be a regular triangula-
tion re�ned from T0 by an adaptive algorithm using NVB and Closure and M` ⊆ E` ∪ T`
be the set of marked elements and edges in step Mark. Then, the overhead of closure is
bounded as follows:

|T`| − |T0| .
`−1∑
j=0

|Mj| . (2.2)

Proof. Let M?
` ⊆ E` ∪ T` be the minimal set satisfying the bulk criterion (1.2). With

respect to the result of RefineM?
` is equivalent to the set of marked edges

ME?
` := {E ∈ E` |E ∈M?

` or E = E(T ) with T ∈M?
` }

= (M?
` ∩ E`) ∪ E(M?

` ∩ T`).

Hence, (2.2) is a direct consequence of [3, 7] and (1.3), i.e.,

|T`| − |T0| .
`−1∑
j=0

∣∣ME?
j

∣∣ ≈ `−1∑
j=0

∣∣M?
j

∣∣ ≈ `−1∑
j=0

|Mj| .

The following theorem states the discrete reliability.
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Theorem 2.1 Discrete Reliability. For F := E` \ E`+k ∪ T` \ T`+k the set of re�ned
elements and edges form T` to T`+k. Then, |F| . |T`+k| − |T`| and∥∥pNC`+k − pNC` ∥∥2

L2(Ω)
6 Cdrel

(
η2
` (F) + ‖h`f‖2

F
)
. (2.3)

Proof. The proof is lengthy and technical, and therefore is deferred to Section 4.

3. Optimal convergence rates

In this section, we consider the convergence and optimality of the sequence of CR-solutions
pNC` ∈ PNC

1,0 (T`) of (1.1) generated by the algorithm Ancfem starting with the initial coarse
and regular triangulation T0.

Lemma 3.1 (Estimator Reduction). There exist Λ > 0 and a contraction factor 0 <
ρ < 1 such that on each level ` > 0 of Ancfem there is reduction of the re�nement indicator
in the following sense

η2
`+1 + ‖h`+1f‖2

L2(Ω) 6 ρ
(
η2
` + ‖h`f‖2

L2(Ω)

)
+ Λ

∥∥pNC`+1 − pNC`
∥∥2

L2(Ω)
. (3.1)

Proof. Let F = E` \ E`+1 ∪ T` \ T`+1 be the set of all elements and edges in T` that have
been re�ned in T`+1. For any edge E ∈ E` and any δ > 0∣∣[pNC` ] · τE

∣∣2 6 (1 + 1/δ)
∣∣[pNC` − pNC`+1] · τE

∣∣2 + (1 + δ) |[p`+1] · τE|2

holds. Since pNC`+1 − pNC` is a piecewise constant function on T`+1, it follows that∑
E∈E`+1

h2
E

∣∣[pNC`+1 − pNC` ] · τE
∣∣2 . ∥∥pNC`+1 − pNC`

∥∥2

L2(Ω)
.

For some positive generic constant C, the incorporation of the bulk criterion leads to

η2
`+1 + ‖h`+1f‖2

L2(Ω)

6 (1 + δ)η2
` (E` ∩ E`+1) + (1 + δ)/2 η2

` (F) +
(

1/2 ‖h`f‖2
F + ‖h`f‖2

T`∩T`+1

)
+ (1 + 1/δ)C

∥∥pNC`+1 − pNC`
∥∥2

L2(Ω)

6 (1 + δ)η2
` − (1 + δ)/2 η2

` (F) + (1 + δ) ‖h`f‖2
L2(Ω) − (1 + δ)/2 ‖h`f‖2

F

− δ
(
‖h`f‖2

T`∩T`+1
+ 1/2 ‖h`f‖2

F

)
+ (1 + 1/δ)C

∥∥pNC`+1 − pNC`
∥∥2

L2(Ω)

6 (1 + δ)(1− θ/2)
(
η2
` + ‖h`f‖2

L2(Ω)

)
− δ

(
‖h`f‖2

T`∩T`+1
+ 1/2 ‖h`f‖2

F

)
+ (1 + 1/δ)C

∥∥pNC`+1 − pNC`
∥∥2

L2(Ω)

6 ρ
(
η2
` + ‖h`f‖2

L2(Ω)

)
+ C(1 + 1/δ)

∥∥pNC`+1 − pNC`
∥∥2

L2(Ω)
.

For δ < θ/(2 − θ) reduction of µ` with ρ := (1 + δ)(1 − θ/2) < 1 and Λ := C(1 + 1/δ) is
ensured, which proves the assertion.
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Lemma 3.2 (Convergence). There exist positive α, β and 0 < % < 1 depending on
the positive generic constants Crel, Cqo, and Λ from Lemmas 2.1, 2.2, and 3.1 such that on
each level ` > 0 of Ancfem there is a contraction

ξ2
`+1 6 %ξ2

`

of the weighted term ξ2
` := η2

` + α ‖h`f‖2
L2(Ω) + βε2

` .

Proof. Again, let F = E` \ E`+1 ∪ T` \ T`+1 be the set of all elements and edges re�ned
from level ` to ` + 1. Lemma 3.1 shows that for any 0 < θ < 1 there exist 0 < ρ < 1 and
0 < Λ such that

µ2
`+1 6 ρµ2

` + Λ
∥∥pNC`+1 − pNC`

∥∥2

L2(Ω)
, and ‖h`+1f‖2

L2(Ω) 6 ‖h`f‖
2
L2(Ω) −

1

2
‖h`f‖2

F .

The quasi-orthogonality of Lemma 2.2 proves∥∥pNC`+1 − pNC`
∥∥2

L2(Ω)
6 ε2

` − ε2
`+1 + 2C1/2

qo ‖h`f‖F ε`+1. (3.2)

Let β := Λ(1−1/γ1). Given 0 < δ < θ(2−θ) and ρ = (1+ δ)(1−θ/2) < 1 from the previous
lemma, there exist γ1, γ2, α satisfying the following conditions:

0 < γ2 < min

{
Λ,

1− ρ
Crel

}
, 1 <

Λ

γ2

< γ1, 0 < 2CqoΛγ1 − 1 < α.

Thus, the Young inequality and (3.2) imply

µ2
`+1 6 ρµ2

` + Λ
(
ε2
` − ε2

`+1 + Cqoγ1 ‖h`f‖2
F + ε2

`+1/γ1

)
,

which results in

η2
`+1 + α ‖h`+1f‖2

L2(Ω) + Λ(1− 1/γ1)ε2
`+1

6 ρη2
` +

(
CqoΛγ1 −

α− 1

2

)
‖h`f‖2

F + (ρ+ α− 1) ‖h`f‖2
L2(Ω) + Λε2

`

6 (ρ+ Crelγ2)η2
` +

(
CqoΛγ1 −

α− 1

2

)
‖h`f‖2

F

+ (ρ+ α− 1 + Crelγ2) ‖h`f‖2
L2(Ω) + (Λ− γ2)ε2

` .

Hence, ξ2
` := η2

` + α ‖h`f‖2
L2(Ω) + βε2

`+1 satis�es the contraction property ξ2
`+1 < %ξ2

` with
α, β as above, and

0 < % := max

{
ρ+ Crelγ2, 1−

1− ρ− Crelγ2

α
,

Λ− γ2

Λ(1− 1/γ1)

}
< 1.

The remaining part of this section proves the optimal convergence of Ancfem in the spirit
of Stevenson [11]. Given s > 0, the approximation class As is de�ned via

As :=
{

(u, f) | ‖(u, f)‖As <∞
}

and (3.3)

‖(u, f)‖2
As := sup

N∈N

(
N s inf

|T |−|T0|6N

(
ε2
T + ‖hT f‖2

L2(Ω)

)1/2
)
.
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Thus, (u, f) ∈ As if and only if for all ε > 0 there exists an admissible triangulation Tε
re�ned from T0 such that the NC-solution satisi�es

ε2(Tε) + ‖hεf‖2
L2(Ω) 6 ε2 and |Tε| − |T0| . ε−1/s ‖(u, f)‖1/s

As .

There is equivalence of ξ` with ε
2
` + ‖h`f‖2

L2(Ω), i.e.,

ε2
` + ‖h`f‖2

L2(Ω) ≈ η2
` + ‖h`f‖2

L2(Ω) + ε2
` ≈ ξ2

` (3.4)

with constants depending on α, and β, as well as on the e�ciency and reliability.
Without violating the quasi-orthogonality in Lemma 2.2 we may enlarge Cqo in order to

satisfy 1/4 6 Cqo as assumed in Lemma 3.3 or even max {2, ce�} < 8Cqo in Theorem 3.1.

Lemma 3.3. Let 1/4 6 Cqo with Cqo from Lemma 2.2 and T`+ε := Tε⊕T` be the overlay,
which is the coarsest common re�nement, of two regular triangulations Tε and T` re�ned by
NVB from T0. Then the �ux-error on T`+ε is bounded as follows:

ε2
`+ε 6 8Cqo(ε

2
ε + ‖hεf‖2

L2(Ω) − ‖h`+εf‖
2
L2(Ω)).

Proof. Let Fε := Eε \ E`+ε ∪ Tε \ T`+ε be the set of edges and elements in Tε that
have been re�ned in T`+ε. Hence, Lemma 2.2, the Young inequality, and ‖h`+εf‖2

L2(Ω) 6

‖hεf‖2
L2(Ω) −

1
2
‖hεf‖2

Fε lead to the assertion

ε2
`+ε 6 2ε2

ε + 4Cqo ‖hεf‖2
Fε 6 2ε2

ε + 8Cqo ‖hεf‖2
L2(Ω) − 8Cqo ‖h`+εf‖2

L2(Ω) .

Theorem 3.1 (Optimal Convergence Rates). Let max {2, ce�} < 8Cqo for positive
generic constants ce�, and Cqo from Lemmas 2.1 and 2.2. Furthermore, let Cdrel > 0 be given
from Theorem 2.1, and positive constants α, β from Lemma 3.2, and u be the exact solution
and f the right-hand side of the Poisson model problem (1.1). Then, for (u, f) ∈ As and
0 < θ < 1 su�ciently small, i.e.,

0 < θ < θ0 := min

{
1,

ce�
Cdrel

,
ce�

Cdrel + Cqo + ce�

}
,

the algorithm Ancfem starting on a coarse, regular triangulation T0 generates a sequence
of triangulations with an optimal number of elements

|T`| − |T0| . ξ
−1/s
` with ξ2

` := η2
` + α ‖h`f‖2

L2(Ω) + βε2
` .

Proof. Given ce�, Cqo, Cdrel, α, β, and θ < θ0 as assumed, then τ can be chosen such
that

0 < τ 2 < min

{
ce� − θCdrel

ce� + 1
,
ce� − θ(Cdrel + Cqo + ce�)

ce�(1− θ) + 1
, 1

}
< 1 (3.5)

and set

ε2 :=
τ 2

8Cqo

(
η2
` + ‖h`f‖2

L2(Ω) + ε2
`

)
.
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Thus, due to (3.3) on any level ` > 0 there exists a regular triangulation Tε re�ned from T0

using NVB satisfying

ε2
ε + ‖hεf‖2

L2(Ω) 6 ε2, and |Tε| − |T0| . ε−1/s.

The number of elements of the overlay T`+ε := Tε ⊕ T` is bounded as follows [7, 8]:

|T`+ε| − |T`| = |Tε ⊕ T`| − |T`| 6 |Tε| − |T0| .

Let F` := E` \ E`+ε ∪ T` \ T`+ε be the set of edges and elements in T` being re�ned in T`+ε.
By Theorem 2.1, and the aforementioned estimates and (3.4) the set F` satis�es

|F`| . |T`+ε| − |T`| 6 |Tε| − |T0| . ε−1/s ≈
(
η2
` + ‖h`f‖2

L2(Ω) + ε2
`

)−1/s

≈ ξ
−1/s
` .

Next, we prove that F` satis�es the bulk criterion θµ2
` 6 µ2

`(F`). A direct consequence
of Lemma 3.3 reads

ε2
`+ε 6 τ 2

(
η2
` + ‖h`f‖2

L2(Ω) + ε2
`

)
− 8Cqo ‖h`+εf‖2

L2(Ω) .

Together with the quasi-orthogonality (cf. Lemma 2.2) and the discrete reliability (2.3) this
proves

ε2
` 6 Cdrelη

2
` (F`) + (Cdrel + Cqo) ‖h`f‖2

F` + 2ε2
`+ε

6 Cdrelη
2
` (F`) + (Cdrel + Cqo) ‖h`f‖2

F` + τ 2
(
η2
` + ‖h`f‖2

L2(Ω) + ε2
`

)
− 8Cqo ‖h`+εf‖2

L2(Ω) .

Furthermore, e�ciency (2.1) shows

ce�η
2
` 6 ε2

` 6
1

1− τ 2

(
Cdrelη

2
` (F`) + (Cdrel + Cqo) ‖h`f‖2

F`

)
+

1

1− τ 2

(
τ 2
(
η2
` + ‖h`f‖2

L2(Ω)

)
− 8Cqo ‖h`+εf‖2

L2(Ω)

)
.

Finally some reordering leads to(
ce� −

τ 2

1− τ 2

)
µ2
` 6

Cdrel

1− τ 2
η2
` (F`) +

(
Cdrel + Cqo

1− τ 2
+ ce�

)
‖h`f‖2

F`

+

(
ce� −

8Cqo

1− τ 2

)
‖h`f‖2

T`∩T`+ε .

Due to max {2, ce�} < 8Cqo and the choice of τ in (3.5) the last term is negative, i.e.,
ce� − 8Cqo/(1− τ 2) < 0, and F` satis�es the bulk criterion θµ2

` 6 µ2
`(F`) on each level ` for

θ < θ0.
Since α, β > 0 are chosen according to the contraction property of Lemma 3.2, the

assertion follows by |F`| . ξ
−1/s
` , i.e.,

|T`| − |T0| 6
`−1∑
j=0

|Tj+1| − |Tj| .
`−1∑
j=0

|Mj| .
`−1∑
j=0

|Fj| 6
`−1∑
j=0

ξ
−1/s
j

|T`| − |T0| . ξ
−1/s
`

`−1∑
j=1

%−j/(2s) =
1− %−(`+1)/(2s)

1− %−1/(2s)
ξ
−1/s
` . ξ

−1/s
` .
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4. Proof of Theorem 2.1

This section is devoted to the proof of Theorem 2.1. One main argument therein is the
following discrete Poincaré inequality, which is a result of [4] and will be veri�ed �rst.

Lemma 4.1 (Discrete Poincaré Inequality). Let αNC`+k ∈ PNC
1,0 (T`+k), and αNC` ∈

PNC
1,0 (T`) with integral means satisfying

ffl
E
αNC`+k ds =

ffl
E
αNC` ds for any E ∈ E`. Then, for

any T ∈ T` the following discrete Poincaré inequality holds:∥∥αNC`+k − αNC` ∥∥
L2(T )

. |T |1/2
∥∥∇`+kα

NC
`+k

∥∥
L2(T )

.

Proof. Let T ∈ T`, and αT :=
ffl
T
uNC dx be a piecewise constant function on T` with

uNC := αNC`+k − αNC` ∈ PNC
1 (T`+k). Then, the a�ne transformation of T ∈ T` on Tref yields

functions de�ned on Tref , each marked by ·̂ (e.g., α̂NC`+k, α̂NC` , ûNC , α̂T ).
Since

ffl
T

(
uNC − αT

)
dx vanishes, the result of S. Brenner [4]∥∥(α̂NC`+k − α̂NC` )

− α̂T
∥∥
L2(Tref)

.
∥∥∇`+kû

NC
∥∥
L2(Tref)

(4.1)

applies. Let T be the re�nement of Tref corresponding to the re�nement of T ∈ T` in T`+k.
Thus, ‖α̂T‖L2(Tref)

.
∥∥∇`+kû

NC
∥∥
L2(Tref)

is proven by means of the Hölder and Friedrich

inequalities, namely

‖α̂T‖L2(Tref)
=

∣∣∣∣ˆ
Tref

ûNC div x dx

∣∣∣∣ .
∣∣∣∣∣∑
K∈T

(
−
ˆ
K

∇`+kû
NC x dx+

ˆ
∂K

ûNC x ds

)∣∣∣∣∣
.
∥∥∇`+kû

NC
∥∥
L2(Tref)

+
∑

E∈E(T )

ˆ
E

[
ûNC

]
E
x · νE ds

.
∥∥∇`+kû

NC
∥∥
L2(Tref)

+
∑

E∈E(T )

ˆ
E

[
ûNC

]
E

(x− x?E) · νE ds

with x? chosen �xed for each edge E, such that (x− x?E)⊥νE for all x ∈ E. Next the
equivalence

´
Tref
∇`α̂

NC
` dx =

´
Tref
∇`+kα̂

NC
`+k dx is proven,ˆ

Tref

∇`α̂
NC
` dx =

ˆ
∂ Tref

α̂NC` · νTref
ds =

∑
E∈E(Tref)

ˆ
E

α̂NC` · νE ds =
∑

E∈E(Tref)

ˆ
E

α̂NC`+k · νE ds

=

ˆ
Tref

∇`+kα̂
NC
`+k dx −

ˆ
⋃
E(T )∩int(Tref)

[
α̂NC`+k · νE

]
ds =

ˆ
Tref

∇`+kα̂
NC
`+k dx .

The application of this equality proves
∥∥∇`+kû

NC
∥∥2

L2(Tref)
. ‖∇`+kα̂`+k‖2

L2(Tref)
, i.e.,∥∥∇`+kû

NC
∥∥2

L2(Tref)
=

ˆ
Tref

(
∇`+kα̂

NC
`+k −∇`α̂

NC
`

) (
∇`+kα̂

NC
`+k −∇`α̂

NC
`

)
dx

=

ˆ
Tref

(
∇`+kα̂

NC
`+k −∇`+kα̂

NC
`

)
∇`+kα̂

NC
`+k dx

= ‖∇`+kα̂`+k‖2
L2(Tref)

−∇`α̂
NC
`

ˆ
Tref

∇`+kα̂
NC
`+k dx

. ‖∇`+kα̂`+k‖2
L2(Tref)

−
ˆ
Tref

∇`α̂
NC
` dx

ˆ
Tref

∇`+kα̂
NC
`+k dx

. ‖∇`+kα̂`+k‖2
L2(Tref)

.
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Finally, taking into account the previous estimates one veri�es∥∥α̂NC`+k − α̂NC` ∥∥
L2(Tref)

6
∥∥ûNC − α̂T∥∥L2(Tref)

+ ‖α̂T‖L2(Tref)
.
∥∥∇`+kû

NC
∥∥
L2(Tref)

.
∥∥∇`+kα̂

NC
`+k

∥∥
L2(Tref)

.

A careful transformation back from Tref to T ∈ T` leads to the factor |T |1/2 in the assertion∥∥αNC`+k − αNC` ∥∥
L2(T )

. |T |1/2
∥∥∇`+kα

NC
`+k

∥∥
L2(T )

.

Proof of Theorem 2.1. A veri�cation of |F` ∩ E`| . |T`| − |T`+k| is given, e.g., in [7].
Since |F ∩ T`| ≈ |F ∩ E`| . |T`| − |T`+k| the assertion |F| . |T`+k| − |T`| follows directly.

To prove (2.3), we recall the discrete Helmholtz decomposition of δ := pNC`+k−pNC` . There

exists αNC`+k ∈ PNC
1,0 (T`+k), and βC`+k ∈ P̂1(T`+k) with P̂1(T`+k) :=

{
v ∈ PC

1 (T`+k)
∣∣ffl

Ω
v = 0

}
such that

δ := pNC`+k − pNC` = ∇`+kα
NC
`+k + Curl βC`+k.

To estimate
∥∥pNC`+k − pNC` ∥∥2

L2(Ω)
, each summand of the right-hand side of

∥∥pNC`+k − pNC` ∥∥2

L2(Ω)
=

ˆ
Ω

δ · ∇`+kα
NC
`+k dx+

ˆ
Ω

δ · Curl βC`+k,

is bounded separately in the sequel. Let αNC` ∈ PNC
1 (T`) such that for all E ∈ E`

ffl
E
αNC` =ffl

E
αNC`+k holds. Thus,ˆ

Ω

δ · ∇`+kα
NC
`+k dx =

(
f, αNC`+k

)
L2(Ω)

−
∑
E∈E`

ˆ
E

[pNC` αNC`+k]EνE ds

=
(
f, αNC`+k − αNC`

)
L2(Ω)

−
∑
E∈E`

ˆ
E

[pNC` (αNC`+k − αNC` )]EνE ds

=
∑
T∈T`

(
f, αNC`+k − αNC`

)
L2(T )

6
∑

T∈F∩T`

‖f‖L2(T )

∥∥αNC`+k − αNC` ∥∥
L2(T )

.

The discrete Poincaré inequality of Lemma 4.1 states∥∥αNC`+k − αNC` ∥∥
L2(T )

. |T |1/2
∥∥∇`+kα

NC
`+k

∥∥
L2(T )

6 |T |1/2
∥∥pNC`+k − pNC` ∥∥

L2(Ω)
,

which implies

ˆ
Ω

δ · ∇`+kα
NC
`+k dx .

∥∥pNC`+k − pNC` ∥∥
L2(Ω)

∑
T∈F

‖f‖L2(T ) |T |
1/2

.
∥∥pNC`+k − pNC` ∥∥

L2(Ω)
‖h`f‖F .

To bound the second part of the Helmholtz decomposition, let I` be the Scott-Zhang inter-
polation operator on T` and βC` := I`βC`+k with

∥∥βC`+k − βC` ∥∥L2(E)
= 0 for E ∈ E`+k ∩ E`. In

2D, it holds ∥∥βC`+k − βC` ∥∥L2(E)
6 C |E|1/2

∣∣βC`+k∣∣H1(ωE)
.
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Thus, the L2 orthogonalities(
pNC`+k,Curl βC`+k

)
L2(Ω)

= 0 =
(
pNC` ,Curl βC`

)
L2(Ω)

lead toˆ
Ω

(pNC`+k − pNC` ) · Curl βC`+k dx =

ˆ
Ω

−pNC` Curl βC`+k = −
ˆ

Ω

pNC` Curl
(
βC`+k − βC`

)
= −

∑
T∈T`

ˆ
T

curl pNC` (βC`+k − βC` ) dx+
∑
E∈E`

ˆ
E

[pNC` ]E · τE(βC`+k − βC` ) ds

6
∑
E∈F

∥∥[pNC` ]E · τE
∥∥
L2(E)

∥∥βC`+k − βC` ∥∥L2(E)

.
∑

E∈F∩E`

∥∥[pNC` ]E · τE
∥∥
L2(E)

|E|1/2 |β`+k|H1(ωE)

. η`(F)
∥∥pNC`+k − pNC` ∥∥

L2(Ω)
.

Taking into account the estimates for both parts of the Helmholtz decomposition, the asser-
tion follows directly.
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