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WELL-POSEDNESS AND BLOW UP FOR IBVP FOR
SEMILINEAR PARABOLIC EQUATIONS AND

NUMERICAL METHODS

P. MATUS 1, S. LEMESHEVSKY2, AND A. KANDRATSIUK3

Abstract — We have studied the stability of finite-difference schemes approximating
boundary value problems for parabolic equations with a nonlinear and nonmonotonic
source of the power type. We have obtained simple sufficient input data conditions, in
which the solution of the differential problem is globally stable for all 0 6 t 6 +∞. It is
shown that if these conditions fail, then the solution can blow up (go to infinity) in finite
time. The lower bound of the blow up time has been determined. The stability of the
solution of BVP for the nonlinear convection-diffusion equation has been investigated.
In all cases, we used the method of energy inequalities based on the application of
the Chaplygin comparison theorem for nonlinear differential equations, Bihari-type
inequalities and their discrete analogs.
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Introduction

Nonlinear parabolic equations play an important part in the mathematical modeling of
applied problems. A large number of papers has been devoted to the study of these equations.
Many authors (see, for example, [5,6,8,10]) have shown that, in the general case of arbitrary
initial data, there exist no global solutions of the Cauchy problem for nonlinear parabolic
equations.

The existence of solutions to boundary-value problems for nonlinear parabolic equations
has been studied in [2, 26, 27]. In these works, it has established that the boundary-value
problem with homogeneous boundary conditions has exactly one solution with a finite life-
time T > 0. However, the blow-up time has not been estimated. It was only indicated
that this time depends on the norm of the initial function. In [12], the upper bound of
the blow-up time was obtained. In [25], double-sided estimates of the blow-up time for the
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solution of Sobolev-type equations was obtained using the method of energy inequalities.
To investigate the stability of the solution of nonlinear evolution equations, the dynamical
systems approach [9] was also used.

To prove the existence of solutions to initial-boundary value problems for nonlinear
parabolic equations, the method of nonlinear capacity developed by E. Mitidieri and S.
Pokhozhaev (see, for example, [7,16] and the references therein) as well as by other authors.

This work presents the results concerning the stability of solutions of both differential
problems and corresponding finite-difference schemes for one-dimensional parabolic equa-
tions with a nonmonotonic source. The existence of a bounded global solution under con-
ditions imposed only on the input data of the problem has been proved. In the case where
these conditions are not fulfilled, the existence of a solution in a finite time has been proved
proved. Herewith the lower bound of the time of possible blow-up of the solution has been
obtained. This estimate shows that the blow-up time depends on both the norm of the
initial function and other input data such as the domain measure [19] and coefficients of the
equation.

For the finite-difference schemes approximating the above-mentioned problems we have
also obtained estimates of the solutions for arbitrary 0 6 t 6 +∞ under conditions imposed
on the input data of the problem. The finiteness of the solution in a finite time in the
case where these conditions are not fulfilled has been proved. All discrete conditions and
estimates are consistent with the differential analogs.

To obtain estimates of the solutions Bihari-type inequalities and their differential analogs
are often used [1, 4, 13, 15, 18]. In this paper, besides such estimates we use the auxiliary
differential and discrete inequalities obtained by means of the Chaplygin comparison theorem
[3]. Similar approach is used for investigating Cauchy problem for non-linear Schrödinger
equation in [17].

Moreover in this paper using the energy inequalities technique, we have obtained esti-
mates of the solutions and the times of their possible blow-up for multidimensional problems.
Sufficient conditions for the stability of the solution of the initial-boundary value problem
for the nonlinear convection-diffusion equation have been obtained.

We present numerical results of investigating the behavior of the approximate solution
depending on the fulfillment and non-fulfillment of the conditions for the existence of a
bounded solution of the initial-boundary value problem for the semilinear parabolic equation.
The two-sided bounds of the blow-up time have been verified. The obtained experimental
time are consistent with both the estimates obtained in this paper and with the results
from [12].

1. Global stability of the solution of the semilinear homogeneous
parabolic equation

In this section, we obtain a priori estimates for the solution of the initial-boundary value
problem for the one-dimensional semilinear parabolic equation with a nonlinear nonmono-
tonic source and estimates of the global stability.
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Consider the following problem:

∂u

∂t
=

∂

∂x

(
k(x)

∂u

∂x

)
+ cu|u|p−1 , x ∈ Ω = {x : 0 < x < l} , 0 < t 6 T, (1.1)

u(0, t) = u(l, t) = 0, 0 6 t 6 T, (1.2)
u(x, 0) = u0(x), x ∈ Ω̄. (1.3)

Here

c = const > 0, p = const > 1, (1.4)
k(x) ∈ C1

(
Ω̄
)
, 0 < m1 6 k(x) 6 m2 for all x ∈ Ω. (1.5)

Let the operator A be given by

Au = − ∂

∂x

(
k(x)

∂u

∂x

)
.

This operator pertains the set D(A) = H̊1(Ω)∩H2(Ω) to L2(Ω). It is easy to show that for
the linear self-adjoint operator A the following inequality is fulfilled [24]:

(Au, u)L2(Ω) > λ‖u‖2
L2(Ω) for all u ∈ D(A), λ =

m1π
2

l2
. (1.6)

Moreover, taking into account (1.6) we obtain

(Au, u)L2(Ω) 6‖u‖L2(Ω)‖Au‖L2(Ω) 6
1√
λ

√
(Au, u)L2(Ω)‖Au‖L2(Ω) .

Hence we have
‖Au‖2

L2(Ω) > λ (Au, u)L2(Ω) for all u ∈ D(A). (1.7)

For the functions v ∈ H̊1(Ω) we get [20]

‖u‖2
C(Ω) 6 γ2 (Au, u)L2(Ω) , γ =

√
l

2
√
m1

. (1.8)

By HA = H̊1(Ω) we denote the energy space determined by the inner product (v, w)A =
(Av, w)L2(Ω).

Together with (1.1)–(1.3) we consider the following problem with perturbed initial data:

∂ũ

∂t
=

∂

∂x

(
k(x)

∂ũ

∂x

)
+ cũ|ũ|p−1 , x ∈ Ω, 0 < t 6 T, (1.9)

ũ(0, t) = ũ(l, t) = 0, 0 6 t 6 T, (1.10)
ũ(x, 0) = ũ0(x), x ∈ Ω. (1.11)

Suppose that
u0(x), ũ0(x) ∈ D(A). (1.12)
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1.1. A priori estimates of the solution for arbitrary t ∈ [0,+∞]

To obtain global a priori estimates of the solution, we need the following

Lemma 1.1. Let the nonnegative function v = v(t) satisfy the following relations:

dv

dt
6 avq − bv, v(0) = v0, (1.13)

a, b are positive constants, q > 1. Then, if

avq−1
0

b
6 1, (1.14)

then the function v(t) is bounded for all 0 6 t 6 +∞, and the following estimate holds:

v(t) 6 v0 (1.15)

If condition (1.14) is not fulfilled, then the function v(t) can blow up within a finite time.

Proof. Consider the Cauchy problem for the Bernoulli equation

dw

dt
= awq − bw, w(0) = v0. (1.16)

By the Chaplygin comparison theorem [3] we have v(t) 6 w(t). The solution of problem
(1.16) is defined by the following formula:

w(t) =
b1/(q−1)v0(

avq−1
0 +

(
b− avq−1

0

)
e(q−1)bt

)1/(q−1)
. (1.17)

Thus, taking into account condition (1.13), we complete the proof of the lemma.

Now we prove the following

Theorem 1.1. If the input data of problems (1.1)–(1.3) and (1.9)–(1.12) satisfy the
inequality

cl(p+3)/2 max
{
‖u0‖p−1

A ,‖ũ0‖p−1
A

}
2p−1π2m

(p+1)/2
1

6 1, (1.18)

then for the solutions of problems (1.1)–(1.3) and (1.9)–(1.12), if any, for any t the following
estimates hold: ∥∥u(t)

∥∥
A 6‖u0‖A ,

∥∥ũ(t)
∥∥
A 6‖ũ0‖A . (1.19)

Proof. We obtain the first estimate from (1.19). Multiply Eq. (1.1) by 2Au and integrate
the result over the domain Ω. We get the following energy identity:

d‖u‖2
A

dt
+ 2‖Au‖2

L2(Ω) = 2c
(
u|u|p−1 ,Au

)
L2(Ω)

. (1.20)
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For the right-hand side of (1.20), using The Schwarz and Cauchy inequalities and taking
into account (1.6)–(1.8), we get

2c
(
u|u|p−1 ,Au

)
L2(Ω)

6 2c‖u‖p−1
C(Ω)‖u‖L2(Ω)

‖Au‖L2(Ω) 6
2cγp−1

λ1/2
‖u‖pA‖Au‖L2(Ω)

6
2cγp−1

λ1/2

(
ε‖u‖2p

A +
1

4ε
‖Au‖2

L2(Ω)

)
.

(1.21)

Substituting the last estimate into (1.20), in view of (1.7) and taking ε = cγp−1/(2λ1/2), we
obtain

d‖u‖2
A

dt
6
c2γ2(p−1)

λ
γp−1‖u‖2p

A − λ‖u‖
2
A .

Further we use Lemma 1.1. Let v =‖u‖2
A, a = c2γ2(p−1)/λ, b = λ, q = p. Under (1.18) the

conditions of Lemma (1.14) are satisfied and, consequently, the first estimate from (1.19)
holds. The second bound is proved similarly.

Theorem 1.1 contains the sufficient condition (1.18) of finiteness of the energy norm of
the solution for arbitrary T 6 +∞.

Remark 1.1. We prove only the finiteness of the solution of the studied problem. How-
ever, suppose that the following (more strong than (1.14) and, consequently, than (1.18))
condition holds:

b− avq−1
0 > δ > 0.

Then from (1.17) we can prove that the solution tends to zero as t→ +∞.

1.2. Global stability and uniqueness of the solution

To study the stability of the solution of problem (1.1)–(1.3), subtract (1.1), (1.2) and (1.3)
from (1.9), (1.10) and (1.11), respectively. Taking into account the mean value theorem

ũ|ũ|p−1 − u|u|p−1 = p

 1∫
0

|u+ θū|p−1 dθ

 ū = pP(u, ũ)ū,

we get the following perturbation problem ū = ũ− u:

∂ū

∂t
=

∂

∂x

(
k(x)

∂ū

∂x

)
+ pcP(u, ũ)ū, x ∈ Ω, 0 < t 6 T, (1.22)

ū(0, t) = ū(l, t) = 0, 0 < t 6 T, (1.23)
ū(x, 0) = ū0(x) = ũ0(x)− u0(x), x ∈ Ω. (1.24)

It is clear that the function P(u, ũ) satisfies the inequality∥∥P(u, ũ)
∥∥
C(Ω)

6 max
{
‖u‖p−1

C(Ω) ,‖ũ‖
p−1
C(Ω)

}
. (1.25)

Now we prove the following



400 P. Matus, S. Lemeshevsky, and A. Kandratsiuk

Theorem 1.2. Suppose that the input data of problems (1.1)–(1.3) and (1.9)–(1.12) sat-
isfy the inequality

cl(p+3)/2 max
{
‖u0‖p−1

A ,‖ũ0‖p−1
A

}
2p−1π2m

(p+1)/2
1

6
1

p
. (1.26)

Then the solution of problem (1.1)–(1.3), if any, is stable in the sense of the initial data for
any t ∈ [0, T ] and the perturbation of the solution satisfies the following estimate:∥∥ũ(t)− u(t)

∥∥
A 6‖ũ0 − u0‖A . (1.27)

Proof. Multiplying both sides of Eq. (1.22) by 2Aū and integrating the result over Ω,
we get the following energy identity:

d‖ū‖2
A

dt
+ 2‖Aū‖2

L2(Ω) = 2pc
(
P(u, ũ)ū,Aū

)
L2(Ω)

. (1.28)

In view of (1.25), it follows for the right-hand side of the last relation that

2pc
(
P(u, ũ)ū,Aū

)
L2(Ω)

6 2pc
∥∥P(u, ũ)ū

∥∥
L2(Ω)
‖Aū‖L2(Ω)

6 2pc
∥∥P(u, ũ)

∥∥
C(Ω)
‖ū‖L2(Ω)‖Aū‖L2(Ω)

6 2pcmax
{
‖u‖p−1

C(Ω) ,‖ũ‖
p−1
C(Ω)

}
‖ū‖L2(Ω)‖Aū‖L2(Ω) .

(1.29)

Hence, in view of (1.6)–(1.8), (1.19) and the Cauchy inequality, we obtain

2pc
(
P(u, ũ)ū,Aū

)
L2(Ω)

6
2pcγp−1

√
λ

cp−1
1

(
ε‖ū‖2

A +
1

4ε
‖Aū‖2

L2(Ω)

)
, (1.30)

where c1 = max
{
‖u0‖A ,‖ũ0‖A

}
. Substituting the last estimate into (1.28), we get

d‖ū‖2
A

dt
+ 2

(
1− pcγp−1cp−1

1

4
√
λε

)
‖Aū‖2

L2(Ω) 6
2pcγp−1

√
λ

cp−1
1 ε‖ū‖2

A .

Letting

ε =
pcγp−1cp−1

1

2
√
λ

and taking into account (1.7), we obtain

d‖ū‖A
dt

6

(
pcγp−1cp−1

1

)2

− λ2

2λ
‖ū‖A . (1.31)

Hence, if we recall (1.26), we get the following relation

d‖ū‖A
dt

6 0,

which completes the proof of the theorem.

The application of the proven stability estimate (1.27) yields uniqueness of the solution
of problem (1.1)–(1.3) (see, e.g., [15]).
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Remark 1.2. Theorem 1.2 contains the sufficient conditions (1.26) on global stability
of the solution of problem (1.1)–(1.3), i.e., the stability for any T 6 +∞. However, if
conditions (1.18) holds but relations (1.26) are not fulfilled, then from (1.31) we can obtain
for the solution of problem (1.1)–(1.3) the following estimate of ρ-stability (for any finite T ):

∥∥ũ(t)− u(t)
∥∥
A 6 eκt‖ũ0 − u0‖A , κ =

(
pcγp−1cp−1

1

)2

− λ2

2λ
.

2. Global stability of the finite-difference scheme

In the domain Q̄T = {(x, t) : 0 6 x 6 l, 0 6 t 6 T}, we introduce a uniform grid ω̄ = ω̄h×ω̄τ ,
ω̄h = {xi = ih, i = 0, . . . , N, hN = l, N > 3} = ωh ∪ {x0 = 0, xN = l}; ω̄τ = {tn = nτ, n =
0, . . . , N0 τN0 = T} = ωτ ∪ {tN0 = T}, ω = ωh × ωτ .

On the grid introduced we approximate the differential problem (1.1)–(1.3) by the fol-
lowing difference problem:

yt + Ahŷ = cy|y|p−1 , (2.1)
y(x, 0) = u0(x), x ∈ ω̄h, ŷ0 = 0, ŷN = 0, (2.2)

where

Ahy = − (ayx̄)x , a = 0, 5 (ki−1 + ki) . (2.3)

Here and below we use the standard notation of the theory of difference schemes [20,23]:

y = yni = y (xi, tn) ; ŷ = yn+1 = y (xi, tn+1) ; yt =
ŷ − y
τ

;

(ayx̄)x =
1

h

(
ai+1

ŷi+1 − ŷi
h

− ai
ŷi − ŷi−1

h

)
.

To study the stability, we approximate the perturbed problem (1.9)–(1.11) by the similar
difference scheme

ỹt + Ah ˆ̃y = cỹ|ỹ|p−1 , (2.4)

ỹ(x, 0) = ũ0(x), x ∈ ω̄h, ˆ̃y0 = 0, ˆ̃yN = 0. (2.5)

Subtracting Eqs. (1.1)–(1.3) from (1.9)–(1.11), respectively, and using the mean value
theorem, we get the following problem for perturbation ȳ = ỹ − y:

ȳt + Ah ˆ̄y = cp|y + θȳ|p−1 ȳ, ȳ (x, 0) = ũ0(x)− u0(x), ȳn+1
0 = ȳn+1

N = 0, 0 < θni < 1.
(2.6)

It is clear from (2.6) that before investigating the stability, we must obtain the a priori
estimates for y and ỹ.

Definition 2.1 [20]. the difference scheme (2.1) — (2.2) is called unconditionally stable
in the sense of the initial data if for sufficiently small τ 6 τ0, h 6 h0 the following inequality
holds:

‖ỹ − y‖1h
6M1‖ũ0 − u0‖2h

, (2.7)

where ‖·‖1h
and ‖·‖2h

are some grid norms, M1 is a constant independent of τ , h, y, ỹ and
the choice of input data of the problem.
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Let us introduce the inner products and the grid norms

‖y‖C = max
16i6N−1

|yi| ; ‖y‖C̄ = max
06i6N

|yi| ; (y, v)h =
N−1∑
i=1

yivih; ‖y‖h =
√

(y, y)h;

‖y‖Ah =
√

(Ahy, y)h, ‖yx̄]|2 =
N∑
i=1

hy2
x̄,i,

where Ah = A∗h > 0 is a positive self-adjoint operator defined by (2.3).
The following grid analogs of embedding theorems hold [20,22,23]:

Lemma 2.1. For an arbitrary grid function y(x) given on a uniform grid ω̄h and van-
ished at x = 0, x = l, the following inequalities hold:

‖y‖h 6
1√
λh
‖y‖Ah , ‖y‖Ah 6

1√
λh
‖Ahy‖ , ‖y‖h 6

1

λh
‖Ahy‖ , λh =

9m1

l2
, (2.8)

‖y‖C 6 γ‖y‖Ah , γ =

√
l

2
√
m1

. (2.9)

Proof. Using the estimate [22] ‖yx̄]|2 > 9
l2
‖y‖2

h and the properties of the coefficient k(x),
we get the first inequality from (2.8)

‖y‖2
Ah

=
(
a, y2

x̄

]
> m1‖yx̄]|2 > λh‖y‖2

h . (2.10)

The next two inequalities follow from the relations

λh‖y‖2
h 6‖y‖

2
Ah

= − (Ahy, y) 6‖Ahy‖‖y‖h 6
1√
λh
‖Ahy‖‖y‖Ah .

To prove the last inequality from (2.9), we have to use the estimate [20]‖y‖C 6
√
l

2
‖yx̄]| and

inequality (2.10).

Theorem 2.1. Suppose that the input data of the problem satisfy the condition

c2h +
τλhc

2
2h

2
6 1, c2h =

21−pcl
p+3

2

9m
p+1

2
1

max
{
‖u0‖p−1

Ah
,‖ũ0‖p−1

Ah

}
. (2.11)

Then for the solutions of the finite-difference schemes (2.1)–(2.2), (2.4)–(2.5) the following
a priori estimates hold for any T ∈ [0,∞]:

max
t∈ω̄τ

∥∥y(t)
∥∥
Ah

6‖u0‖Ah , max
t∈ω̄τ

∥∥ỹ(t)
∥∥
Ah

6‖ũ0‖Ah . (2.12)

Proof. Taking the inner product of (2.1) with 2τAhŷ, we get the energy identity

τ 2‖yt‖2
Ah

+ 2τ‖Ahŷ‖2 +‖ŷ‖2
Ah

=‖y‖2
Ah

+ 2τc
(
y|y|p−1 , Ahŷ

)
h
. (2.13)

Taking into account
y = ŷ − τyt, (2.14)
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we have for the inner product from (2.13)

2τc
(
y|y|p−1 , Ahŷ

)
h

= 2τc
(
ŷ|y|p−1 , Ahŷ

)
h
− 2τ 2c

(
yt|y|p−1 , Ahŷ

)
h
. (2.15)

Using embedding (2.8) and (2.9) we estimate the first term from the right-hand side of
(2.15) as follows:

2τc
(
ŷ|y|p−1 , Ahŷ

)
h
6 2τcγp−1‖y‖p−1

Ah
‖ŷ‖h‖Ahŷ‖h 6 2τc3h‖y‖p−1

Ah
‖Ahŷ‖2

h , (2.16)

where c3h = cγp−1/λh. Similarly we estimate the second term

2τ 2c
(
yt|y|p−1 , Ahŷ

)
h
6 τ 2‖yt‖2

Ah
+ τ 2λhc

2
3h‖y‖

2(p−1)
Ah

‖Ahŷ‖2
h . (2.17)

Substituting the obtained estimates into (2.13), we get

2τR1h‖Ahŷ‖2
h +‖ŷ‖2

Ah
6‖y‖2

Ah
, (2.18)

where R1h = 1− c3h‖y‖p−1
Ah
− c2

3hλhτ/2. Since R1h = R1
1h > 0, from (2.18) it follows that∥∥y1

∥∥
Ah

6‖u0‖Ah .

Further, by induction we have∥∥yn+1
∥∥
Ah

6‖yn‖Ah 6 ... 6‖u0‖Ah .

The second estimate from (2.12) is proved in the same way.

Theorem 2.2. Let the input data of the problem satisfy the conditions

pc2h +
τ (pc2h)

2 λh
2

6 1. (2.19)

Then the difference scheme is globally stable in the energy norm Ah and for any t ∈ [0,∞)
the following a priori estimate holds:

max
t∈ωτ

∥∥ỹ(t)− y(t)
∥∥
Ah

6‖ũ0 − u0‖Ah . (2.20)

Proof. Taking the inner product on both sides of Eq. (2.6) with 2τAh ˆ̄y, we obtain the
following energy identity:

τ 2‖ȳt‖2
Ah

+ 2τ
∥∥Ah ˆ̄y

∥∥2

h
+
∥∥ˆ̄y
∥∥2

Ah
=‖ȳ‖2

Ah
+ 2τcp

(
|y + θȳ|p−1 ȳ, Ah ˆ̄y

)
h
. (2.21)

Using the equality y = ŷ − τyt, we write for the inner product from the right-hand side of
(2.21) in the form

2τcp
(
|y + θȳ|p−1 ȳ, Ah ˆ̄y

)
h

= 2τcp
(
|y + θȳ|p−1 , ˆ̄yAh ˆ̄y

)
h
− 2τ 2cp

(
|y + θȳ|p−1 , ȳtAh ˆ̄y

)
h
.

Taking into account the inequality |y + θȳ| 6 c4h, c4h = max
{
‖u0‖Ah ,‖ũ0‖Ah

}
, using

embedding (2.8) and (2.9), similarly to (2.16) and (2.17), we get

2τcp
(
|y + θȳ|p−1 , ˆ̄yAh ˆ̄y

)
h
6 2τc3hpc

p−1
4h

∥∥Ah ˆ̄y
∥∥2

h
, (2.22)
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2τ 2cp
(
|y + θȳ|p−1 , ȳtAh ˆ̄y

)
h
6 τ 2‖yt‖2

Ah
+ τ 2λhc

2
3hp

2c
2(p−1)
4h

∥∥Ah ˆ̄y
∥∥2

h
. (2.23)

Substituting the obtained estimates into (2.21), we get

2τR2h

∥∥Ah ˆ̄y
∥∥2

+
∥∥ˆ̄y
∥∥2

Ah
6‖ȳ‖2

Ah
, (2.24)

where R2h = 1− c3hc
p−1
4h p− c2

3hc
2(p−1)
4h λhτp

2/2.
Further, in the same way as in the proof of Theorem 2.1, we obtain the required estimate.

3. Monotonicity of the finite-difference scheme

Write the problem for perturbation (2.6) in the following canonical form [20]:

Ani ȳ
n+1
i−1 − Cn

i ȳ
n+1
i +Bn

i ȳ
n+1
i+1 = −F n

i , ȳn+1
0 = ȳn+1

N = 0, (3.1)

where Ani = Bn
i = τ

h2 ; Cn
i = 1 + 2τ

h2 ; F n
i =

(
1 + τcp|yi + θȳi|p−1

)
ȳni .In accordance with the

definition of [15] the difference scheme (3.1) is monotone if the condition ũ0 − u0 > 0 yields
ȳn+1
i > 0 for any n = 0, ..., N0.

Here we show that under the conditions of Theorem 2.1 the difference scheme (3.1) is
unconditionally stable. Below we need the following statement.

Lemma 3.1 [20]. Let the following positivity conditions of the coefficients hold:

Ani > 0, Bn
i > 0, Dn

i = Cn
i − Ani −Bn

i > 0.

Then from the inequality F n
i > 0 (F n

i 6 0) it follows that ȳn+1
i > 0

(
ȳn+1
i 6 0

)
.

Theorem 3.1. Let the conditions of Theorem 2.1 be satisfied. Then the difference
scheme (3.1) is

Proof. It is sufficient to show that F n
i > 0 for any n. Let ȳ0

i = ũ0−u0 > 0. Then F 0
i > 0

and by Lemma 3.1 ȳ1
i > 0.Similar arguments can be extended to any n. Consequently,

F n
i > 0 for any n. The case of F n

i 6 0 can be proved in the same manner.

4. Stability for the possible blow-up of the solution of the homoge-
neous semi-linear parabolic equation

Above we supposed that the input data of problems (1.1)–(1.3) and (1.9)–(1.11) satisfy
condition (1.18). In that case, we were able to get estimates of the solution for arbitrary
t 6 +∞. In this Section, we obtain a priori estimates for the solution and investigate its
stability when condition (1.18) is not satisfied. In this case, we get estimates only for the
solution for finite time T < +∞. To obtain the bound of blow-up time, we can use relation
(1.17). But in this case, this bound will be rough. In particular, when diffusion is absent
(k1 = 0, λ = 0) from (1.17) it follows that the solution can blow up immediately at t > 0.
So we use a different technique based on the Bihari lemma [1].
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Lemma 4.1. Let the nonnegative function v = v(t) satisfy for all t ∈ [0, T ] the following
relations:

dv

dt
6 avq, v(0) = v0, (4.1)

where a is a positive constant. Then for t ∈ [0, Tcr) the following inequality holds:

v(t) 6
v0(

1− (q − 1)avq−1
0 t

)1/(q−1)
, (4.2)

where
Tcr =

1

(q − 1)avq−1
0

. (4.3)

4.1. A priori estimates of the solution

First, we obtain the a priori estimates for the solutions of problems (1.1)–(1.3) and (1.9)–
(1.11) when condition (1.18) is not satisfied.

Theorem 4.1. If conditions (1.18) are not satisfied, then for the solutions of problems
(1.1)–(1.3) and (1.9)–(1.11), if any, the following estimates hold for t ∈ [0, T

(1)
cr ):

∥∥u(t)
∥∥
A 6

λ1/(2(p−1))‖u0‖A(
λ− 0.5(p− 1)c2γ2(p−1)‖u0‖2(p−1)

A t
)1/(2(p−1))

, (4.4)

∥∥ũ(t)
∥∥
A 6

λ1/(2(p−1))‖ũ0‖A(
λ− 0.5(p− 1)c2γ2(p−1)‖ũ0‖2(p−1)

A t
)1/(2(p−1))

, (4.5)

where

T (1)
cr =

2λ

(p− 1)c2γ2(p−1) max
{
‖u0‖2(p−1)

A ,‖ũ0‖2(p−1)
A

} . (4.6)

Proof. Applying to the right-hand side of identity (1.20) the Schwarz and Cauchy in-
equalities and estimates (1.6) and (1.8), we have

2c
(
u|u|p−1 ,Au

)
L2(Ω)

6 2c
∥∥∥u|u|p−1

∥∥∥
L2(Ω)
‖Au‖L2(Ω) 6 2c‖u‖p−1

C(Ω)‖u‖L2(Ω)‖Au‖L2(Ω)

6 2
cγp−1

√
λ
‖u‖pA‖Au‖L2(Ω) 6 2

cγp−1

√
λ

(
ε‖u‖2p

A +
1

4ε
‖Au‖2

L2(Ω)

)
.

Substituting the last bound into identity (1.20) and choosing ε = cγp−1

4
√
λ
, we get

d‖u‖2
A

dt
6
c2γ2(p−1)

2λ
‖u‖2p

A .

Hence, by Lemma 4.1 we obtain estimate (4.4). Inequality (4.5) is proved in the same
way.
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Theorem 4.1 yields the estimate of the solution of the initial-boundary value problem
(1.1)–(1.3) for the finite time T (1)

cr defined by relation (4.6) when the solution can blow up.
If the solution of problem (1.1)–(1.3) goes to infinity, then the lower bound of the blow-up
time is given by (4.6), i.e., the blow-up time Tbu satisfies the inequality Tbu > T

(1)
cr .

From 4.1 we have the following

Corollary 4.1. For t ∈ [0, T
(1)
cr −δ] the solutions of problems (1.1)–(1.3) and (1.9)–(1.11)

are bounded in the norm of HA and the following estimates hold:

∥∥u(t)
∥∥
A 6 c2 and

∥∥ũ(t)
∥∥
A 6 c2, c2 = 2

(
2m

p/2
1 π

δ(p− 1)cl(p+1)/2

)1/(p−1)

. (4.7)

This corollary shows the finiteness of the solution of problem (1.1)–(1.3) on a finite time
interval. Below Corollary 4.1 will used to obtain the stability estimates.

4.2. Stability of the solution

Now consider problem (1.22)–(1.24) for the perturbation of the solution.

Theorem 4.2. If conditions (1.18) are not satisfied, then for t ∈ [0, T
(1)
cr −δ1] the solution

of problem (1.1)–(1.3), if any, is stable in the sense of the initial data, and for its perturbation
the following estimate holds:∥∥ũ(t)− u(t)

∥∥
A 6 eµt‖ũ0 − u0‖A , µ =

p2c2c2
2l
p+1

22p−1mp
1π

2
. (4.8)

Proof. Applying to the right-hand side of identity (1.28) relations (1.29) and taking into
account (1.6)–(1.8) and Corollary 4.1, we get

2pc
(
P(u, ũ)ū,Aū

)
L2(Ω)

6 2
pcγp−1

√
λ

c2‖ū‖A‖Aū‖L2(Ω) .

Hence, using the Cauchy inequality, we have

2pc
(
P(u, ũ)ū,Aū

)
L2(Ω)

6 2
pcc2γ

p−1

√
λ

(
ε‖ū‖2

A +
1

4ε
‖Aū‖2

L2(Ω)

)
.

Substituting the last relation into identity (1.28) and choosing ε = pcc2γp−1

4
√
λ

, we obtain

d‖ū‖2
A

dt
6

(pcc2)2γ2(p−1)

2λ
‖ū‖2

A ,

whence the statement of the theorem follows.

5. Stability of the finite-difference scheme when the solution blows up

5.1. A priori estimates of the stability when the diffusion degenerates

If conditions (2.11) are not satisfied, then the solution can increase indefinitely in a finite
time. In this case, the corresponding a priori estimates, expressing finiteness of the solution
of the finite-difference scheme and its stability, can only be proved for some finite time
t 6 Tcr.

Below we need a grid analog of the Bihari inequality [4].



Well-posedness and blow up for semilinear parabolic equations and numerical methods 407

Lemma 5.1. Let m > 1 and the following inequalities be satisfied:

0 6 v0 6 c (c > 0), vn 6 c+
n−1∑
k=0

akv
m
k , (n = 1, 2, . . . ), (5.1)

where sequences vk > 0, ak > 0 (k = 0, 1, 2, ...). Then the following inequality holds:

vn 6
c(

1− (m− 1)cm−1
∑n−1

k=0 ak

) 1
m−1

, (n = 1, 2, . . . ), (5.2)

provided that
n−1∑
k=0

ak <
1

(m− 1)cm−1
. (5.3)

Theorem 5.1. Let

T < min
{
Tcrh, T̃crh

}
, Tcrh =

1

c5hc6h

, T̃crh =
1

c5hc̃6h

, (5.4)

c5h =
c2

3hλh(p− 1)

2
, c6h =‖u0‖2(p−1)

Ah
, c̃6h =‖ũ0‖2(p−1)

Ah
. (5.5)

Then for the solutions of the finite-difference problems (2.1), (2.2) and (2.4), (2.5) the fol-
lowing a priori estimates hold:

‖yn‖Ah 6
‖u0‖Ah

(1− c5hc6htn)
1

2(p−1)

, n = 0, 1, . . . , N0, (5.6)

‖ỹn‖Ah 6
‖ũ0‖Ah

(1− c5hc̃6htn)
1

2(p−1)

, n = 0, 1, . . . , N0. (5.7)

Proof. In the energy inequality (2.13) we estimate the inner product from the right-hand
side using the Schwarz and Cauchy inequalities and embedding (2.8),(2.9)

2τc
(
y|y|p−1 , Ahŷ

)
h
6 2τ‖Ahŷ‖2 +

τc2
3hλh
2
‖y‖2p

Ah
.

Substituting the last estimate into (2.13), we get the following recurrence relation:

∥∥yn+1
∥∥2

Ah
6‖yn‖2

Ah
+ τc5h‖y‖2p

Ah
6 . . . 6

∥∥u0
∥∥2

Ah
+ c5h

n∑
k=0

τ
∥∥∥yk∥∥∥2p

Ah
. (5.8)

Now, using Lemma 5.1 with vn =‖yn‖2
Ah
, c =‖u0‖2

Ah
, ak = τc5h, m = p, we obtain estimate

(5.6). Inequality (5.7) is proved in the same way.

Now suppose that the stronger condition holds

T <
1− δ−2(2p−1)

c5hc̄6h

, δ > 1. (5.9)

In this case, estimates (5.6) and (5.7) are the form of

‖yn‖Ah 6 δ‖u0‖Ah = c7h, ‖ỹn‖Ah 6 δ‖ũ0‖Ah = c̃7h. (5.10)
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Theorem 5.2. Let condition (5.9) be satisfied. Then the finite-difference scheme (2.1)–
(2.2) is ρ-stable in th sense of the initial data and for all t ∈ ω̄τ the following estimate
holds: ∥∥ỹ(t)− y(t)

∥∥
Ah

6 eTc8h‖ũ0 − u0‖Ah . (5.11)

Proof. Consider again the energy identity (2.21). The inner product from the right-hand
side of (2.21) is estimated as follows:

2τcp
(
|y + θȳ|p−1 ȳ, Ah ˆ̄y

)
h
6 2τ

∥∥Ah ˆ̄y
∥∥2

h
+ τc8h‖ȳ‖2

Ah
, (5.12)

where c8h =
(cpc̄p−1

7h )
2

2λh
, c̄7h = max {c7h, c̃7h}. Substituting estimate (5.12) into the energy

identity (5.12), we obtain the relation∥∥ˆ̄y
∥∥2

Ah
6 (1 + 2τc8h)‖ȳ‖2

Ah
,

which can be rewritten in the form∥∥ȳn+1
∥∥
Ah

6 eτc8h‖ȳn‖Ah 6 ... 6 ec8hT‖ū0‖Ah .

6. Stability of the solution of the nonhomogeneous semilinear parabolic
equation

This question is very important for two reasons. Firstly, the initial-boundary value problem
with nonzero boundary conditions is reduced to problems for such equations. The influence
of such boundary conditions on the generation of blowing-up solutions is an interesting
problem and deserves careful consideration. Secondly, only from the estimates of stability in
the sense of the right-hand side and consistency of the scheme it follows that the approximate
solution converges to an exact one (Lax theorem). Note that even if the difference scheme
is homogeneous, the problem for error of the method always contains a nonhomogeneous
equation. In this case, the right-hand side is the truncation error. To be definite, assume
that p = 3.

Now we consider the following initial-boundary value problem for the nonhomogeneous
semi-linear parabolic equation:

∂u

∂t
=

∂

∂x

(
k(x)

∂u

∂x

)
+ cu3 + f(x, t), f(x, t) > 0, x ∈ Ω, 0 < t 6 T, (6.1)

u(0, t) = u(l, t) = 0, 0 6 t 6 T, (6.2)
u(x, 0) = u0(x), x ∈ Ω̄. (6.3)

Together with (6.1)–(6.3) we consider the problem with perturbed initial data and the right-
hand side

∂ũ

∂t
=

∂

∂x

(
k(x)

∂ũ

∂x

)
+ cũ3 + f̃(x, t), f̃(x, t) > 0, x ∈ Ω, 0 < t 6 T, (6.4)

ũ(0, t) = ũ(l, t) = 0, 0 6 t 6 T, (6.5)
ũ(x, 0) = ũ0(x), x ∈ Ω̄. (6.6)
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As before, assume that conditions (1.4), (1.5), (1.12) are satisfied and

max

{
max
0<t6T

∥∥f(t)
∥∥
L2(Ω)

, max
0<t6T

∥∥∥f̃(t)
∥∥∥
L2(Ω)

}
6 F. (6.7)

In this case, for some additional conditions (to be formulated below) we obtain the global
estimates of the solutions of problems (6.1)–(6.3) and (6.4)–(6.6).

6.1. A priori estimates for arbitrary t ∈ [0,+∞]

To obtain the estimates for any t ∈ [0,+∞], we need the following

Lemma 6.1. Let v(t) be a nonnegative function and a, b, and r be positive constants.
Suppose that for t ∈ [0, T ], where T 6 +∞, the following relation is satisfied:

dv

dt
6 av2 − bv + r, v(0) = v0. (6.8)

Under the conditions

D2 = b2 − 4ar > 0 (6.9)

and

2av0

b+D
6 1, (6.10)

the following inequality holds for any t ∈ [0, T ]:

v(t) 6
b+D

2a
. (6.11)

Proof. Consider the Cauchy problem for the Riccati equation

dw

dt
= aw2 − bw + r, (6.12)

w(0) = v0. (6.13)

According to the Chaplygin comparison theorem, v(t) 6 w(t).
The solution of the Cauchy problem (6.12)–(6.13) is given by

w(t) = w1 +
e−DtD (v0 − w1)

D − a (v0 − w1) (1− e−Dt)
, w1 =

b+D

2a
.

Taking into account condition (6.10), from the last relation we get estimate (6.11).

We use Lemma 6.1 to prove the following

Theorem 6.1. Let the solutions of problems (6.1)–(6.3) and (6.4)–(6.6) exist. If the
input data of problems (6.1)–(6.3) and (6.4)–(6.6) satisfy the relations

λ2 − 24cγ2F 2 > 0 (6.14)
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and

12cγ2 max
{
‖u0‖2

A ,‖ũ0‖2
A

}
λ+

√
λ2 − 24cγ2F 2

6 1, (6.15)

then the solutions of problems (6.1)–(6.3) and (6.4)–(6.6) are bounded for any t ∈ [0, T ] and
the following estimates holds:

‖u‖2
A 6 c3, ‖u‖2

A 6 c3, c3 =
λ+

√
λ2 − 24cγ2F 2

12cγ2
. (6.16)

Proof. Multiplying both sides of equation (6.8) by 2Au and integrating the result over
Ω, we obtain the following energy identity:

d‖u‖2
A

dt
+ 2‖Au‖2

L2(Ω) = 2c
(
u3,Au

)
L2(Ω)

+ 2 (f,Au)L2(Ω) . (6.17)

To estimate the first term of the right-hand side of (6.17), we use (1.21) with p = 3

2c
(
u3,Au

)
L2(Ω)

6 6cγ2‖u‖4
A . (6.18)

Applying the Schwarz and Cauchy inequalities to the second term of the right-hand side
of (6.17), we have

2 (f,Au)L2(Ω) 6 2‖f‖L2(Ω)‖Au‖L2(Ω) 6 2

(
ε‖f‖2

L2(Ω) +
1

4ε
‖Au‖2

L2(Ω)

)
.

Substituting the last inequality and (6.18) into (6.16), we get

d‖u‖2
A

dt
+ 2

(
1− 1

4ε

)
‖Au‖2

L2(Ω) 6 6cγ2‖u‖4
A + 2ε‖f‖2

L2(Ω) . (6.19)

Choosing in the last relation ε = 1/2 and taking into account estimates (1.6) and (6.7), we
obtain the inequality

d‖u‖2
A

dt
6 6cγ2‖u‖4

A − λ‖u‖
2
A + F 2. (6.20)

Let v = ‖u‖2
A, a = 6cγ2, b = λ, r = F 2. Then from (6.20) and Lemma 6.1 we get the

statement of the theorem.

Note that conditions (6.7) determine either the finite or the infinite interval [0, T ], for
which estimates (6.16) hold.

In the case of homogeneous equations (6.1) and (6.4), i.e., when f(x, t) ≡ 0 and f̃(x, t) ≡
0, and, consequently, F = 0, condition (6.15) and estimates (6.16) are reduced to (1.18) and
(1.19), respectively, with p = 3.
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6.2. Global stability of the solution in the sense of the initial data and the right-
hand side

Consider the following problem for the perturbation of the solution:
∂ū

∂t
=

∂

∂x

(
k(x)

∂ū

∂x

)
+ 2P(u, ũ)ū+ f̄(x, t), x ∈ Ω, 0 < t 6 T, (6.21)

ū(0, t) = ū(l, t) = 0, 0 < t 6 T, (6.22)
ū(x, t) = ū0(x) = ũ0(x)− u0(x), x ∈ Ω̄, (6.23)

where f̄(x, t) = f̃(x, t)− f(x, t).

Theorem 6.2. Let conditions (6.14) and (6.15) be satisfied and the solutions of problems
(6.1)–(6.3) and (6.4)–(6.6) be existent. Then the solution of problem (6.1)–(6.3) is stable in
the sense of the initial data and the right-hand side for all t ∈ [0, T ] and its perturbation
satisfies the following estimate:

∥∥ũ(t)− u(t)
∥∥2

A 6‖ũ0 − u0‖2
A + 2

t∫
0

∥∥∥f̃(s)− f(s)
∥∥∥2

L2(Ω)
ds. (6.24)

Proof. Multiplying both sides of equation (6.21) by 2Aū and integrating the result over
Ω, we get the following energy identity:

d‖ū‖2
A

dt
+ 2‖Aū‖2

L2(Ω) = 4c
(
P(u, ũ)ū,Aū

)
L2(Ω)

+ 2
(
f̄ ,Aū

)
L2(Ω)

. (6.25)

For the first term of the right-hand side of identity (6.25) estimate (1.29) holds. Thus, using
(1.6)–(1.8), (6.16) and the Schwarz and Cauchy inequalities, we get

4c
(
P(u, ũ)ū,Aū

)
L2(Ω)

6
4cc3γ

2

√
λ

(
ε1‖ū‖2

A +
1

4ε1

‖Aū‖2
L2(Ω)

)
(6.26)

Now estimate the second term, using the Schwarz and Cauchy inequalities

2
(
f̄ ,Aū

)
L2(Ω)

6 2
∥∥f̄∥∥

L2(Ω)
‖Aū‖L2(Ω) 6 2ε2

∥∥f̄∥∥2

L2(Ω)
+

1

2ε2

‖Aū‖2
L2(Ω) . (6.27)

Substituting (6.26), (6.27), and (1.7) into (6.25) and choosing

ε1 =
2cc3γ

2

√
λ

, ε2 = 1, (6.28)

we get the inequality

d‖ū‖2
A

dt
+

(
λ− 8(cc3γ

2)2

λ

)
‖ū‖2

A 6 2
∥∥f̄∥∥2

L2(Ω)
. (6.29)

Taking into account the values of c3, γ and λ, we obtain the following estimate:

λ− 8(cc3γ
2)2

λ
>

7

9
λ > 0,

This estimate and (6.29) lead to the statement of the theorem.

Estimate (6.24) expresses the stability of the solution of problem (6.1)–(6.3) in the sense
of the initial data and the right-hand side. Moreover, if the right-hand sides of equations
(6.1) and (6.4) equal to zero, then estimate (6.24) is consistent with the estimate of the
stability in the sense of the initial data (1.27).
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6.3. A priori estimate of the solution when it can blow up

Here we obtain the a priori estimate for the solution of problem (6.1)–(6.3) in the general
case, if conditions (6.14) and (6.15) are not satisfied. We need the following

Lemma 6.2. Let the nonnegative function v satisfy the following relations:
dv

dt
6 av2 + r, v(0) = v0, (6.30)

r = const > 0, a = const > 0. Then for t ∈ [0, T
(r)
cr )

v(t) 6
v0 + g1 tg (g2t)

1− g1 tg (g2t) v0

, g1 =
√
r/a, g2 =

√
ra, (6.31)

where
T (r)

cr =
π

2g2

− arctg (g1v0) . (6.32)

Proof. Consider the solution of the problem
dw

dt
= aw2 + r, w(0) = v0 (6.33)

Then v(t) 6 w(t). The solution of problem (6.33) is given by

w(t) = g1 tg
(
g2t+ arctg (g1v0)

)
.

Hence, recalling the representation of the tangent of the sum of angles, we get the statement
of the lemma.

Choosing in (6.19), from the proof of Theorem 6.2 ε = 1/4 and denoting v(t) =
∥∥u(t)

∥∥2

A,
a = 6cγ2, r = F 2, we get an inequality of the form of (6.30), whence the following estimate
of the solution of problem (6.1)–(6.3) is obtained:

‖u‖2
A 6
‖u0‖2

A + F/(
√

6cγ) tg
(√

6cFγt
)

1−
√

6cγ/F tg
(√

6cFγt
)
‖u0‖2

A

. (6.34)

This estimate holds for 0 6 t < T
(r)
cr .

7. Stability of the finite-difference schemes for the nonhomogeneous
equation

On the grid ω̄ introduced above we approximate the differential problem (6.1)–(6.3) by the
difference problem

yt + Ahŷ = cŷy2 + ϕ, y(x, 0) = u0(x), x ∈ ω̄h, ŷ0 = 0, ŷN = 0, (7.1)

where ϕ is a certain stencil functional on f [20]. In particular, it can be chosen to be
ϕ = f . Perturbing the input data (the initial condition and the right-hand side) in the
finite-difference scheme, we get the perturbed problem

ỹt + Ah ˆ̃y = cˆ̃yỹ2 + ϕ̃, ỹ(x, 0) = ũ0(x), x ∈ ω̄h, ˆ̃y0 = 0, ˆ̃yN = 0. (7.2)

Now we obtain the a priori estimates expressing for any t ∈ ω̄τ , T <∞ the finiteness
of the difference solutions y, ỹ in the grid norm ‖·‖Ah .
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Theorem 7.1. Suppose that the input data satisfy the condition

c3h

‖u0‖2
Ah

+
∑
t∈ωτ

τ

δ2
3

∥∥ϕ (t)
∥∥2

h

+
δ2

3

2
6 1, δ3 = const > 0. (7.3)

c3h

‖ũ0‖2
Ah

+
∑
t∈ωτ

τ

δ2
3

∥∥ϕ̃ (t)
∥∥2

h

+
δ2

3

2
6 1. (7.4)

Then for any t ∈ ω̄τ the solutions of the finite-difference schemes (7.1) and (7.2) satisfy the
following a priori estimates:

max
t∈ω̄τ

∥∥y(t)
∥∥2

Ah
6‖u0‖2

Ah
+

1

δ2
3

∑
t∈ωτ

τ
∥∥ϕ (t)

∥∥2

h
= c9h, (7.5)

max
t∈ω̄τ

∥∥ỹ(t)
∥∥2

Ah
6‖ũ0‖2

Ah
+

1

δ2
3

∑
t∈ωτ

τ
∥∥ϕ̃ (t)

∥∥2

h
= c̃9h. (7.6)

Proof. Taking the inner product of equation (7.1) with 2τAhŷ, we obtain the energy
inequality

τ 2‖yt‖2
Ah

+ 2τ‖Ahŷ‖2 +‖ŷ‖2
Ah

=‖y‖2
Ah

+ 2τ
(
cy2ŷ + ϕ,Ahŷ

)
h
.

Using the Schwarz inequality and the grid embedding (2.8),(2.9), we get the estimate

2τ
(
cy2ŷ, Ahŷ

)
6 2τc‖y‖2

Ch
‖ŷ‖h‖Ahŷ‖h 6 2τc3h‖y‖2

Ah
‖Ahŷ‖2

h . (7.7)

Let n = 0. Then, by Theorem 7.1 the last inequality can be rewritten in the form∥∥y1
∥∥2

Ah
+ τ
∥∥δ3Ahy

1 − δ−1
3 ϕ0

∥∥2

h
6
∥∥y0
∥∥2

Ah
+
τ

δ2
3

∥∥ϕ0
∥∥2

h
.

Hence, we get ∥∥y1
∥∥2

Ah
6‖u0‖2

Ah
+
τ

δ2
3

∥∥ϕ0
∥∥2

h
.

By induction we obtain the required estimates (7.5) and (7.6).

Note that the finite interval t ∈ [0, T ] (where estimates (7.5), (7.6) hold) is determined
by conditions (7.3) and (7.4).

Further we study the stability of the finite-difference scheme. Subtracting equation (7.1)
from (7.2) and applying identity (2.14), we obtain the following problem for the perturbation
of the solution ȳ:

ȳt + Ah ˆ̄y = c
((
l1h + y2

)
ˆ̄y + τ l1hȳt

)
+ ϕ̃− ϕ, (7.8)

ȳ(x, 0) = ũ0(x)− u0(x), ȳn+1
0 = yn+1

N = 0, l1h = ˆ̃y (ỹ + y) . (7.9)

Let us prove the following
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Theorem 7.2. Suppose that the input data of the problem considered satisfy conditions
(7.3), (7.4) and the inequality

c10h +
τλhc10h

2
+ ε 6 1, c10h =

cγ2c̄9h

λh
, c̄9h = max {c9h, c̃9h} . (7.10)

Then the finite-difference scheme is stable in the sense of the initial data and right-hand side
in the energy norm ‖·‖Ah. Moreover, for any t ∈ [0, T ] the following estimate holds:

max
t∈ω̄τ

∥∥ỹ(t)− y(t)
∥∥2

Ah
6‖ũ0 − u0‖2

Ah
+

1

2ε

∑
t∈ωτ

τ
∥∥ϕ(t)− ϕ̃(t)

∥∥2

h
, (7.11)

where ε > 0 is a constant satisfying condition (7.10).

Proof. Taking the inner product of both sides of (7.8) with 2τAh ˆ̄y, we obtain the energy
identity

τ 2‖ȳt‖2
Ah

+ 2τ
∥∥Ah ˆ̄y

∥∥2

h
+
∥∥ˆ̄y
∥∥2

Ah
=‖ȳ‖2

Ah
+ 2τc

((
l1h + y2

)
ˆ̄y, Ah ˆ̄y

)
h

+ 2τ 2c
(
l1hȳt, Ah ˆ̄y

)
h

+ 2τ
(
ϕ̃− ϕ,Ah ˆ̄y

)
h
.

(7.12)

Similarly to (2.22), (2.23) we get the estimates

2τc
((
l1h + y2

)
ˆ̄y, Ah ˆ̄y

)
h
6 2τc10h

∥∥Ah ˆ̄y
∥∥2

h
,

2τ 2c
(
l1hȳt, Ah ˆ̄y

)
h
6 τ 2‖yt‖2

Ah
+ τ 2λhc

2
10h

∥∥Ah ˆ̄y
∥∥2

h
.

Applying the Schwarz and Cauchy inequalities to the last term on the right-hand side of
(7.12), we obtain

2τ
(
Ah ˆ̄y, ϕ̃− ϕ

)
h
6 2τε

∥∥Ah ˆ̄y
∥∥2

h
+

τ

2ε
‖ϕ̃− ϕ‖2

h . (7.13)

Substituting the estimates obtained in (7.12) and taking into account the conditions of the
theorem, we get the recurrence relation∥∥ȳn+1

∥∥2

Ah
6‖ȳn‖2

Ah
+

τ

2ε
‖ϕ̃n − ϕn‖2

h . (7.14)

Hence we obtain the required estimate (7.11).

When conditions (7.10) are not satisfied, the solution can go to infinity for a finite time.
Now we obtain the a priori estimate for this case. Below we need the following lemma
regarding the nonlinear recurrence inequality (discrete analog of Lemma 6.2).

Lemma 7.1. Let the grid function vn = v (tn) > 0 given on the grid ω̄τ satisfy the
inequality

vn+1 − vn

τ
6 avnvn+1 + r, v0 = v0, (7.15)

where a, r are positive constants. Then

vn 6
v0 + g1 tg (g2tn)

1− v0g1 tg (g2tn)
, n = 0, 1, ..., N0. (7.16)

for all 0 6 tn < T
(r)
cr ,

T (r)
cr =

π

2g2

− arctg (v0g1) , g1 =
√
r/a, g2 =

√
ra. (7.17)
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Proof. Write inequality (7.15) in the following form:

vn+1 − vn

1 + a
r
vnvn+1

6 τr. (7.18)

Define
√
a/rvn = tg γn. Then taking into account the representation of the tangent of the

difference of angles from (7.18), we get

tg
(
γn+1 − γn

)
6 τr/g1.

Hence,
γn+1 6 γn + arctg (g2τ) 6 γ0 + n arctg (g2τ) 6 γ0 + g2tn+1. (7.19)

Since γn = arctg (g1v
n), from (7.19) we obtain

arctg
(
g1v

n+1
)
6 arctg

(
g1v

0
)

+ g2tn+1.

Hence we get inequality (7.16).

Remark 7.1. Note that the discrete estimate (7.17) of the time of the possible blow up
of the solution is consistent with differential (6.32) due to the fact that the grid inequality
(7.15) is exactly consistent with differential (6.30). Indeed, in [14] was shown that the
difference scheme

vn+1 − vn

τ
=

 1

vn+1 − vn

vn+1∫
vn

dv

f(v)


−1

, v0 = v0, (7.20)

is exactly consistent with the problem

dv

dt
= f(v), v(0) = v0. (7.21)

Letting in (7.20) f(v) = av2 + r, we obtain the finite-difference equation vn+1 − vn =(
avnvn+1 + r

)
τ .

Now we prove the following

Theorem 7.3. Suppose that the input data of the problem satisfy conditions (7.3). Then
for all t ∈ ω̄τ ,

T < T (r)
cr , a = 4cγ2, r =

1

2
max
t∈ω̄τ

∥∥ϕ(t)
∥∥2

h
,

for the solution of the finite-difference scheme (7.1) the following estimate holds:

∥∥y(t)
∥∥2

Ah
6
‖u0‖2

Ah
+
√
r/a tg

(√
art
)

1−‖u0‖2
Ah

√
r/a tg

(√
art
) . (7.22)

Proof. Take the inner product of both sides of equation (7.1) with 2τAhŷ and apply the
formula of summing by parts (the first difference Green formula [20])(

(ayx̄)x , v
)

= − (ayx̄, vx̄] .
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We obtain the following energy inequality:

τ 2‖ȳt‖2
Ah

+2τ
∥∥Ah ˆ̄y

∥∥2

h
+
∥∥ˆ̄y
∥∥2

Ah
=‖ȳ‖2

Ah
−2τc

(
y2

(−1)ŷx̄ + ŷy0,5yx̄, aŷx

]
h

+2τ (ϕ,Ahŷ)h . (7.23)

Here y(−1) = yni−1. Using embedding (2.8) and (2.9) and the Schwarz and Cauchy inequalities,
we get

−2τc
(
y2

(−1)ŷx̄ + ŷy0,5yx̄, aŷx

]
h
6 4τcγ2‖y‖2

Ah
‖ŷ‖2

h ,

2τ (ϕ,Ahŷ)h 6
τ

2
‖ϕ‖2

h + 2τ‖Ahŷ‖2
h .

Substituting the last relation into (7.22), we obtain an inequality of the form (7.15), where
vn = ‖yn‖2

Ah
, v0 = ‖u0‖2

Ah
. Finally, applying Lemma 7.1 we complete the proof of the

theorem.

8. Monotonicity of the difference scheme for the nonhomogeneous
equation

Let us obtain the problem for perturbation (7.8)–(7.9) in the form (3.1), where Ai = Bi = τ
h2 ;

Ci = 1 + 2τ
h2 − τc

(
l1h + y2

)
− τcl1h; Fi = yni (1− τcl1h) + τ (ϕ̃− ϕ).

Using Lemma 3.1, we show that scheme (7.8), (7.9) is conditionally stable up to a time
T < T

(r)
cr .

Theorem 8.1. Under the condition 1 − τc
(
2l1h + y2

)
> 0 the difference scheme (7.8),

(7.9) is stable.

The proof is similar to that of Theorem 3.1.

9. Estimates of the solution of the initial-boundary value problem
for a multidimensional semilinear parabolic equation

Let Ω =
{
x = (x1, x2, . . . , xn) ∈ Rn : 0 < xk < lk

}
, ∂Ω be the boundary of Ω and Ω̄ = Ω∪∂Ω

be the closure of Ω. InQT = Ω×(0, T ], consider the following initial-boundary value problem:

∂u

∂t
= div

(
k(x)gradu

)
+ cu|u|p−1 , (x, t) ∈ QT , (9.1)

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ], (9.2)
u(x, 0) = u0(x), x ∈ Ω̄. (9.3)

Suppose that

c = const > 0, p > 1, (9.4)
0 < m1 6 k(x) 6 m2, x ∈ Ω. (9.5)

Define the operator A by
Au = −div

(
k(x)gradu

)
.
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This operator takes the set D(A) = H̊1(Ω) ∩H2(Ω) to L2(Ω). It can be shown that for the
linear self-adjoint operator A inequalities (1.6) and (1.7) hold with the constant

λ = m1π
2

n∑
k=1

1

l2k

Introduce a Hilbert space HA = H̊1(Ω) with the inner product (v, w)A = (Av, w)L2(Ω).
Suppose that

u0(x) ∈ D(A). (9.6)

It is known that for any function u ∈ H̊1(Ω) the following inequality holds [11]:

‖u‖L 2q
q−2

(Ω) 6M‖gradu‖L2(Ω) (9.7)

where M = β1mes
1
n
− 1
qΩ = β1

(
n∏
k=1

lk

) 1
n
− 1
q

and

q > n, β1 =
2(n− 1)

n− 2
for n > 3,

q > 2, β1 =
2(q − 1)

q − 2
for n = 2,

q > 2, β1 = 2 for n = 1.

(9.8)

Moreover, it is clear that
‖u‖2

A > m1‖gradu‖2
L2(Ω) . (9.9)

To obtain the a priori estimates for the solution of problem (9.1)–(9.3), let us multiply
both sides of equation (9.1) by 2Au and integrate the result over Ω. Thus, we get the
following energy identity:

d‖u‖2
A

dt
+ 2‖Au‖2

L2(Ω) = 2c
(
u|u|p−1 ,Au

)
L2(Ω)

. (9.10)

Applying the Schwarz and Cauchy inequalities to the right-hand side of (9.10), we obtain

2c
(
u|u|p−1 ,Au

)
L2(Ω)

6 2c

(
ε
∥∥∥u|u|p−1

∥∥∥2

L2(Ω)
+

1

4ε
‖Au‖2

L2(Ω)

)
. (9.11)

It is obvious that ∥∥∥u|u|p−1
∥∥∥2

L2(Ω)
=‖u‖2p

L2p(Ω) . (9.12)

Substituting (9.11) and (9.12) into (9.10) and using (9.7)–(9.9), we get

d‖u‖2
A

dt
+ 2

(
1− c

4ε

)
‖Au‖2

L2(Ω) 6 2c

(
M
√
m1

)2p

ε‖u‖2p
A , (9.13)

where
1 < p 6

n

n− 2
, for n > 3,

p > 1, for n= 1, 2.
(9.14)
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Let us denote v(t) =
∥∥u(t)

∥∥2

A, q = p, a = 2c
(
M/
√
m1

)2p
ε. In (9.13), we set ε = c/2.

Taking into account (1.7) and denoting b = λ, from (9.13), we get the relation of the form
(1.13). Using Lemma 1.1, we obtain that under the condition

c2β2p
1

(
n∏
k=1

lk

)2p/n−p+1

‖u0‖2(p−1)
A

mp+1
1 π2

n∑
k=1

n∏
i=1
i 6=k

l2i

6 1 (9.15)

the solution of problem (9.1)–(9.3) is bounded in the norm of HA for all t ∈ [0, T ], T 6 +∞,
and satisfies the inequality ∥∥u(t)

∥∥
A 6‖u0‖A . (9.16)

If condition (9.15) is not satisfied then we use Lemma 4.1 and choose ε = c/4 in (9.13).
In this case, for the solution of problem (9.1)–(9.3) the following estimate holds:

∥∥u(t)
∥∥
A 6

‖u0‖A1− 0.5(p− 1)c2β2p
1

(
n∏
k=1

lk

)2p/n−p+1

m−p1 ‖u0‖2(p−1)
A t

1/(2(p−1))
(9.17)

for t ∈ [0, Tcr). Here Tcr is determined by (4.3). And if the solution blows up, then the
blow-up time satisfies the inequality Tbu > Tcr.

10. Numerical results

Since the problem is nonlinear, the computing experiment is the only way to test the theo-
retical estimates of the blow-up time.

In rectangular Q̄T with l = π, consider the following initial-boundary value problem with
a constant diffusion coefficient k(x) = k = 1:

∂u

∂t
=
∂2u

∂x2
+ cu|u| , (10.1)

u(0, t) = u(l, t) = 0; u(x, 0) = 2 sinx. (10.2)

To solve (10.1),(10.2) approximately, we use the finite-difference scheme

yt + Ahŷ = cy|y| , (10.3)
y(x, 0) = u0(x), x ∈ ω̄h, ŷ0 = 0, ŷN = 0. (10.4)

First, we choose c = 0.2, when the conditions of Theorems 1.1 and 2.1 are satisfied.
Figure 10.1(a) presents the function yni for various times. It is seen that the solution is
bounded. This fact is consistent with the a priori estimate (2.12) and Remark 1.1.

If c = 1.18 the conditions of Theorems 1.1 and 2.1 are not satisfied and the solution can
blow up in a finite time. In Section 4, for the differential solution the lower bound of the
blow-up time (4.6) is obtained. For problem (10.1), (10.2), TPDE = 0.291. For the difference
problem the lower bound of the blow-up time is determined by (5.4) and TFDS = 0.265.
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In [12], the upper bound of the blow-up time is obtained for the differential problem
(10.1), (10.2)

TL =
[
(2α + 1)‖u0‖2

L2
/α2(2α + 2)

] [
G (u0)− 1

2
(u0, Au0)

]−1

, (10.5)

where

G(u) =

1∫
0

(
ρpcu|u|p−1 , u

)
dρ =

c

p+ 1
‖u‖p+1

Lp+1
.

The argument α satisfies the relation 2(α + 1)G(u) =
(
u, cu|u|p−1

)
, whence we get

α = (p + 1 − 2c)/(2c). For problem (10.1),(10.2) at c = 1, 18 the condition of Theorem 1
from [12] is satisfied

G(u0)− 1

2
(u0, Au0) = 1, 054 > 0.

This condition ensures that the solution blows up. Substituting the values of the arguments
into (10.5), we get TL ≈ 49, 175.

(a) (b)

F i g. 10.1. The function yni

Figure 10.1(b) presents the solution of the finite-difference scheme (10.3), (10.4) at the
time Texp = 0.642. One can see from Fig. 10.1(b) that at this time the solution blows up
( [21]).

Thus, for Texp, TPDE, TFDS, TL, the following inequality holds:

TFDS < TPDE < Texp < TL.

This is consistent with the theoretical results, i.e., the solution is bounded until TFDS, and
the blow-up time Texp comes to TL.

Different approaches to the study of the nonlinear differential problems with blow-up
solutions present an interesting problem of minimizing the interval [TPDE, TL].

Remark 10.1. All results can be generalized to the case of initial-boundary value prob-
lems for differential equations of the form

∂u

∂t
=

∂

∂x

(
k(x, t)

∂u

∂x

)
+ c(x, t)u|u|p−1 + f(x, t). (10.6)

In particular, if the coefficients of the equation are continuous with respect to t and ∂k(x,t)
∂t

<
0, then the results remain the same.
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Remark 10.2. If the sufficient stability condition (1.18) is not satisfied, then the solu-
tion can blow up in a finite time. Non-fulfilment of this condition can be due to not only
the small perturbation of the initial condition u0, but also the small perturbation of the
coefficients k(x), c and the interval [0; l]. Since the last parameters for mathematical mod-
eling can be given approximately, an interesting problem arises. This problem concerns the
stability of the solution in the sense of perturbation of the coefficients of the equation and
the domain of the problem. Note also that condition (1.18) connects all the input data of
the problem. This condition can control the well-posedness of the mathematical model.
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