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A PROBLEM-INDEPENDENT SLOPE LIMITING

ALGORITHM FOR THE RUNGE-KUTTA

DISCONTINUOUS GALERKIN METHOD
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Abstract — This paper deals with the new algorithm of slope limiting in the Runge-
Kutta discontinuous Galerkin (RKDG) method. The slope limiting is applied at each
intermediate step of the Runge-Kutta process to guarantee the monotonicity of the
resulting RKDG scheme. The standard formulation of the RKDG method assumes a
manual prescription of the special parameter used in the limiting procedure. Such def-
inition of the limiter makes the method problem-dependent, which is disadvantageous
for practical computations. A new problem-independent way of estimating the limit-
ing parameter is proposed and its performance in the second- and third-order RKDG
methods is studied in this paper.
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Introduction

In this paper, we present a modification of the slope limiting procedure which is an inte-
gral part of the Runge-Kutta discontinuous Galerkin (RKDG) method [1–4]. The application
of the slope limiter is necessary at each intermediate Runge-Kutta time step to guarantee the
monotonicity of the resulting RKDG method. The formulation of the TVB (total variation
bounded) slope limiter proposed in [1] and used in the RKDG method assumes a manual
prescription of the special M parameter used in the limiting procedure and defining the
maximum possible slope of the solution in the case of the piecewise-linear solution space
approximation for which no restrictive TVD (total variation diminishing) limiter is applied.
Thus, theoretically, for every computation it is possible to find such a value for this pa-
rameter that will preserve the RKDG method high order and maintain its monotonicity by
suppressing the spurious oscillations of the solution. In practice, a proper value for M must
be defined before the computation start since the existing theoretical ways of its real-time
estimation are hardly applicable for multidimentional problems, especially for those ivolving
discontinuous solutions. Such definition of the limiter makes the method problem-dependent,
which is disadvantageous for practical computations. Attempts have been made to construct
a problem-independent limiter (see, for example, [5]).

In this paper, we propose a new problem-independent method for estimating the limiting
M parameter. A simple but efficient algorithm is based on the approximation of the solution
gradient which is then used to estimate the maximum possible solution slope (which is
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exactly the M value) on every edge of each mesh triangle independently. This is done at
every intermediate Runge-Kutta time step. As a result, the slope limiter is continuously
adjusted during the computations both in space and time. We study the performance of
the proposed algorithm in the second- and third-order RKDG methods. The new algorithm
proved to be robust for a large variety of gas-dynamical problems, which makes the RKDG
method more flexible for practical simulations.

1. General scheme of the RKDG method for convection-diffusion

systems

Consider the scheme of the RKDG method [1–4] for the following model convection-
diffusion system:

∂u

∂t
+

2
∑

s=1

∂Fs(u)

∂xs

=
2

∑

s=1

∂Rs(u,∇u)

∂xs

(1.1)

with appropriate initial and boundary conditions, where u is the vector of unknown variables,
Fs(u), s = 1, 2 are the inviscid fluxes, and Rs, s = 1, 2 are viscid fluxes.

System (1.1) is first transformed into a system of 1st order PDEs by introducing addi-
tional variables

q1 =
∂u

∂x1

, q2 =
∂u

∂x2

so that the solution gradient can be considered independently.
Then system (1.1) can be rewritten in the form

∂u

∂t
+ divF(u) = divR(u,q1,q2);

q1 = divQ1(u); (1.2)

q2 = divQ2(u),

where F = [F1,F2], R = [R1,R2], Q1 = [u,0], Q2 = [0,u].
Consider an arbitrary triangulation Th of the computational domain Ω. The approximate

solution uh and qh inside each element K ∈ Th can be written as a decomposition over the
system of basis functions of maximum degree k {ϕi}, i = 1, . . . , n

uh(x1, x2, t) =
n

∑

i=1

ui(t)ϕi(x1, x2);

q1h(x1, x2, t) =
n

∑

i=1

qi
1
(t)ϕi(x1, x2);

q2h(x1, x2, t) =
n

∑

i=1

qi
2
(t)ϕi(x1, x2),

where ui(t), q
i
1
(t) and qi

2
(t) are unknown time-dependent coefficients (degrees of freedom)

which need to be defined.
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Multiplying Eqs. (1.2) sequentially by the basis functions ϕi, i = 1, . . . , n and integrating
the results with respect to the element K, after integration by parts we obtain the system
of ODEs for the degrees of freedom ui(t) and the explicit expressions for qi

1
(t) and qi

2
(t)

n
∑

k=1

duk(t)

dt
(ϕi, ϕk) =

∫

K

F(uh) gradϕi dV −

∫

∂K

f̃(uh)ϕi dΓ

−

∫

K

R(uh,q1h,q2h)∇ϕi dx+

∫

∂K

r̃(uh,q1h,q2h)ϕi dΓ, (1.3)

n
∑

k=1

qk
1
(t)(ϕi, ϕk) =

∫

∂K

q̃1(uh)ϕi dΓ−

∫

K

Q1(uh)∇ϕi dx;

n
∑

k=1

qk
2
(t)(ϕi, ϕk) =

∫

∂K

q̃2(uh)ϕi dΓ−

∫

K

Q2(uh)∇ϕi dx.

Here f̃(uh), r̃(uh,q1h,q2h), q̃1(uh), q̃2(uh) are numerical fluxes approximating the phys-
ical inviscid and viscid fluxes through the cell interface K and depending on the boundary
extrapolated solution values inside and outside of K. As a numerical flux for the inviscid
term f̃(uh) one can use any monotonic flux consistent with F(uh) (see [6] for examples).

For the approximation of the viscid fluxes r̃(uh,q1h,q2h), q̃1(uh) and q̃2(uh) the centered
fluxes can be used in the form

H(a,b) =
1

2

(

H(a) +H(b)
)

.

An explicit Runge-Kutta method of order (k + 1) is then applied to solve the system of
ODEs (1.3), resulting in the RKDG method of accuracy order (k + 1) in both space and
time. A specially designed limiting procedure must be incorporated into each intermediate
step of the Runge-Kutta method to provide scheme monotonicity.

In this paper, we use either piecewise-linear or piecewise-quadratic solution space ap-
proximations, leading to the methods of the second and third order in both time and space,
respectively.

2. Standard slope limiter

As mentioned above, the RKDG method includes the implementation of the special slope
limiter at each intermediate Runge-Kutta step to guarantee monotonicity [1].

The slope limiter proposed in [1] is formulated for piecewise-linear functions and in the
case of a piecewise-polynomial approximation of higher order the limiter is applied to the
projection of the solution onto the space of piecewise-linear functions. This limiter can be
used in two versions: TVD (total variation diminishing) and TVB (total variation bounded).
The first variant (TVD) is based on the well-known “minmod” limiting of the slopes of the
solution at certain points of the mesh elements, e.g., centers of the edges in the case of
triangular meshes. This limiter is problem-independent, it preserves the TVD property of
the numerical solution, however, it can decrease the order of accuracy in the vicinity of
local extrema due to the restrictions of the “minmod” procedure. This difficulty can be
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overcome by considering the second version of the limiter, namely the TVB limiter, which
is a modification of the TVD limiter allowing the numerical solution slope to be restricted
by a certain manually defined value M . As a result, there is no decrease in the accuracy
at local extrema, but the limiter becomes problem-dependent: the M parameter needs to
be redefined for every new computation with changed mesh and/or flow data, which makes
such a limiting procedure inefficient in practical computations.

In [1], it is stated that the gas-dynamical computations presented there were implemented
using M = 50∆x2, where ∆x is the mesh size, and that the influence of the value of M on
the solution quality decreases as the degree of the basis polynomials is increased. However,
our experience suggests that the quantitative characteristics of the solution of Euler and
Navier-Stokes equations depend dramatically on M . To illustrate this fact, we present the
computational results for the flow around a semicircular cylinder at zero angle of attack,
Mach number M = 0.05, and Reynolds number Re = 90 000. We compute the aerodynamic
coefficients Cx and Cy, which are the drag and lift coefficients, respectively, and are defined
by the following relations:

Cx(t) =
Fx(t)

1/2ρV 2
∞
S
, Cy(t) =

Fy(t)

1/2ρ∞V 2
∞
S
,

where ρ∞ and V∞ are the freestream density and velocity, S is the reference area (or length in
the case of two-dimensional profiles), Fx(t) and Fy(t) are the projections of the aerodynamic

force ~F (t) on the coordinate axes, and ~F (t) is defined by the integral of the flow pressure
p(t) over the profile surface

~F (t) = −

∫

Ω

p(t)~n dΩ,

with ~n being the unit normal to the surface element dΩ.
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F i g. 2.1. Drag and lift coefficients at M = 0.5(∆x)2: average Cx = 3.7

Figures 2.1–2.3 show the time dependence for the drag and lift coefficients computed
with different values of M .
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F i g. 2.2. Drag and lift coefficients at M = 0.05(∆x)2: average Cx = 3.2
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F i g. 2.3. Drag and lift coefficients at M = 0.01(∆x)2: average Cx = 2.5

As seen from the figures above, the aerodynamic coefficients of the profile strongly depend
on the value of the limiting parameter M . Hence, an inaccurate definition of this parameter
can lead to sufficient errors in the quantities of the numerical solution. Obviously, it is
impossible to predict an optimal estimation of M which would be suitable for the solution
of all possible gas-dynamical problems even of similar types. Therefore, a new estimate is
needed not only for every new arising problem, but also in the case of a change in the space-
time mesh characterictics. The qualitative solution properties may, in general, not be too
sensitive to the numerical value of M , as it is in the following testcase of the flow around a
semicircle (see Figs. 2.4–2.5).

Consequently, the development of an automatic M estimation algorithm with the pos-
sibility of its correction during the computation process has recently become one of the
most important and topical questions in the designing of RKDG-based solvers for industrial
applications.
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F i g. 2.4. Distribution of Mach numbers

F i g. 2.5. Density distribution

3. Problem-independent limiter

In this paper, we propose a new algorithm for the automatic choice of the M limiting
parameter. As in the classical RKDG methods, the limiter for the piecewise-linear functions
is based on the computation of the feasible slopes of the numerical solution component uh at
the centers of the edges mi, i = 1, 2, 3 of the triangle K0 with the center of mass b0. These
slopes are

∆i = m̄
(

ũh(mi, K0), ν∆ū(mi, K0),M
)

, (3.1)

where
ũh(mi, K0) = uh(mi)− ūK0

is the jump of the solution at the center of the i-th edge of the triangle K0,

ūK0
=

1

|K0|

∫

K0

uh dV = uh(b0)

is the average value of the numerical solution over the triangle K0, ν > 1 (usually ν = 1.5)
and ∆ū(mi, K0) is defined as follows:

∆ū(mi, K0) = α1(ūKi
− ūK0

) + α2(ūKj
− ūK0

),
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where Ki and Kj are mesh triangles adjacent to K0 and α1,2 are positive numbers given by
the decomposition of the vector mi − b0 over the two vectors bi − b0 and bj − b0, where bi
and bj are the centers of mass of the triangles Ki and Kj, respectively,

mi − b0 = α1(bi − b0) + α2(bj − b0).

The function m̄ in (3.1) stands for the TVB-modified “minmod” function

m̄ =

{

ũh(mi, K0), if |ũh(mi, K0)| < M ;

m
(

ũh(mi, K0), ν∆ū(mi, K0)
)

, else,
(3.2)

and the function m is the standard “minmod” function

m(a1, a2) =

{

smin
(

|a1|, |a2|
)

, if s = sign(a1) = sign(a2),

0, if sign(a1) 6= sign(a2).

The limited numerical solution component vh is then expressed as

vh = ūK0
+

3
∑

i=1

∆iϕi(x1, x2).

The value of M explicitly defines the maximum possible slope of the numerical solution
at the edge center up to which the solution is not monotonized. In the initial RKDG method
of [1], this value is taken constant for all mesh cells and, consequently, for all the degrees of
freedom of the numerical solution. The automatic M estimation algorithm proposed in the
present paper allows to achieve more flexibility in the computations by choosing M for each
triangle edge independently and automatically.

The automatic estimation algorithm is based on the decomposition of the numerical
solution function component uh into the Taylor series at the point mi in the neighbourhood
of the center of mass b0 of the triangle K0

uh(mi) = uh(b0) +∇uh(b0) · (mi − b0) + (mi − b0)
TH(b0)(mi − b0) + . . . , (3.3)

where ∇uh(b0) is the gradient of uh at the point b0, and H(b0) is the Hessian matrix at the
same point.

Keeping only the first term in the Taylor series (3.3), we obtain

uh(mi)− ūK0
≈ ∇uh(b0) · (mi − b0),

hence, the norm of the uh jump on the i-th edge of K0 can be estimated as

‖uh(mi)− ūK0
‖ ≈ ‖∇uh(b0) · (mi − b0)‖ = Mi, (3.4)

where Mi is the sought value for the M parameter on the i-th edge of the triangle K0.
Therefore, for the computation ofMi it remains to determine the gradient of the numerical

solution
gh = ∇uh (3.5)

at the point b0.
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The solution gradient in the cell K0 is approximated by a constant function ḡh as follows:

ḡh =
1

|K0|

∫

K0

gh dV =
1

|K0|

∫

K0

∇uh dV =
1

|K0|

∫

∂K0

ũn dS ≈
1

|K0|

3
∑

k=1

ũknkLk, (3.6)

where nk is the outward unit normal to the k-th edge of the triangle K0 and Lk is the length
of this edge. The value of ũk corresponds to the approximation of the numerical solution on
the edge, namely the approximation of the Riemann problem solution with initial data ūk

L,
ūk
R, where

ūk
L = ūK0

, ūk
R = ūKp

are the average values of the solution over K0 and over the neighbouring cell Kp sharing the
same edge k.

We use the HLLC method to approximate the solution of the Riemann problem for Euler
equations [6], giving

Ū(0) =



















UL, if 0 6 SL;

U∗L, if SL 6 0 6 S∗;

U∗R, if S∗ 6 0 6 SR;

UR, if 0 > SR,

where for K = L,R

U∗K = ρK

(

SK − uK

SK − S∗

)

=













1
S∗

vK
EK

ρK
+ (S∗ − uK)

(

S∗ +
pK

ρK(SK − uK)

)













,

and SL, S∗ and SR are known estimations of the wave velocities present in the structure of
the Riemann problem solution.

3.1. Results: Euler equations

We first study the performance of the proposed automatic limiting parameter M estima-
tion algorithm for the numerical solution of Euler equations. The computational results for
the forward-facing step problem [1,4, 7] are shown in Figs. 3.1–3.2. Figure 3.1 illustrates 20
density contour lines for two computations: with a manual (upper figure) and an automatic
(lower figure) estimation of M . In both computations the piecewise-linear basis functions
are used to approximate the solution on the same grids with a typical element size of 1/80.
It is evident that the second-order RKDG-method can generate spurious oscilations when
setting the M value manually, however, these oscillations are effectively suppressed by the
automatic M estimation algorithm.
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M = 50(∆x)2

automatic estimation of M
F i g. 3.1. Density contour lines, piecewise-linear solution approximation

The results of analogous computations using piecewise-quadratic basis functions are
shown in Fig. 3.2.

M = 50(∆x)2

automatic estimation of M
F i g. 3.2. Density contour lines, piecewise-linear solution approximation

Figures 3.3–3.4 show the computational results for the double Mach reflection problem
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[1, 4, 7]. Figure 3.3 corresponds to the piecewise-linear approximation of the solution and
Figure 3.4 - to the piecewise-quadratic one.

(a) M = 50(∆x)2 (b) automatic estimation of M

F i g. 3.3. Density contour lines, piecewise-linear solution approximation

(a) M = 50(∆x)2 (b) automatic estimation of M

F i g. 3.4. Density contour lines, piecewise-quadratic solution approximation

For the next example of the incorporation of the proposed automatic M estimation algo-
rithm into the RKDG scheme for Euler equations, we consider the computation of the flow
around the NACA0012 airfoil at a very low Mach number M = 0.001 (see [3]). For this com-
putation we use the quadratic basis inside each mesh cell. Figure 3.5 illustrates the results
obtained using the manually prescribed M = 50(∆x)2 (left figure) and the automatically
determined M (right figure).
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F i g. 3.5. Mach number contour lines

As seen from the figures above, the automatic choice of M with its correstion after every
time step allows to suppress the spurious oscillations inevitably arising in the high-order
methods.

Compare the performance of the second- and third-order RKDG methods with the auto-
matic M estimation algorithm. Figures 3.6–3.8 show 22 Mach number contour lines for the
flow around the NACA0012 airfoil at the freestream Mach number M = 0.2. The computa-
tional domain is a rectangle with sizes 15Lx10L, where L is the airfoil chord. The mesh size
for each computation is indicated in the figure legend. The airfoil is approximated by 200
linear panels.
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F i g. 3.6. Mach number contour lines (12054 mesh triangles)
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F i g. 3.7. Mach number contour lines (≈ 26000 mesh triangles)
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F i g. 3.8. Mach number contour lines (≈ 50000 mesh triangles)

As the flow in this simulation is assumed to be inviscid and hence governed by Euler
equations, there should be no boundary layer near the airfoil surface. However, a spurious
boundary layer might be generated by a lower-order method unless the airfoil surface is
approximated more accurately using more linear edges or turning to curved edges, as ob-
served in the second-order RKDG, regardless of the total number of mesh triangles used.
Nevertheless, increasing order of the basis polynomials to second and, consequently, to the
third order of approximation helps to minimise the spurious boundary layer while keeping
the same linear airfoil surface approximation.

Another useful example demonstrating the difference between the second-order and the
third-order RKDG is the typical test case of the 2D subsonic flow around a circle at a
Mach number M = 0.38 (see [1, 2]). The exact solution to this problem leads to symmetric
contour lines around the cylinder, hence the quality of the numerical solution can easily be
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assessed by its proximity to symmetry. We have performed computations for the second and
third-order RKDG methods on two meshes using the piecewise-linear circle approximation.
Figure 3.9 illustrates the results for the second and third-order RKDG methods obtained by
the 16 point circle approximation and Figure 3.10 presents the results computed on a finer
mesh with 128 points on the circle.
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(a) second-order RKDG
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F i g. 3.9. Mach number contour lines (16 points on the circle)
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F i g. 3.10. Mach number contour lines (128 points on the circle)

Figures 3.9–3.10 demonstrate the better accuracy of the third-order RKDG method that
minimises the non-physical wake in the downstream region behind the cylinder even on a
coarse grid.
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3.2. Results: Navier-Stokes equations

The algorithm of automatic M estimation makes it possible to obtain a good qualitative
and quantitative agreement between computational and experimental data in the numerical
simulation of flows governed by the Navier-Stokes equations.

Consider as the first example the flow around a circular cylinder with the following
freestream parameters: the Mach number M = 0.05 and the Reynolds number Re = 2000.
A flow around a cylinder at such Mach and Reynolds numbers generates the so-called Karman
vortex street behind it. It has been established experimentally that, at Reynolds numbers
in the range Re = 103 . . . 105 the dimensionless vortex wake frequency is virtually constant
and is characterized by the Strouhal number Sh ≈ 0.2; moreover, the stationary aerody-
namic drag and lift coefficients resulting from the time-averaging of the corresponding non-
stationary coefficients under steady flow conditions, are also virtually constant: Cx ≈ 0.2
and Cy ≈ 0. In all computations the second-order RKDG method was used.

Figures 3.11–3.12 show the time-dependent aerodynamic coefficients, Figure 3.11 cor-
responds to the algorithm with a manual determination of M , and Figure 3.12 — to the
automatic M estimation algorithm.
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F i g. 3.11. Aerodynamic coefficients, M = 50(∆x)2
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F i g. 3.12. Aerodynamic coefficients, automatic estimation of M
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The version of the RKDG method with manual measurement of M gives inaccurate
results for the coefficients: Cx ≈ 1.46, Cy ≈ −0.12, Sh ≈ 0.25, while the RKDG method
combined with the algorithm of automatic M estimation produces coefficient values that are
close to the experimental data: Cx ≈ 1.24, Cy ≈ −0.07 and Sh ≈ 0.2.

The typical Karman vortex street is illustrated in Fig. 3.13.

F i g. 3.13. Mach number distribution and streamlines

To estimate the performance of the proposed automatic M limiting parameter choice
algorithm we simulated the gas flow around a semicircular cylinder at various angles of
attack and compared the computed stationary aerodynamic coefficients with those given by
the experiment [8]. Computations were performed for angles of attack from 0◦ to 180◦ with
a 30◦ step, the corresponding results are presented in Figs. 3.14–3.15.
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F i g. 3.14. Drag coefficient dependence on the angle of attack
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F i g. 3.15. Lift coefficient dependence on the angle of attack

The typical vortex streets generated behind the semicircle at different angles of attack
are shown in Figs. 3.16–3.18.

F i g. 3.16. Mach number distribution and streamlines at α = 30◦

F i g. 3.17. Mach number distribution and streamlines at α = 60◦
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F i g. 3.18. Mach number distribution and streamlines at α = 90◦

Conclusions

The results of the computations presented in this paper point to a high efficiency and
robustness of the proposed algorithm of the automatic limiting parameter estimation when
implemented in the RKDG method and justify its utilization for solving a wide class of gas-
dynamical problems, including the simulation of ideal and viscid heat conducting gases. This
algorithm can be used in both second- and third-order RKDG methods and can easily be
incorporated into any higher-order RKDG algorithm. As shown in this paper, the utilization
of the higher-order discontinuous Galerkin approximations can be beneficial since it permits
attaining the desired accuracy of the solution while holding the geometry approximations
relatively crude.
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