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A NATURAL ADAPTIVE NONCONFORMING FEM
OF QUASI-OPTIMAL COMPLEXITY

H. RABUS!

Abstract — In recent years, the question on the convergence and optimality in the
context of adaptive finite element methods has been the subject of intensive studies.
However, for nonstandard FEMs such as mixed or nonconforming ones, the lack of
Galerkin’s orthogonality requires new mathematical arguments. The presented adap-
tive algorithm for the Crouzeix-Raviart finite element method and the Poisson model
problem is of quasi-optimal complexity. Furthermore it is natural in the sense that
collective marking rather than a separate marking is applied or the estimated error
and the volume term.
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1. Introduction

This paper introduces an adaptive algorithm for the nonconforming finite element method
(FEM) for the Poisson model problem, which is proven to be of quasi-optimal complexity.
For given f € L*(2), the Poisson model problem with the unknown solution u reads

Au=—f inQ, u=0 on Jf.

Let V, be the piecewise action of the gradient on the triangulation 7, and P;(T) be the
space of affine functions on an element T € 7, and the conforming and nonconforming finite
element spaces be given by

The discrete weak formulation reads: Seek u)'® € P\ (7;), such that for all v}'¢ € PC(Ty)

c c c
(Vfuév ) Vﬁvév )LQ(Q) = (fa Uév )LQ(Q) : (11)
The adaptive finite element methods consists in general of successive loops of the sequence

SOLVE — ESTIMATE — MARK — REFINE.
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The regions where the error is estimated to be large are refined locally, while the others may
stay relatively coarse. Thus, the element size does not necessarily tends to zero all over 2.

The convergence and optimality of adaptive algorithms has been studied in detail in
recent years. For mixed finite elements there are some results on quasi-optimal convergence
of adaptive algorithms in the sense of Stevenson [11] established for conforming methods.
They include adaptive schemes based on separate marking strategies |7] and strategies where
oscillations are reduced separately by some preprocessing algorithm [1, 9].

The contraction property for adaptive nonconforming finite element methods of [6] in-
volves small volume contributions [|f¢f||,2.q)- As a first approach optimal convergence is
obtained in [2| by two alternative separate bulk criteria, which appears unnatural in view
of |8]. To overcome the disadvantage of separate marking, this work here follows the idea of
|6] with one refinement indicator combining the volume term and the edge terms. Optimal
convergence is achieved in terms of the weighted term

&= +a thin?(Q) + fej

of the edge-based error estimator 7y, the volume term ||A¢f||2(q). and the flux error £, with
proper weights o and /3. Parallel to this work is |[10] without the discrete Poincaré inequality
(Lemma 4.1) for nonconforming finite element functions.

The main result of this paper is Theorem 3.1, which proves that the outcome of the
subsequent adaptive algorithm ANCFEM is quasi-optimal in the sense of Stevenson [11] with
respect to the approximation class

As = {(u, ) | |(w, f)|l 4, < oo} and its norm

s . 9 9 1/2
sup (N* inf (34 [hr S ).

NeN ITI=Tol<N

[[(u, )]

A -

Here and in the sequel, 7Ty is a regular triangulation of the domain € into triangles T" € 7T,
with its set of all edges & and interior edges &. The set of edges of a triangle is denoted by
E(T). One of the edges of a triangle is designated to be its reference edge E(T"). The flux
error is €7 = ||p}'¢ — pH;(Q) with the discrete and exact fluxes p¢ := V,ul¥¢, and p := Vu.
Furthermore, |-| is context-sensitive and denotes the number of elements of some finite set or
the area of some domain. A < B represents A < CB for some mesh-independent, positive
generic constant C, whereas A ~ B represents A < B < A. Moreover, the standard notation
of Lebesgue and Sobolev spaces is employed.

Given a subset F C & U7, of interior edges &, and elements, the refinement indicator
is given via

M?(f) = Z ”hfinQ(T) + Z he H[péVC]E : TEH;(E)-
TEFNT; EEFNE

with the edge contributions 7y,

ne = (&), M(F) = Z m; (E),

EcFNEy
ne(E) = |E|"? ||[p ) - 75| o ) for any E € &

with [pl¥¢] g = pévc‘n —péVC‘T_ denoting the jump of the discrete flux p)'© across the interior
edge F =T, NT_ shared by the two elements T € Ty, and wg := T, UT_. Note that n,(E)
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vanishes at all boundary edges £\&,. In addition, vp = vr, is the unit normal vector exterior
to T, along E and 7g is the unit tangential vector along E \T+, respectively. The piecewise

constant jump vector allows a decomposition ‘[péVC]EF = ([pN°e - ve)® + ([p)CE - Tr)* |6].
Let hg be a piecewise constant mesh-size function with k| := |T]"* depending on the
area of the elements 7' € 7;. The volume part for the right-hand side f € L?() is defined

via
IhefI5 = D lhef G2y » thus [hef || o0y = Ief | -

TeFNT,

Finally, the total error is denoted by p2 =77 + thinQ(Q).
The algorithm ANCFEM reads as follows.

Input: Initial coarse triangulation 7y, 0 < 8 < 6y < 1, cf. Theorem 3.1.

Loop: For / =0,1,...
— SOLVE problem (1.1) on 7.

ESTIMATE the refinement indicator p3.
MARK Compute a quasi-minimal subset M, C & U T, of elements and interior
edges satisfying the bulk criterion, i.e.,

Oui < pg (M) and (1.2)
M| ~ min {|F||0p; < pi(F), FCEUT}. (1.3)

Update ¢

REFINE all edges in the closure C4(MF) with MF = (M,NE)UE(M,NT),
and {E(T) € &|T € Tyand E(T)NCL(M]) #£0} CCL(M])

using Newest-Vertex-Bisection (NVB) to generate a new regular triangulation
Tei1- The possible refinements of a triangle T' € 7, are depicted in Fig. 1.1 and
depend on the set of edges in £(T) N CLHMFE).

Output: Sequence of triangulations (7;), and discrete solutions (ul©).

The remaining part of the paper is organized as follows. Section 2 summarizes the
necessary preliminaries in order to prove the contraction property and optimal convergence of
ANCFEM in Section 3. The technical proof of discrete reliability of Theorem 2.1 is postponed

to the last section.

T green(T' blueg(T")
bluer,(7T) bisec3(T’ bisec5(T")

Fig. 1.1. Possible refinements of a triangle 7" on one level using NVB. The reference edges of T
and each subtriangle are accented. In the case that £(T) C C¢(MF), either bisec3(T') or bisec5(T’)
can be applied
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2. Preliminaries

To prove the convergence and optimal rates, this section discusses such important charac-
teristics as efficiency, reliability, quasi-orthogonality and discrete reliability. The proofs can
be found in the given references, and in the case of discrete reliability in Section 4.

Throughout this section, let T, be a triangulation of €2 and 7, be some NVB-refinement
of Ty on k > 1 levels of refinement, and F := T\ Tor UEr \ Tryx be the elements and edges
that have been refined from level ¢ to ¢ + k.

Lemma 2.1 (Reliability & Efficiency). For positive, generic constants ceg, Cre there
is efficiency and reliability of n, [2, 5, 6]

cartt < <2 < o (0 + 11 f ey -

Thus, efficiency and reliability hold for the refinement indicator u, as follows:

cor (12 = 1ef 2 ) < 8 < Craatd (2.1)
Lemma 2.2 (Quasi-orthogonality). Let K := F N 7T,. The CR-solutions p)¢ €
PNC(Te) and pS, € PYC(Terw) of (1.1) satisfy the quasi-optimality [2]
(0= P25 = P) pay| < CoZeers e e
This leads to

2
e — péVCHLz(Q) <& — g+ 2001152 hef || 7 Eers
2
et < N Py + 2O el

Lemma 2.3 (Bounding the Overhead of Closure). Let T; be a regular triangula-
tion refined from Ty by an adaptive algorithm using NVB and Closure and M, C & U T,
be the set of marked elements and edges in step MARK. Then, the overhead of closure is
bounded as follows:

/-1
el = |Tol £ IM;1. (2.2)
=0

Proof. Let Mj; C & U T, be the minimal set satisfying the bulk criterion (1.2). With
respect to the result of REFINE M is equivalent to the set of marked edges

ME ={E € &|E € Mj or E=E(T) with T € M} }
=(M;NE&E)UEM;NT).

Hence, (2.2) is a direct consequence of [3, 7| and (1.3), i.e.,

/—1 {—1 -1
Tel = 1ol < 3 IMF*| = D [M5] = D 1Ml .
j=0 j=0 j=0

The following theorem states the discrete reliability.
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Theorem 2.1 Discrete Reliability. For F := & \ Epr U T \ Towr the set of refined
elements and edges form Ty to Torg. Then, |F| S |Tow| — |Te| and

1PEG = P2y < Carer (2 (F) + e f15) (2.3)

Proof. The proof is lengthy and technical, and therefore is deferred to Section 4. ]

3. Optimal convergence rates

In this section, we consider the convergence and optimality of the sequence of CR-solutions
pi© € P\C(Te) of (1.1) generated by the algorithm ANCFEM starting with the initial coarse
and regular triangulation 7.

Lemma 3.1 (Estimator Reduction). There exist A > 0 and a contraction factor 0 <
p < 1 such that on each level £ > 0 of ANCFEM there is reduction of the refinement indicator
in the following sense

2
774?+1 + ||h£+1f||2L2(Q) <P (W + ||héf||L2 Q)> + A ||pe+1 NCHLQ(Q) . (3.1)

Proof. Let F =&\ Epp1 U T\ Terq be the set of all elements and edges in 7, that have
been refined in 7,,,. For any edge £ € & and any § > 0

1] | < (14 1/8) | € = XS] 76 ]* + (1 +0) |[pesa] - 7o

holds. Since p)G — pi¥¢ is a piecewise constant function on Ty41, it follows that

Z h |lpes — TE| < |lpis - pf’w”;(m'
Ee&pt

For some positive generic constant C, the incorporation of the bulk criterion leads to

77?+1 + Hh€+1f“i2(ﬂ)
< (L+ 0 (& N &) + (14 0)/203(F) + (1/211Ref I3 + e f Wy, )
+ (1 +1/0)C [P - péVCH;(Q)
< (14 0y = (14 8)/202(F) + (14 6) [hef 22y — (1 +0)/2 | e fII%
= 8 (Ihef By, + 172 Wef 1) + (14 1/8)C [pES = 22y
< (1+0)(1=0/2) (i + Ihef ey = 8 (e, + 1/2 e f13)
+(1+1/0)C PRS2 2 0

<p@fwmﬂm@)+arumeH i

For 6 < /(2 — 0) reduction of u, with p :== (1 +9)(1 —6/2) <1 and A := C(1 +1/4) is
ensured, which proves the assertion. O
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Lemma 3.2 (Convergence). There exist positive a, f and 0 < o < 1 depending on
the positive generic constants Cre, Cqo, and A from Lemmas 2.1, 2.2, and 3.1 such that on
each level £ > 0 of ANCFEM there is a contraction

5@2“ < Q&?

of the weighted term & :=n} + « thing(Q) + Bez.

Proof. Again, let F = &\ Epp1 U Ty \ Tea1 be the set of all elements and edges refined
from level ¢ to £+ 1. Lemma 3.1 shows that for any 0 < # < 1 there exist 0 < p < 1 and
0 < A such that

2 2 2 1 2
M?H < PM% + A Hpévﬁ —péVCHLz(Q) , and HhHlpr(n) < HhéfHH(Q) ) thfH;.
The quasi-orthogonality of Lemma 2.2 proves
2
1925 = iy < &2 = s + 2022 Sl 2. (32)

Let 5:=A(1—1/7v). Given 0 < § < 0(2—6) and p = (1+0)(1—60/2) < 1 from the previous
lemma, there exist v1, 72, a satisfying the following conditions:

1-— A
O<'yg<min{/\7 p}, 1< — <, 0 <2CqAy1 —1 <.
C’1re1 Y2

Thus, the Young inequality and (3.2) imply
M?H < PN% +A (5? - 5%+1 + Coomt ||h€f||3r + 5?+1/71) )
which results in
Mepr + ||h£+1f||2L2(Q) +AL = 1/m)etn
< P+ (quAvl - ) IhefllF + (p+ & = D) [|hef 1720y + At

Mwm

+(p+a—=1+Cuar) thin'Z(Q) + (A = y2)e.

a—1

a—1

< (p + Orel’72>7][? + (quA’Yl -

Hence, & :=n} + « ||h[f”ig(9) + Bef,, satisfies the contraction property &7, < &7 with
a, (5 as above, and

1—p—-Ck A—
P 172 2 )}<1' 0

0< = CI“ )1_ )
0 maX{p+ o172 - AT

The remaining part of this section proves the optimal convergence of ANCFEM in the spirit
of Stevenson [11]. Given s > 0, the approximation class Aj is defined via

As o= {(u, f) | [(u, )]l 4, < oo} and (3.3)

1/2
2 s : 2 2
0D, = sup (30t (S ) )
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Thus, (u, f) € A if and only if for all ¢ > 0 there exists an admissible triangulation 7;
refined from 7 such that the NC-solution satisifies

(T + e fll200) < € and [T = [To] S e [ (u, AL

There is equivalence of & with &7 + ||hgf||ig(g)7 Le.,

ef + ||héf||i2(9) 1+ ||h€f||iz(g) +ep g (3.4)

with constants depending on «, and 3, as well as on the efficiency and reliability.
Without violating the quasi-orthogonality in Lemma 2.2 we may enlarge Cg, in order to
satisfy 1/4 < Cy as assumed in Lemma 3.3 or even max {2, ceg} < 8C¢, in Theorem 3.1.

Lemma 3.3. Let 1/4 < Cy, with Cy, from Lemma 2.2 and Toye := T.® Ty be the overlay,
which is the coarsest common refinement, of two reqular triangulations T, and T, refined by
NVB from Ty. Then the fluz-error on Tpie is bounded as follows:

2 2
8?—1—& < 8qu(5§ + HhefHL?(Q) - ||h€+ef||L2(Q))-

Proof. Let F. := & \ Eme U T \ Trse be the set of edges and elements in 7. that
have been refined in Ty,.. Hence, Lemma 2.2, the Young inequality, and th+€f||iz(9) <

||h€f|]iz(m -3 HthH?_-E lead to the assertion

€f1e < 267+ 4Cq0 ||he flI 7. < 222 + 8Cq0 I hefll72(0) — 8Cho 1hese 1320y - O

Theorem 3.1 (Optimal Convergence Rates). Let max{2,c.s} < 8Cqy, for positive
generic constants ceg, and Cqo from Lemmas 2.1 and 2.2. Furthermore, let Cyqrel > 0 be given
from Theorem 2.1, and positive constants a, B from Lemma 3.2, and u be the exact solution
and f the right-hand side of the Poisson model problem (1.1). Then, for (u, f) € A, and
0 < 0 < 1 sufficiently small, 1.e.,

. Ceff Ceff
0<f<¥ ::mm{l, <. },
0 Cdrel C'dlrel + qu + Cef

the algorithm ANCFEM starting on a coarse, reqular triangulation Ty generates a sequence
of triangulations with an optimal number of elements

Tl = 1Tol S & with & =} + allhef|[3q) + Bel.

Proof. Given cer, Cqo, Carel, @, 8, and 6 < 6y as assumed, then 7 can be chosen such
that

€ _9 re € _9 re [¢) e
0<T2<min{cff Carat Con (Cd1+0q+cﬂ),1}<1 (3.5)

Cer + 1 ’ Ceﬁ‘(l - 6) +1
and set
2

T 2
€ = 3Co <77¢? + | hef 720 +5§) :
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Thus, due to (3.3) on any level ¢ > 0 there exists a regular triangulation 7, refined from 7y
using NVB satisfying

el 4 |hef |2 < €, and |Te| — [To] S e/~
The number of elements of the overlay 7,.. := 7. @ Ty is bounded as follows |7, 8]:
Tevel = |Tel = [Te @ Tel — |Tel < [Tl = [Tol-

Let Fy := &\ Erve U T \ Tose be the set of edges and elements in 7, being refined in 7.
By Theorem 2.1, and the aforementioned estimates and (3.4) the set F, satisfies

— _1/8 —1/s
Bl S Tevd = 1Tl < AT = 1Tl S € (3 + e ey +27) &

Next, we prove that JF, satisfies the bulk criterion 0u? < u?(F;). A direct consequence
of Lemma 3.3 reads

e <72 (1 + Ihef ey + €2) = 8Cao e f I

Together with the quasi-orthogonality (cf. Lemma 2.2) and the discrete reliability (2.3) this
proves

&7 < Caret} (Fo) + (Caret + Coo) 1 hef |7, + 227,
< Care; (F2) 4 (Carel + Cgo) thf||3re + 7 (773 + ||héf‘|i2(§z) + 5?) — 8Cqo Hh@rein?(Q)

Furthermore, efficiency (2.1) shows

cor? < €2 < = (Carai2 (F) + (Cavar + Coo) 1hef1%,)

1—7

1
5 (72 (7 + e 1a(@y) = 8Cao Ihered Iage ) -

—i—l_

Finally some reordering leads to

T2 Clrel Carel + C
(Ceff - 1——72> np < T :_2773(}_@) + (% + Ceff) thfHH

1 1
8C 4o 9
(e = 125 ) Mhefl.-

Due to max{2,ces} < 8Cy and the choice of 7 in (3.5) the last term is negative, i.e.,
ot — 8Cq0/(1 — 72) < 0, and F; satisfies the bulk criterion 6u? < pu?(F;) on each level ¢ for
0 < b,.

Since «, f > 0 are chosen according to the contraction property of Lemma 3.2, the
assertion follows by |Fo| < & ie.,

-1 -1 —1 —1
—1/s
Tl = 1Tl < YNl = 1T S D IMy| £ 2}m g
Jj=0 Jj=0 Jj= Jj=0
-1
, 1 — o~ (+1)/(2s)
. —1/s —j/(2s) _ 0 1/s —1/s
|72| ‘7-0| 5 56 Z Q - 1 . Qfl/(Qs) 5[ S 55 . D

Jj=1
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4. Proof of Theorem 2.1

This section is devoted to the proof of Theorem 2.1. One main argument therein is the
following discrete Poincaré inequality, which is a result of [4] and will be verified first.

Lemma 4.1 (Discrete Poincaré Inequality) Let oG € PN (Tow), and o)'© €
Pﬁ)c (T¢) with integral means satisfying fE O‘e+k ds = fE NCds for any E € &. Then, for
any T € Ty the following discrete Poincaré inequality holds

o’ — O‘éVCHH(T) < | HvéJrkO%kHLQ

Proof. Let T € Ty, and ap = f,uN“dz be a piecewise constant function on 7; with
uNC = aé\_fgg — a9 e PNY(Tyix). Then, the affine transformation of T € T; on Ty yields
functlons defined on T, each marked by * (e.g., &%, a'C, a9, ar).
Since £, (uNY — ar) dz vanishes, the result of S. Brenner [4]

(6% — a2'?) = arll o) S NVerr@™ | fap (4.1)

applies. Let 7T be the refinement of T, corresponding to the refinement of T € Ty in Ty g.
Thus, 67|27, < ||Vg+k1lNC is proven by means of the Holder and Friedrich

inequalities, namely
> (— / VortN zdz+ / ﬁchds)
K OK

HLQ(Tref)

~

a7l r, . = \ / @ divadal S

KeT

SIS PEREID I AUPEE
Ec&(T

S Ve g+ 3 / =) v
Ec&(T

with 2* chosen fixed for each edge E, such that (x —ay) Lvg for all x € E. Next the
equivalence [, ) Ve “de= [, ) Vi@ G da is proven,

/ Via) dx—/ &% vp  ds = Z / cvpds = Z /Oé”k vE ds
Tret 8Tlret

EEg Eeg ref

/ Vg+koze+kdx—/ [aﬁk I/E ds —/ v£+kae+k dz.
ref US( )ﬁlnt( Ief) ref

The application of this equality proves va%ﬂ CHLQ(TM) < ||Vg+kéég+k||L2(Tref), ie.,

~ 2 .
Hvz—i—kuNCHL2(Tmf) = / (v€+ka£+k VEOQ ) (Vg+kae+k V@ NC) dz
Tret
- / (Vernays — Verrap' @) V'S dz
Tref
= ‘|V€+kd€+k|’iQ(Tref) - ngé\fc’/ vf-l—kdé\iclé dz
Tret

S IVendensliar,y — [ Vealde [ ViwddGds
ref ref

N 2
< HVHkOéZJrkHL?(Tref) ’
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Finally, taking into account the previous estimates one verifies

G — S Ve gy

~NC ANCHB( Hu _dTHLZ( ||04T||Lz

Tref) ref ref)

NC
S/ HVZ—I—kO‘éJrk”Lz(TrEf) .
A careful transformation back from Ty to T € T, leads to the factor ]T]l/ % in the assertion
aNe 1/2 NC
HO‘Z+k 27, HL2(T) «S ‘Tl HVZJrkO%Jrk”Lz(T) : u

Proof of Theorem 2.1. A verification of |F, N&| < |Te| — |Tesr| is given, e.g., in [7].
Since |F N Ty| = |FNE| < |Te|l — | Towr| the assertion |F| < |Towr| — |Te| follows directly.

To prove (2.3), we recall the discrete Helmholtz decomposition of 6 := p)\§ —p)'“. There
exists a@rk € vapc(ﬁ+k), and 52% € Pi(Torr) with Py (Toyy) == {v € PE(Tisr) |fﬂv = O}
such that

0= pe+k pévc = V@Jrkaé\ﬁ; + Curl 5ec+k-

To estimate Hpuk each summand of the right-hand side of

4 CHL2(Q)’

192G = gy = / 5 VieralC dot / 5 Curl 82,

is bounded separately in the sequel. Let o)’¢ € PNY(Ty) such that for all E € & f, o) =
f, aG holds. Thus,

NC NC
E / apnleve ds

/ 0 - Vepapy dz = (f, O‘Hk

Eec&
= (1.0 = 0}y ~ X [ (02 — o}l ds
Ee&,
= > (fa5 - )L2(T>< 2 Ny i - éVC”L?(T)
TET; TeFNT,

The discrete Poincaré inequality of Lemma 4.1 states
oS = o oy S 11 [V ekl oy < 1712 (1925 = 22| oy

which implies

/95 Ve+k04z+k dz sz+k péVCHLz(Q) Z Hf||L2(T) |T|1/2

TeF

~ prJrk pé\[c”lg(g) ”hZfHJ-—

To bound the second part of the Helmholtz decomposition, let Z, be the Scott-Zhang inter-
polation operator on Ty and Sf := I,8¢,, with ||35,, — BZCHH(E) =0for E €&, NE. In
2D, it holds

Hﬁfik B 5€C”L2(E) <C |E‘l/2 ‘ﬁgrk‘Hl(wE)
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Thus, the L? orthogonalities
(ka, Curl BH,C)LQ(Q) =0= (pévc, Curl BE)LQ(Q)
lead to
[ ) conn = [ ¥ cun g = — [ o cur (9, — )
Q Q

= _ Z/curlp ﬁ£+k ﬁg dx+ Z/ E TE ﬁz+k 5@0) ds

TeT, Eecé&,
S Z H Py C]E ' TEHLQ(E) Hﬁfak - @CHH(E)
EcF
S > M€ 7ol o 1Y 1Beskl s oy
EcFNE
S me(F Hpe+k PéVCHm(Q)

Taking into account the estimates for both parts of the Helmholtz decomposition, the asser-
tion follows directly. n
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