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ON POSITIVITY AND MAXIMUM-NORM

CONTRACTIVITY IN TIME STEPPING

METHODS FOR PARABOLIC EQUATIONS

A.H. SCHATZ1, V. THOMÉE2, AND L.B. WAHLBIN3

Abstract — In an earlier paper the last two authors studied spatially semidiscrete
piecewise linear finite element approximations of the heat equation and showed that,
in the case of the standard Galerkin method, the solution operator of the initial-value
problem is neither positive nor contractive in the maximum-norm for small time, but
that for the lumped mass method these properties hold, if the triangulations are es-
sentially of Delaunay type. In this paper we continue the study by considering fully
discrete analogues obtained by discretization also in time. The above properties then
carry over to the backward Euler time stepping method, but for other methods the
results are more restrictive. We discuss in particular the θ-method and the (0, 2) Padé
approximation in one space dimension.
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1. Introduction

We consider the initial boundary value problem

ut −∆u = 0 in Ω, u = 0 on ∂Ω, for t > 0, with u(0) = v, (1.1)

in a convex polygonal domain Ω ⊂ R2. By the maximum principle the maximum and
minimum of a smooth solution are attained for t = 0. This implies that the solution operator
defined by E(t)v = u(t) is a positive operator in the sense that

if v > 0 in Ω, then E(t)v > 0 in Ω, for t > 0,

and also that E(t) is a (nonstrict) contraction in the maximum-norm, i.e.,

‖E(t)v‖∞ = ‖u(t)‖∞ 6 ‖v‖∞, for t > 0, where ‖v‖∞ = sup
x∈Ω̄

|v(x)|.
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The paper [8] considered the spatially semidiscrete finite element analogue of (1.1) in Sh,
the set of continuous piecewise linear functions on a triangulation Th, to find uh(t) ∈ Sh such
that, with (v, w) =

∫
Ω
vw dx, A(v, w) = (∇v,∇w),

(uh,t, χ) + A(uh, χ) = 0, for χ ∈ Sh, t > 0, with uh(0) = vh ≈ v. (1.2)

Defining the semidiscrete solution operator by Eh(t)vh = uh(t), it was shown that Eh(t) can
essentially neither be a positive operator nor a contraction in ‖ · ‖∞ for all t > 0.

The lumped mass variant of (1.2) was also investigated, i.e., to find ūh(t) ∈ Sh such that

(ūh,t, χ)h + A(ūh, χ) = 0, for χ ∈ Sh, t > 0, with ūh(0) = vh, (1.3)

where (·, ·)h is a specific quadrature version of (·, ·), namely

(v, w)h =
∑
τ∈Th

Qτ,h(v w), with Qτ,h(f) = 1
3

area(τ)
3∑
j=1

f(Pτ,j) ≈
∫
τ

f dx.

In this case it was shown that, for the solution operator defined by Ēh(t)vh = ūh(t), if
the triangulaton Th is essentially of Delaunay type, then Ēh(t) is a positive operator and a
contraction in ‖ · ‖∞ for t > 0.

Our purpose in this paper is to study the corresponding problems of positivity and
maximum-norm contractivity for time discrete versions of the above problems. We begin
by studying time discretization in a more general Banach space framework, following Bolley
and Crouzeix [1] and Kovács [5].

Let B be a Banach space with norm ‖ · ‖, and assume that −A generates a contraction
C0 semigroup E(t) = e−At in B. The semigroup E(t) is then the solution operator of the
abstract initial value problem

u′ + Au = 0, for t > 0, with u(0) = v, (1.4)

and the solution of this problem thus satisfies

‖u(t)‖ = ‖E(t)v‖ 6 ‖v‖, for t > 0.

If B is an ordered Banach space we say that E(t) is positive, or E(t) > 0, if u(t) = E(t)v > 0
for v > 0, where 0 is the zero element of B.

Let r(z) be an A−stable rational function, i.e., with |r(z)| 6 1 for Re z > 0, and assume
in addition consistency, i.e., that r(z) approximates the exponential e−z in the sense that
r(z) = 1− z + O(z2) as z → 0; for brevity we shall call such a rational function A−correct
below. For the time discretization of (1.4), let k be a time step and tn = nk. An approximate
solution at t = tn is then

Un = En
k v, where Ek = r(kA), (1.5)

and we may ask if the time-stepping operator En
k is contractive in B, and/or positive if B is

ordered.
We note that the time stepping operator En

k is contractive for all n > 1 if and only if Ek is
contractive, and positive if and only if Ek is. The most basic example is the backward Euler
method, with r(z) = 1/(1 + z). In this case the contraction property of Ek is immediate. In
fact we have

Ekv = (I + kA)−1v =

∫ ∞
0

e−tE(kt)v dt, for k > 0, v ∈ B, (1.6)
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and hence, if E(t) is a contraction,

‖Ek‖ 6
∫ ∞

0

e−t‖E(kt)‖ dt 6
∫ ∞

0

e−t dt = 1.

If B is ordered, with a closed positive cone B+ = {v ∈ B, v > 0}, then Ek is also positive as
follows at once from (1.6).

We want to ask if these properties carry over to more general rational functions r(z) in
the above framework, and in the concrete cases referred to above.

Consider first the case that B is a Hilbert space H and A is a selfadjoint positive definite,
not necessarily bounded, linear operator with a compact inverse. Then, if {λj}∞j=1 are the
eigenvalues of A and {φj}∞j=1 a corresponding basis of orthonormal eigenfunctions, we have
for the solution operator of (1.4),

E(t)v =
∞∑
j=1

e−λjt(v, φj)φj and ‖E(t)v‖ 6 sup
j
e−λjt ‖v‖ = e−λ1t ‖v‖ 6 ‖v‖,

so that E(t) is a contraction in H. For the corresponding time stepping operator Ek in (1.5)
we have, if |r(λ)| 6 1 for λ > 0, that

Ekv =
∞∑
j=1

r(kλj)(v, φj)φj and ‖Ekv‖ = sup
j
|r(kλj)|‖v‖ 6 ‖v‖, for k > 0,

so that Ek is a contraction for any k > 0. In particular this holds in the L2 norm for the
concrete initial boundary value problem (1.1) and its spatial discretizations by the standard
Galerkin method (1.2) and the lumped mass method (1.3).

However, we shall see that when we consider contractivity in maximum-norm and the
related property of positivity, things are more complicated, and that, in general, these prop-
erties of Ek = r(kA) hold only in exceptional cases.

In Section 2 below we discuss some general results within the framework of the Banach
space B. We first show that if r(z) is bounded for Re z > 0, then we may write

r(z) =

∫ ∞
0

g(t) e−zt dt+ r(∞), with g ∈ L1(R+),

and we say that r(z) is of positive type if g(t) > 0 and r(∞) > 0. In this case Ek = r(kA) is
a contraction if r(0) = 1, and positive if B is ordered with B+ closed.

Unfortunately, for r(z) to be of positive type is exceptional and can only happen for first
order approximations to e−z. If ‖E(t)‖ → 0 as t → ∞ and |r(∞)| < 1, however, Ek is a
contraction for large k, even when r(z) is not of positive type.

In Section 3 we give some examples relating to positivity and contractivity in the Banach
space C0(R) of continuous functions on R which vanish at ±∞, with norm ‖ · ‖∞. For
A = D := d/dx we show that positivity and contractivity for all k > 0 requires r(z) to be
of positive type. If A = −εD2 + D, with ε > 0, then Ek cannot be positive or contractive
for any k > 0, for arbitrarily small ε, unless r(z) is of positive type. For A = −D2 we
give a simple criterion on r(z) which excludes positivity and contractivity of Ek, but also
an example of an r(z) which is not of positive type but for which Ek is both positive and
contractive, for all k > 0.
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In Sections 4, 5, and 6 we then study the positivity and maximum-norm contractivity
of such time discretization operators, applied to the spatially continuous problem (1.1) and
to its spatially semidiscrete standard Galerkin and lumped mass analogues (1.2) and(1.3),
respectively. In each of these sections, as also earlier, we discuss in some detail the θ−method
defined by

rθ(z) =
1− (1− θ)z

1 + θz
=

1

θ

1

1 + θz
− 1− θ

θ
, 0 6 θ 6 1. (1.7)

For the spatially continuous problem we show that, except for the backward Euler method
(θ = 1), Ek = rθ(kA) cannot be positive for any k > 0 and not maximum-norm contractive
for small k. The finite element versions were studied in Fujii [3], where sufficient conditions
for the maximum-principle were given in terms of properties of the triangulation Th. For the
standard Galerkin method it was shown that the maximum-principle holds when Th is of
Delaunay type if k is bounded above and below in a specific way. Since neither positivity nor
contraction holds for the spatially semidiscrete problem, we show here that these properties
also cannot be satisfied for the corresponding time stepping methods, for k small. The
lumped mass method is more advantageous in that a maximum-principle holds for k small
when Th is of Delaunay type. We include versions of these results below.

As an example of an A−correct rational function, which is of higher order than first, we
also consider the (0, 2) Padé approximation of e−z defined by

r(z) = r02(z) =
1

1 + z + 1
2
z2
. (1.8)

We study the corresponding time discrete operator r02(kA), restricting ourselves to one
space dimension, and using uniform meshes in the spatially discrete cases. We shall see
that, even under these restrictive assumptions, the corresponding operator Ek = r02(kA)
is neither positive nor maximum-norm contractive for small k, in any of the three concrete
cases considered, but that these properties hold for larger k.

2. Some results on time stepping in a Banach space framework

We first discuss a representation of a rational function, bounded in the right half-plane of
C, of the infinitesimal generator of a C0 semigroup in a Banach space.

Lemma 2.1. Let r(z) be a rational function, bounded for Re z > 0, and let −A be the
infinitesimal generator of a bounded C0 semigroup E(t) = e−At on the Banach space B. Then
Ek := r(kA) is well defined for k > 0 and we may write

Ek = r(kA) =

∫ ∞
0

g(t)E(kt) dt+ r(∞) I, for k > 0. (2.1)

If {ζj}Jj=1 with multiplicities {mj}Jj=1 are the poles of r(z), then g(t) has the form

g(t) =
J∑
j=1

Pj(t)e
ζjt, (2.2)

where Pj is a polynomial of degree mj − 1.
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Proof. Noting that

1

(z − ζ)n+1
=

∫ ∞
0

1

n!
tne−zt eζt dt, for Re(z − ζ) > 0,

we find by partial fraction decomposition of r(z) that, with g(t) as in (2.2),

r(z) =

∫ ∞
0

e−zt g(t) dt+ r(∞), for Re z > 0. (2.3)

The representation (2.1) then follows by replacing z by kA, and thus e−zt by E(kt), see, e.g.,
[6], p. 20.

For the backward Euler method we have r(z) = 1/(1 + z), and (2.3) holds with g(t) =
e−t, r(∞) = 0, and for rθ(z) defined in (1.7), g(t) = θ−2e−θt and r(∞) = −θ−1(1 − θ). For
r02(z) as in (1.8), we have g(t) = 2e−t sin t, r(∞) = 0, as follows from

r02(z) =
2

(z + 1 + i)(z + 1− i)
= i
( 1

z + 1 + i
− 1

z + 1− i

)
(2.4)

= i

∫ ∞
0

(
e−(z+1+i)t − e−(z+1−i)t) dt = 2

∫ ∞
0

e−zt e−t sin t dt.

We recall that r(z) is said to be of positive type if g(t) > 0, r(∞) > 0. We remark, cf.
[1], that by a well-known theorem of Bernstein this holds if and only if r(x) is completely
monotone on R+, or if (−1)nr(n)(x) > 0 for all n > 0, x ∈ R+.

We now give an upper bound for ‖Ek‖, which shows that if E(t) is a contraction, then
Ek is a contraction if r(z) is of positive type and r(0) = 1, cf. [1], [5].

Theorem 2.1. Let the rational function r(z) satisfy (2.3), and let E(t) be a contraction.
Then we have, for Ek := r(kA),

‖Ek‖ 6
∫ ∞

0

|g(t)|dt+ |r(∞)|, for t > 0. (2.5)

If r(z) is of positive type and r(0) = 1, then Ek is a contraction.

Proof. The inequality (2.5) follows at once from (2.1). If r(z) is of positive type and
r(0) = 1, then (2.3) with z = 0 shows that the right hand side of (2.5) equals 1, and thus
Ek is a contraction.

Following [1] and [5], we also have the following immediate consequence of Lemma 2.1.

Theorem 2.2. Let B be ordered, with its positive cone B+ closed. If E(t) is positive and
r(z) is of positive type, then Ek = r(kA) is also positive.

Unfortunately, for r(z) to be of positive type is exceptional. For example, for the
θ−method, Ek = rθ(kA), we have r(∞) = −θ−1(1 − θ) < 0 for θ < 1, so that rθ(z) is
not of positive type, and (2.5) only shows

‖Ek‖ 6
∫ ∞

0

θ−2 e−t/θ dt+ θ−1(1− θ) = 2θ−1 − 1.

For the Crank-Nicolson method we have θ = 1
2
, r(∞) = −1, and (2.5) only shows ‖Ek‖ 6 3.

Neither is r02(z) of positive type since the sign of g(t) = 2e−t sin t varies.
It was shown in [1] that r(z) cannot be of positive type for approximations of order higher

than first. For the convenience of the reader we include a proof.
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Theorem 2.3. Assume that r(z) is A−correct and of positive type. Then r(z) cannot
approximate e−z to second order.

Proof. If r(z) approximates e−z to second order, we have r(z) = e−z + O(z3) = 1− z +
1
2
z2 +O(z3) as z → 0, so that r(j)(0) = (−1)j, j = 0, 1, 2, where, by (2.3),

r(j)(0) =

∫ ∞
0

(−t)jg(t)dt+ r(∞)δ0j.

Since g(t) > 0, the Cauchy-Schwarz inequality yields

1 = r′(0)2 =
(∫ ∞

0

t g(t) dt
)2

6
∫ ∞

0

g(t) dt

∫ ∞
0

t2 g(t) dt 6 r(0) r′′(0) = 1.

Here equality requires g(t) and t2g(t) to be proportional, which is impossible.

It follows that the only A−stable Padé approximation of e−z of positive type is the
backward Euler method. This does not exclude that a time discretization operator Ek =
r(kA) of higher order than first could be a contraction in special cases, such as the Hilbert
space situation discussed in Section 1, in which any A−stable rational function corresponds
to a contraction.

We note that the bound in (2.5) can be relatively small, even when Ek is not a contraction.
For instance, for Ek = r02(kA) we have, in any Banach space,

‖Ek‖ = ‖r02(kA)‖ 6 2

∫ ∞
0

e−t| sin t| dt =
1 + e−π

1− e−π
= 1.0903, for k > 0. (2.6)

This is a special case of the following lemma which will also be used later.

Lemma 2.2. We have

2

∫ ∞
0

e−γt| sin t| dt =
1 + e−γπ

1− e−γπ
r02(γ − 1), for γ > 1.

Proof. By (2.4) with z = γ − 1 ∈ R+ we find

2

∫ ∞
0

e−γt sin t dt = r02(γ − 1).

Hence, setting s = t− π in the second integral below,

X := 2

∫ π

0

e−γt sin t dt = r02(γ − 1)− 2

∫ ∞
π

e−γt sin t dt

= r02(γ − 1) + e−γπ 2

∫ ∞
0

e−γs sin s ds = (1 + e−γπ)r02(γ − 1).

By the same change of variable as above,

Y := 2

∫ ∞
0

e−γt| sin t| dt = X + 2

∫ ∞
π

e−γt| sin t| dt = X + e−γπ Y,

from which the result follows.
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We next show that Ek = r(kA) could be a contraction for some positive k, even when
this does not hold for all such k.

Theorem 2.4. Assume ‖E(t)‖ → 0 as t → ∞ and that r(z) is an A−correct rational
function with |r(∞)| < 1. Then there is a k0 > 0 such that Ek = r(kA) is a contraction for
k > k0.

Proof. Since g ∈ C(R) ∪ L1(R+), we have, by (2.1) and Lebesgue’s theorem,

‖Ek‖ 6
∫ ∞

0

|g(t)|‖E(kt)‖ dt+ |r(∞)| → |r(∞)| < 1, as k →∞,

which shows the assertion.

Since r(∞) > 0 is not necessary for contractivity, in general, the following theorem now
shows that positivity and contractivity are not equivalent properties.

Theorem 2.5. Let B be ordered, with B+ closed, and assume ‖E(t)‖ → 0 as t → ∞
and that r(z) is an A−correct rational function. Then r(∞) > 0 is a necessary condition
for Ek = r(kA) to be positive for large k.

Proof. Again, since g ∈ C(R) ∪ L1(R+), we have, by Lebesgue’s theorem, for x ∈ R,

Ekv(x) =

∫ ∞
0

g(t)E(kt)v(x) dt+ r(∞)v(x)→ r(∞)v(x), as k →∞,

which shows the claim.

3. Some examples in C0(R) using Fourier transformation

In this section we shall illustrate the above concepts and results concerning positivity and
contractivity with some examples in the Banach space C0(R) of continuous functions on R
which vanish at ±∞, normed with the maximum-norm ‖ · ‖∞. We note that this Banach
space is ordered, with a closed positive cone B+.

We first give an example where positivity of Ek = r(kA) requires r(z) to be of positive
type. The example is provided by a convection diffusion equation with small or no diffusion.
In particular, the operator Ek cannot be positive for any k > 0, for all E(t) corresponding
to parabolic equations, unless r(z) is of positive type.

Theorem 3.1. Let B = C0(R) and let Eε(t) be the semigroup generated in B by −Aε,
where Aε = −εd2/dx2+d/dx, with ε > 0. Let further r(z) be an A−correct rational function.
Then, in order for E0,k = r(kA0) to be positive for some k > 0, it is necessary that r(z)
be of positive type. Also, unless r(z) is of positive type, Eε,k has to be non-positive for ε
sufficiently small.

Proof. We express Eε(t) in terms of Fourier transforms as

Eε(t)v(x) = F−1(e−t(εξ
2+iξ)v̂)(x), where v̂(ξ) = Fv(ξ) =

∫
R
e−ixξv(x) dx. (3.1)
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We begin by considering the hyperbolic case, ε = 0. Then the semigroup is the translation
semigroup E0(t)v(x) = v(x+ t) on R, and, by Lemma 2.1,

E0,kv(x) =

∫ ∞
0

g(t)v(x+ kt) dt+ r(∞)v(x), for k > 0. (3.2)

Let k > 0 be fixed, and assume E0,k > 0. If g(t) < 0 on some interval (a, b) ⊂ R+, then,
with v > 0 such that v(kt) has support in (a, b), we have E0,kv(0) < 0, in contradiction to
our assumption. Similarly, r(∞) < 0 is impossible.

If ε > 0 we note that Eε(t) > 0 by the maximum-principle for parabolic equations.
Further, for sufficiently smooth v ∈ B, and x ∈ R, t > 0, we have Eε(t)v(x)→ E0(t)v(x) as
ε→ 0. In fact, since |e−tεξ2 − 1| 6 Ctεξ2, (3.1) shows

‖(Eε(t)− E0(t))v‖∞ 6 Ctε

∫ ∞
−∞

ξ2|v̂(ξ)| dξ = Ctε‖v̂′′‖L1 . (3.3)

Hence, if g(t) < 0 in (a, b) and v is as above, we have, by Lebesgue’s theorem,

Eε,kv(0) =

∫ ∞
0

g(t)Eε(kt)v dt+ r(∞)v(0)→ E0,kv(0), as ε→ 0,

and thus Eε,kv(0) < 0 for small ε, so that Eε,k is then not positive.

Staying in the situation of Theorem 3.1 we now turn to contractivity. For this we show
that the bound in (2.5) is attained in the case ε = 0, and is approached in the limit as ε→ 0,
for ε > 0. In particular, this shows that Ek cannot be a contraction in C0(R) for all E(t)
corresponding to parabolic equations unless r(z) is of positive type.

Theorem 3.2. Under the assumptions of Theorem 3.1 we have, for any k > 0,

‖Eε,k‖∞ → ‖E0,k‖∞ =

∫ ∞
0

|g(t)| dt+ |r(∞)|, as ε→ 0. (3.4)

If r(z) is A−correct, and if E0,k is a contraction for some k > 0, then r(z) is of positive
type. Also, if Eε,k is a contraction for some k > 0 and arbitrarily small ε > 0, then r(z) is
of positive type.

Proof. We first show the equality in (3.4). For k > 0 fixed, taking v = vn ∈ B in (3.2)
such that ‖vn(k·) − sgn(g)‖L1(R+) → 0 as n → ∞ and ‖vn‖∞ = 1, vn(0) = sgn(r(∞)), we
find, using (3.2) with x = 0, as n→∞,

‖E0,k‖∞ > ‖E0,kvn‖∞/‖vn‖∞ > |E0,kvn(0)| →
∫ ∞

0

|g(t)| dt+ |r(∞)|.

Thus the opposite inequality to (2.5) holds, which shows equality. In particular, ‖E0k‖∞ = 1
if and only if r(z) is of positive type, since otherwise the right side of (2.5) is greater than
r(0) = 1.

For the last statement of the theorem, assume r(z) is not of positive type. Then we
may fix v ∈ B, sufficiently smooth, with ‖v‖∞ = 1 such that ‖E0kv‖∞ > 1, and therefore
‖Eε,kv‖∞ > 1 for ε sufficiently small, since, by (3.3),

‖(Eε,k − E0,k)v‖∞ 6
∫ ∞

0

|g(t)| ‖(Eε(t)− E0(t))v‖∞ dt→ 0 as ε→ 0.

Hence Eε,k cannot be a contraction,
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We now consider time stepping methods Ek = r(kA) for the standard heat equation,
i.e., with A = −d2/dx2, using A−correct rational functions r(z). If r(∞) = 0, then since
F(r(kA)v) = r(kξ2)v̂ and r(kξ2) ∈ L1(R) we have, for v ∈ L1(R) ∩ B,

Ekv = F−1(r(kξ2) v̂) = fk ∗ v, where fk = F−1(r(kξ2)). (3.5)

Setting f(x) = f1(x) = F−1(r(ξ2)), we have fk(x) = k−1/2f(k−1/2x).
In the case of the backward Euler method we then have f(x) = F−1((1+ξ2)−1) = 1

2
e−|x|,

and since f > 0, the positivity of Ek follows at once from (3.5). Further, ‖Ek‖∞ = ‖fk‖L1 =
‖f‖L1 = 1, showing again that Ek is a contraction.

For the θ−method we correspondingly find

Ekv = fk ∗ v − θ−1(1− θ) v, with f(x) = f1(x) = 1
2
θ−1e−|x|/θ.

We next show that Ek cannot be positive or contractive for θ < 1.

Theorem 3.3. Let B = C0(R) and A = −d2/dx2. Then Ek = rθ(kA), with 0 < θ < 1,
can neither be positive nor contractive, for any k > 0.

Proof. Let v ∈ B with v > 0, v(0) = 1, and with compact support, and set vε(x) =
v(x/ε), Then ‖fk ∗ vε‖∞ → 0 as ε → 0 so that Ekvε(0) → −θ−1(1 − θ) < 0, which shows
that Ek cannot be positive.

Choosing instead vε ∈ B with ‖vε‖∞ = 1, vε(0) = −1, and vε(x) = 1 for ε 6 |x| 6 ε−1,
we obtain Ekvε(0) → ‖fk‖L1 + θ−1(1 − θ) = θ−1 > 1, which shows that Ek cannot be
contractive.

We note that the last statement is not in conflict with Theorem 2.4, since ‖E(t)‖∞ = 1
for t > 0.

We now show that for the standard heat equation, for a certain class of rational functions,
Ek is neither positive nor contractive. By numerical calculation, we found that this class
includes the A−correct subdiagonal Padé approximations rm−j,m(z), m = 2, . . . , 5, j = 1, 2.
We shall assume that r(z) has poles at zj = ρje

iθj , j = 0, 1, . . . , J, with 1
2
π < θj 6 π. In case

of nonreal poles, θj < π, z̄j is also a pole. We further assume that the pole z0 is distinguished
in the sense that

z0 is nonreal and simple, and
√
ρ0 sin(1

2
θ0) <

√
ρj sin(1

2
θj), j = 1, . . . , J. (3.6)

Theorem 3.4. Let B = C0(R) and A = −d2/dx2. Let r(z) be an A−correct rational
function with r(∞) = 0, and assume that the poles of r(z) satisfy (3.6). Then Ek = r(kA)
can neither be positive nor contractive, for any k > 0.

Proof. In this case we may write

f(x) =
1

2π

∫ ∞
−∞

r(ξ2) eixξ dξ = i
∑
j

Res
(
r(ξ2

j ) e
ixξj
)
, for x > 0, (3.7)

where the summation is over the poles of r(ξ2) with Im ξj > 0. We shall show that f(x)
changes sign, so that, in particular, by (3.5), Ek cannot be positive. Further, since ‖Ek‖∞ =
‖fk‖L1 = ‖f‖L1 , independently of k, and since

∫∞
−∞ f(x) dx = Ff(0) = r(0) = 1, we may

then also infer that ‖f‖L1 > 1 so that Ek cannot be a contraction.
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By partial fraction decomposition,

r(z) =
a

z − z0

+
ā

z − z̄0

+ r̃(z),

where z0 or z̄0 are not poles of r̃(z). The corresponding poles of r(ξ2) with Im ξj > 0 are

ξ1 =
√
z0 =

√
ρ0 e

i
1
2
θ0 = α + iβ, ξ2 =

√
z̄0 =

√
ρ0 e

−i( 1
2
θ0+π) = −α + iβ.

Note that β =
√
ρ0 sin(1

2
θ0). Since eixξl = e−xβ(cosαx ± i sinαx) for l = 1, 2, we see that,

for x > 0, f(x) takes the form

f(x) = − e−βx

α2 + β2

(
α Im(aeiαx) + β Re(aeiαx) + g1(x)

)
= e−βx(b sin(αx+ φ) + g2(x)),

where b is real, and, by (3.6), g2(x) = o(1) as x→ +∞. Obviously, f(x) thus has to change
sign.

We remark that the above argument also shows that Ek = r(kA) cannot be positive
in the ordered Banach space B = L2(R) unless r(z) is of positive type. However, if r(z)
is A−correct, then Ek is a contraction in L2(R+), which provides another example that
positivity and contractivity are not equivalent properties.

Together with (2.4), Theorem 3.4 shows, in particular, that Ek = r02(kA) is not a
contraction in C0(R). However, we shall now see that in this case, a considerably sharper
bound than (2.6) holds.

Theorem 3.5. With B and A as in Theorem 3.4, and Ek = r02(kA), we have ‖Ek‖∞ ≈
1.0014.

Proof. In this case we find from (3.7)

f(x) =
2

π

∫ ∞
0

cosxξ

ξ4 + 2 ξ2 + 2
dξ, for x > 0,

and we shall use the formula ([4], p. 411, 3.733 #1)∫ ∞
0

cosxξ dξ

ξ4 + 2b2ξ2 cos 2τ + b4
=

π

2b3
e−xb cos τ sin(τ + xb sin τ)

sin 2τ

to obtain
f(x) = b−1e−xb cos τ sin (τ + xb sin τ), with b = 21/4, τ = π/8.

We now use the transformation of variables y = τ + x b sin τ , to find

‖f‖L1 = 2

∫ ∞
0

|f(x)| dx =

√
2

sin τ
eτ cot τ

∫ ∞
τ

e−y cot τ | sin y| dy.

By Lemma 2.2 we have, using r02(cot τ − 1) = 2 sin2 τ ,∫ ∞
0

e−y cot τ | sin y| dy = 1
2

1 + e−π cot τ

1− e−π cot τ
r02(cot τ − 1) = sin2 τ

(
1 +

2

eπ cot τ − 1

)
,
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and, by a simple calculation, since sin y > 0 in (0, τ),∫ τ

0

e−y cot τ | sin y| dy =

∫ τ

0

e−y cot τ sin y dy = sin2 τ(1− 2 cos τ e−τ cot τ ).

Hence, using also the fact that 2 sin τ cos τ = sin(π/4) = 1/
√

2,

‖Ek‖∞ = ‖f‖L1 =

√
2

sin τ
eτ cot τ

(∫ ∞
0

−
∫ τ

0

)
= 1 +

2
√

2 sin τ eτ cot τ

eπ cot τ − 1
≈ 1.0014.

We close this section by giving an example of an A−correct rational function r(z) which
is not of positive type but for which Ek = r(kA), with B and A as in Theorem 3.4, is both
positive and contractive. This shows that a rational function does not have to be of positive
type for these properties to hold.

Theorem 3.6. Let B and A be as in Theorem 3.4. Then there exists an A−correct
rational function r(z) with r(∞) = 0, which is not of positive type, such that Ek = r(kA) is
positive and contractive.

Proof. We consider a convex combination of the backward Euler rational function and
r02(kA), corresponding to

r(z) = ν/(1 + z) + (1− ν) r02(z), with ν ∈ (0, 1).

Here, g(t) = ν e−t + (1− ν) 2 sin t e−t and r(∞) = 0, and, in the above notation,

f(x) = F−1r(ξ2)(x) = ν 1
2
e−x + (1− ν) b−1e−x b cos τ sin(τ + x b sin τ), for x > 0.

We want to choose ν so that f(x) > 0, in which case Ek is positive and contractive as above,
but such that g(t) does not have constant sign, and thus r(z) is not of positive type. But the
latter requirement is satisfied if 2 (1−ν) > ν, i.e., if ν < 2/3, and, since b cos τ ≈ 1.0987 > 1,
the first requirement holds if (1 − ν)/b < ν/2, or ν > 2/(2 + b) ≈ 0.6271. Thus, for
ν ∈ (0.63, 0.66), r(z) has the desired properties.

4. The spatially continuous problem

We now consider the initial-boundary value problem (1.1), or (1.4) with A = −∆, in the
Banach space B = C0(Ω) of continuous functions in Ω̄, vanishing on ∂Ω, with norm ‖ · ‖∞,
where Ω is a convex polygonal domain in R2, and recall that the solution operator E(t) is
both positive and a contraction for t > 0. As we have seen in Section 1 this implies that the
backward Euler method Ek = (I + kA)−1 inherits these properties, for all k > 0. Also, we
note that

‖E(t)v‖∞ 6 C‖AE(t)v‖
1
2
L2
‖E(t)v‖

1
2
L2

6 Ct−
1
2‖v‖L2 6 Ct−

1
2‖v‖∞, (4.1)

so that, in particular, ‖E(t)‖∞ → 0 as t → ∞. (This convergence is, in fact, exponential,
but we shall not have reason to go into the details.) Thus, by Theorem 2.4, Ek = r(kA) is
a contraction for large k when r(z) is an A−correct rational function with |r(∞)| < 1.

We next turn to the θ−method defined by Ek = rθ(kA) with rθ(z) as in (1.7). We shall
see that even though the backward Euler operator (θ = 1) is positive and contractive for
any k > 0, this is not the case for θ < 1. Note that rθ(z) is A−stable for 1/2 6 θ 6 1.
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Theorem 4.1. When 1/2 6 θ < 1 the time stepping operator Ek = rθ(kA) for (1.1)
cannot be positive for any k > 0.

Proof. Let k > 0 and θ with 1/2 6 θ < 1 be fixed. By (1.7) we may write

Ekv = rθ(kA)v = θ−1(I + kθA)−1v − θ−1(1− θ) v. (4.2)

By (1.6) and (4.1) we find

‖(I + θkA)−1v‖∞ 6
∫ ∞

0

e−t‖E(θkt)v‖∞ dt (4.3)

6 C(θk)−
1
2

∫ ∞
0

t−
1
2 e−t dt ‖v‖L2 = C(θk)−

1
2 ‖v‖L2 .

Now choose x0 ∈ Ω and v = vε such that 0 6 vε 6 1, vε(x0) = 1, and supp(vε) ⊂
{x; |x − x0| 6 ε}. Then ‖vε‖L2 6 Cε, and hence, with v = vε, the first term in (4.2) then
tends to zero at x0 as ε→ 0. Hence Ekvε(x0)→ −(1− θ)/θ < 0, so that Ekvε(x0) < 0 for ε
small and thus Ek nonpositive.

Theorem 4.2. Let 1/2 6 θ < 1, let λ1 be the smallest eigenvalue of A = −∆, and let
k0 be so small that

1

θ

1

1 + k0θλ1

+
1

θ
> 2. (4.4)

Then Ek = rθ(kA) cannot be a contraction for k 6 k0.

Proof. Let Ψ1 be the first eigenfunction of A, normalized so that, with x0 ∈ Ω, ‖Ψ1‖∞ =
Ψ1(x0) = 1. Let Ψ1,ε be a modification of Ψ1 in {x; |x−x0| 6 ε} with ‖Ψ1,ε‖∞ = 1, Ψ1,ε(x0) =
−1. Then we have, by (4.3),

‖(I + kθA)−1(Ψ1,ε −Ψ1)‖∞ 6 C(kθ)−1/2‖Ψ1,ε −Ψ1‖L2 → 0, as ε→ 0.

Since (I + kθA)−1Ψ1(x0) = (1 + kθλ1)−1 we conclude, by (4.2) and (4.4),

EkΨ1,ε(x0) =
1

θ
(1 + kθA)−1Ψ1,ε(x0)− 1− θ

θ
Ψ1,ε(x0)

→ 1

θ

1

1 + kθλ1

+
1− θ
θ

> 1, as ε→ 0, for k 6 k0.

Thus Ek cannot be a contraction for k 6 k0.

Note that for the Crank-Nicolson method (θ = 1/2), (4.4) holds for any k0 > 0. Thus Ek
then cannot be a contraction for any k > 0. However, we have the following consequence of
Theorem 2.4.

Theorem 4.3. Let 1/2 < θ < 1. Then there is a k1 > 0 such that Ek = rθ(kA) is a
contraction for k > k1.

We shall now discuss the (0,2) Padé method, in one space dimension. Here B =
C0(Ω), Ω = (0, 1), A = −d2/dx2, and (1.4) reduces to

ut = uxx in Ω, u(x, t) = 0 for x = 0, 1, for t > 0, u(·, 0) = v. (4.5)
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Clearly the solution operator E(t) is still both positive and a contraction for t > 0, and
analogously for the backward Euler operator, for k > 0. Further we have

‖E(t)v‖∞ 6 ‖E(t)v‖
1
2
L2
‖∇E(t)v‖

1
2
L2

6 Ct−
1
4‖v‖L2 , for t > 0. (4.6)

We first show that Ek = r02(kA) is neither positive nor a contraction in C0(Ω) for all
k > 0, by reducing this to the case Ω = R, already covered by Theorem 3.4.

Theorem 4.4. The operator Ek = r02(kA) associated with (4.5) is neither positive nor
contractive in C0(Ω) for all k > 0.

Proof. Assume Ek is positive for all k > 0. Then by a transformation of variables this
holds also when the interval Ω = (0, 1) is replaced by Ωω = (−ω, ω), for any ω > 0. We
denote the solution operator on Ωω by E(ω)(t) and the corresponding time stepping operator

by E
(ω)
k . But with Ẽ(t) and Ẽk the corresponding operators for the problem on all of R,

Ẽkv(x)− E(ω)
k v(x) = 2

∫ ∞
0

e−t sin t
(
Ẽ(t)− E(ω)(t)

)
v(x) dt. (4.7)

We claim that E(ω)(t)v(x) → Ẽ(t)v(x) as ω → ∞ for each x ∈ R, t > 0. In fact, the

function wω(x, t) = Ẽ(t)v(x)−E(ω)(t)v(x) satisfies the heat equation on Ωω×R+, has initial

values 0, and |wω(x, t)| = |Ẽ(t)v(x)| 6 ‖v‖∞ for x = ±ω, t > 0. Hence, by the maximum-
principle, |wω(x, t)| is bounded by the solution of the heat equation in the finite domain,
with initial values 0, and boundary values ‖v‖∞ for x = ±ω. It is then easily seen that for
fixed (x, t) ∈ R × R+, wω(x, t) → 0 as ω → ∞. Hence, using Lebesgue’s theorem in (4.7),

we conclude that E
(ω)
k v(x) → Ẽkv(x) as ω → ∞ for each x ∈ R, k > 0. Since E

(ω)
k v > 0

for v > 0 and each ω > 0, we must have Ẽkv(x) > 0 for v > 0, which is in contradiction to
Theorem 3.4.

In the same way, if Ek is a contraction for all k > 0, this also holds for E
(ω)
k and hence

for Ẽk, again in contradiction to Theorem 3.4.

By the same argument, the corresponding result holds for any rational function satisfying
the conditions of Theorem 3.4.

We now show some positive results, for larger k. We first note that contractivity follows
at once from Theorem 2.4 and (4.6):

Theorem 4.5. For (4.5) there is a k1 > 0 such that Ek = r02(kA) is a contraction for
k > k1.

We next exhibit positivity of Ek = r02(kA) for large k.

Theorem 4.6. For (4.5) there is a k1 > 0 such that Ek = r02(kA) > 0, for k > k1.

Proof. We first show that if v > 0, then the solution u(x, t) = E(t)v(x) of (4.5) is
decreasing for t > 0.1, for all x ∈ Ω. Recalling that the eigenfunctions and -values of A are
φl(x) =

√
2 sin(πlx) and λl = π2l2 for l = 1, 2, . . . , we have

E(t)v(x) =

∫ 1

0

G(x, y, t)v(y) dy, where G(x, y, t) = 2
∞∑
l=1

e−π
2l2t sin(πlx) sin(π l y).
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By termwise differentiation we find, for x, y ∈ Ω,

∂

∂t
G(x, y, t) = −2π2 sin(πx) sin(πy) e−π

2t
(

1 +
∞∑
l=2

l2 e−π
2(l2−1)t sin(πlx)

sin(πx)

sin(πly)

sin(πy)

)
.

Denoting the sum by S̃(x, y, t), we have, since | sin(πlx)/ sin(πx)| 6 l for x ∈ Ω,

|S̃(x, y, t)| 6 S̃(t) :=
∞∑
l=2

l4 e−π
2(l2−1)t, for x, y ∈ Ω.

Here S̃(t) is decreasing in t, and we find that S̃(0.096) = 0.974. Hence |S̃(x, y, t)| 6 1 for
t > 0.096, and thus G(x, y, t) is decreasing for t > 0.096, for all x, y ∈ Ω. Therefore E(t)v(x)
is decreasing for t > 0.096, x ∈ Ω. Now fix τ ∈ (0, π) and let kτ > 0.096. Then

Ekv(x) = r02(kA)v(x) =
∞∑
l=0

Il, where Il := 2

∫ 2π(l+1)

2πl

e−t sin t E(kt)v(x) dt.

Since E(kt)v(x) is decreasing for t > τ ∈ (0, π), and thus in each Il with l > 1, we find easily
that Il > 0 for l > 1, and, if we choose τ = 2.34,

I0 > 2
(∫ π

τ

−
∫ 2π

π

)
e−t| sin t| dtE(kπ)v(x) = (e−τ (cos τ + sin τ)− e−2π)E(kπ)v > 0.

Hence Ekv(x) > 0 if k > k1 = 0.096/τ = 0.0416.

5. The standard Galerkin finite element method

We now consider the two-dimensional spatially semidiscrete standard Galerkin problem (1.2).
Defining the discrete Laplacian ∆h : Sh → Sh by

−(∆hψ, χ) = (∇ψ,∇χ), ∀ψ, χ ∈ Sh, (5.1)

this may also be expressed as

uh,t −∆huh = 0, for t > 0, with uh(0) = vh, (5.2)

and we write Eh(t) = e∆ht for the solution operator of this problem.
In this and the following section we shall use as our Banach space B = Sh, with norm

‖ · ‖∞. We know from [8] that Eh(t) is neither a positive operator nor a contraction in
B for small t. More precisely, we have the following two theorems, shown under technical
assumptions satisfied by normal triangulations.

Theorem 5.1. Assume that Th is such that there exists a strictly interior node, P1 say,
such that any neighbor of P1 has an interior neighbor which is not a neighbor of P1. Then
Eh(t) cannot be a positive operator for small t.

Theorem 5.2. Assume that Th is such that each near-boundary node has a strictly in-
terior neighbor. Then Eh(t) cannot be a contraction in ‖ · ‖∞ for small t.
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We now show that, for a fixed triangulation Th, Eh(t) is both positive and contractive
for large t. Here and below, we denote by {Pi}Ni=1 the nodes of Th in the interior of Ω, and
let {Φi}Ni=1 ⊂ Sh be the standard basis of pyramid functions, defined by Φi(Pj) = δij.

Theorem 5.3. For Th given, Eh(t) > 0 for t sufficiently large. Also, ‖Eh(t)‖∞ → 0 as
t→∞. In particular, Eh(t) is a contraction for t large.

Proof. With {φhj }Nj=1 and {λhj }Nj=1 the eigenfunctions and -values of the positive definite
operator A = −∆h in Sh, we have, for vh ∈ Sh such that vh > 0, vh 6≡ 0,

Eh(t)vh =
N∑
j=1

e−λ
h
j t(vh, φ

h
j )φ

h
j = e−λ

h
1 t
(
(vh, φ

h
1)φh1 + o(1)

)
, as t→∞,

where we have used that λh2 > λh1 . It is known by the Perron-Frobenius theorem that
φh1(Pl) > 0 for all mesh-points Pl, and it follows that (vh, φ

h
1)φh1(Pi) > 0 and hence that

Eh(t)vh(Pi) > 0, for t large, i = 1, . . . , N . In particular, this holds for each of the basis
functions Φl, and, since these are finitely many, there is a t0 > 0 such that Eh(t)Φl > 0 for
l = 1, . . . , N and t > t0. This shows the first part of the theorem.

Since ‖Eh(t)‖L2 6 Ce−λ
h
1 t 6 Ce−λ1t, the second part of the theorem follows at once from

the equivalence of different norms on a finite-dimensional space.

We next show that under a mild assumption on the family {Th}, we have, independently
of h, the maximal diameter of the triangles τ ∈ Th, that ‖Eh(t)‖∞ → 0 as t→∞. Thus, in
particular, Eh(t) is a contraction for large t, uniformly in h. Our assumption is the following:

{Th} is shape regular and hmin > chγ, for some c > 0, γ > 1. (5.3)

Such conditions occur, e.g., in systematic mesh refinements.

Theorem 5.4. Assume that {Th} satisfies (5.3). Then we have, with C independent of
h,

‖Eh(t)vh‖∞ 6 Ct−1‖vh‖∞, for t > 0, vh ∈ Sh.

Proof. We write, with Ih : C0(Ω)→ Sh the standard interpolation operator,

‖Eh(t)vh‖∞ 6 ‖(Eh(t)− IhE(t))vh‖∞ + ‖IhE(t)vh‖∞ = I + II.

By Sobolev’s inequality and a standard smoothing estimate for E(t),

II 6 ‖E(t)vh‖∞ 6 C‖E(t)vh‖H2 6 Ct−1‖vh‖L2 6 Ct−1‖vh‖∞, for t > 0.

Further, under our assumptions on {Th}, we note that by [7], Lemma 6.4,

‖χ‖∞ 6 C`
1/2
h ‖∇χ‖L2 , ∀χ ∈ Sh, where `h = max(1, log(1/h)).

and, by [2], Theorem 2.1, we have the nonsmooth data error estimate

‖∇(Eh(t)Ph − E(t))v‖L2 6 Cht−1‖v‖L2 , for t > 0, if v ∈ L2, vh = Phv, (5.4)

where Ph is the L2−projection onto Sh. Thus, using also a standard error estimate for the
interpolant, we find

I 6 C`
1/2
h

(
‖∇(Eh(t)− E(t))vh‖L2 + ‖∇(Ih − I)E(t)vh‖L2

)
6 C`

1/2
h (h t−1‖vh‖L2 + h ‖E(t)vh‖H2) 6 Ct−1‖vh‖L2 6 Ct−1‖vh‖∞,

which completes the proof.
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In order to study time-discretizations of the semidiscrete problem (1.2), or (5.2), it will
be convenient to express it in matrix form. For this purpose, we identify a function χ =∑N

j=1 χjΦj ∈ Sh with the vector χ̃ = (χ1, . . . , χN)T . Letting M = (mij) and S = (sij),
with mij = (Φi,Φj) and sij = A(Φi,Φj), be the mass and stiffness matrices, respectively, the
application of the operator −∆h corresponds to multiplication by the matrix K = M−1S.
In fact, if ψ =

∑
i αiΦi, −∆hψ =

∑
i βiΦi, then (5.1) may be written Mβ · χ̃ = Sα · χ̃ for

all χ̃ ∈ RN , or β = Kα. Note that −∆h is positive definite with respect to (v, w)L2 and K
with respect to Mα · β.

The initial value problem (1.2) then takes the form, with αi(t) = uh(Pi, t),

Mdα

dt
+ Sα = 0, for t > 0, with α(0) = ṽh = (vh(P1), . . . , vh(PN))T ,

and we introduce the solution operator matrix Eh(t) = e−tK, where K = M−1S. The solu-
tion operator Eh(t) of (5.2) is then positive if and only if Eh(t) is positive (or Eh(t) > 0,
elementwise), and a contraction in ‖ · ‖∞ if and only if Eh(t) is a contraction in | · |∞, where
|χ̃|∞ = maxi |χi| = ‖χ‖∞ is the vector maximum-norm, since ‖Eh(t)‖∞ = |Eh(t)|∞.

We now consider, with r(z) an A−correct rational function, a single step time discretiza-
tion En

hkvh of (5.2), where Ehk = r(−k∆h), or, in matrix formulation,

αn = Enhkα0, for n > 0, with α0 = ṽh, where Ehk = r(kK). (5.5)

We observe that the negative results of Theorems 5.1 and 5.2 immediately imply that the
time stepping operator Ehk cannot be positive or contractive for small k.

Theorem 5.5. Let r(z) be A−correct, and let Ehk = r(−k∆h). If Th satisfies the as-
sumption of Theorem 5.1, then Ehk cannot be positive for small k. If Th satisfies the as-
sumption of Theorem 5.2, then Ehk cannot be a contraction for small k.

Proof. Using the matrix representation (5.5), both results follow from

lim
n→∞

Enh,t/n = lim
n→∞

(
I +

t

n
K +O(

t2

n2
)
)−n

= e−tK = Eh(t),

since positivity or contractivity of Ehk, for small k, would imply the corresponding property
for Eh(t), and thus of Eh(t), for t > 0, in contradiction to Theorems 5.1 and 5.2.

This does not exclude that these properties could hold for larger k. For instance, the
following is an immediate consequence of Theorems 2.4, 2.5, and 5.4.

Theorem 5.6. Assume that (5.3) holds, and let r(z) be A−correct with |r(∞)| < 1.
Then the operator Ehk = r(−k∆h) is contractive for large k, uniformly in h. Further,
r(∞) > 0 is a necessary condition for Ehk to be positive for k large.

We now turn to a discussion of the θ−method, corresponding to the rational function
rθ(z) in (1.7). In this case the time stepping operator Ehk = rθ(−k∆h) is defined, in matrix
form, by

M(αn+1 − αn)/k + S(θαn+1 + (1− θ)αn) = 0, for n > 0, with α0 = ṽ, (5.6)
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or by
Ehk = rθ(kM−1S) = (M+ θk S)−1(M− (1− θ)k S).

We first demonstrate that Ehk, and thus Ehk, is positive and contractive when Th is essentially
of Delaunay type, and the time step k is bounded above and below in a specific way, cf. [3].
Recall that Th is of Delaunay type if the sum of the angles opposite each edge of Th is at
most π, and that for an interior edge PiPj this is equivalent to sij 6 0.

Theorem 5.7. Let the matrices M and S be such that sij 6 0 for j 6= i, and

(1− θ)ksii 6 mii, ∀ i, and θk|sij| > mij, for j 6= i. (5.7)

Then Ehk = rθ(−k∆h) is positive. If, in addition,
∑

j 6=i |sij| 6 sii, for all i, then Ehk is also
a contraction.

Proof. The inequality on the right in (5.7) means that mij + θksij 6 0 for all j 6= i, so
thatM+θkS is a Stieltjes matrix, i.e., a positive definite symmetric matrix with nonpositive
off-diagonal elements, and thus has a nonnegative inverse. Further, the inequality on the left
in (5.7) shows that M− (1− θ)kS is nonnegative. Together these facts show that Ehk > 0,
and thus also Ehk > 0.

With β = αn+1, α = αn, (5.6) can be written

(M+ θk S)β = (M− (1− θ)k S)α. (5.8)

To show that Ehk is a contraction, or |Ehk|∞ 6 1, it suffices to show that this implies

|β|∞ 6 |α|∞. (5.9)

Let Pi be an arbitrary interior node. Then the ith equation in (5.8) is

(mii + θksii)βi = −
∑
j 6=i

(mij + θksij)βj +
∑
j

(mij − (1− θ)ksij)αj.

From this it follows that

(mii + θksii)|βi| 6
∑
j 6=i

|mij + θksij| |β|∞ +
∑
j

|mij − (1− θ)ksij| |α|∞.

Then, if Pi is chosen so that |βi| = |β|∞, we have, using (5.7), that

(mii + θksii)|β|∞ 6
(
θk
∑
j 6=i

|sij| −
∑
j 6=i

mij

)
|β|∞

+
(
(mii − (1− θ)ksii) +

∑
j 6=i

(mij + (1− θ)k|sij|)
)
|α|∞.

Using the diagonal dominance of S it follows that
∑

jmij |β|∞ 6
∑

jmij |α|∞, and hence
that (5.9) holds. Thus Ehk is a contraction.

Recall that for Pi strictly interior, i.e., if Pi has no neighbor on ∂Ω, and if sij 6 0 for j 6= i,
then, since

∑
j sij =

∑
j A(Φi,Φj) = A(Φi, 1) = 0, we have

∑
j 6=i |sij| = sii, so that diagonal

dominance is automatic at such nodes. Thus the condition
∑

j 6=i |sij| 6 sii is associated with
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the behavior of the triangulation near ∂Ω, cf., e.g., [8], Examples 3.1 and 3.2, which show
that sij 6 0, for j 6= i, and diagonal dominance of S are independent properties.

For the backward Euler method, (5.7) reduces to k > maxj 6=i(mij/|sij|). We note that
this condition requires sij = A(Φi,Φj) < 0 for Pi and Pj neighbors, i.e., that Th is strictly
Delaunay, in the sense that the sum of the angles opposite PiPj is strictly less than π. In
particular, this cannot hold for the standard triangulation Th of a square Ω obtained by first
subdividing Ω into smaller square and then dividing these by their diagonals, because then
there will be neighbors for which sij = 0. As a positive example, if Ω is an equilateral triangle,
and Th consists of equilateral triangles, thus with all angles = π/3, then one may show that,
if Pi and Pj are neighbors, then sii = 2

√
3, sij = −

√
3/3 and mii = h2

√
3/4, mij = h2

√
3/24.

The above condition (5.7) is then

1

θ

h2

8
6 k 6

1

1− θ
h2

8
,

and this can only be satisfied if θ > 1/2. For the backward Euler case, the condition reduces
to the one-sided condition k > h2/8, and for Crank-Nicolson, we must have k = h2/4. We
remark that rθ(∞) = −(1− θ)/θ < 0 for θ < 1 so that by Theorem 5.6 an upper bound for
k is required for positivity of Ehk.

We now turn to the (0,2) Padé method, and we restrict ourselves again to the one-
dimensional case, with Sh based on uniform partitions, using xj = jh, j = 1, . . . , N, h =
1/(N + 1). The solution operator for the semidiscrete version of (4.5) is then Eh(t) = e∆ht

where ∆h is defined by the one-dimensional analogue of (5.1). For the corresponding solution
operator matrix we have Eh(t) = e−Kt with K =M−1S, where now, with J the tridiagonal
matrix with elements 1 on the two bidiagonals and other elements 0,

M = (mij) = 1
6
h(4 I + J ) and S = (sij) = h−1(2 I − J ). (5.10)

We note that in this case, cf. (4.6), since ‖∇Eh(t)vh‖L2 6 Ct−1/2‖vh‖L2 ,

‖Eh(t)vh‖∞ 6 ‖Eh(t)vh‖
1
2
L2
‖∇Eh(t)vh‖

1
2
L2

6 Ct−
1
4‖vh‖L2 6 Ct−

1
4‖vh‖∞. (5.11)

In particular, Eh(t) is a contraction for large t, uniformly in h.

As in the two-dimensional case treated above, Eh(t) is neither positive nor a contraction
for k small, and as in Theorem 5.5 this also holds for Ehk = r02(−k∆h). However, this
operator is both positive and contractive for larger k. The contractivity follows at once by
Theorem 2.4 and (5.11):

Theorem 5.8. For our spatially one-dimensional problem there is k0 > 0, independent
of h, such that Ehk = r02(−k∆h) is a contraction for k > k0.

Direct calculation of the matrix norm |Ehk|∞ indicates that for h = 1/10, 1/20, 1/30,
and 1/40, we may choose k0 = 0.011, 0.010, 0.010, and 0.010, respectively.

We now show positivity for large k.

Theorem 5.9. For our spatially one-dimensional problem, for h 6 0.1, Ehk = r02(−k∆h)
is positive for k > k1 = 0.5.
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Proof. In this one-dimensional situation the eigenvectors and -values of K are

{φhl (xj)}Nj=1 = {
√

2h sin(lπxj)}Nj=1 and λhl =
6

h2

1− cos(πlh)

2 + cos(πlh)
, l = 1, . . . , N,

By eigenvector expansion we may write

Ekhvh(xj) =
N∑
n=1

Hhk
jn vh(xn), where Hhk

jn = 2h
N∑
l=1

r02(kλhl ) sin(πlxj) sin(πlxn),

and we want to show Hhk
jn > 0 for 1 6 j, n 6 N . We write

Hhk
jn = 2h sin(πxj) sin(πxn)r02(kλh1)(1 + S̃hkjn )

where

S̃hkjn =
N∑
l=2

r02(kλhl )

r02(kλh1)

sin(πlxj)

sin(πxj)

sin(πlxn)

sin(πxn)
,

and it now suffices to show |S̃hkjn | 6 1 for 1 6 j, n 6 N . As in the proof of Theorem 4.6,
using λhl > λl = π2l2 and | sin(lx)/ sinx| 6 l, we find, with κh = λh1/π

2,

|S̃hkjn | 6 S̃hk :=
N∑
l=2

l2
1 + kλh1 + 1

2
(kλh1)2

1 + kλl + 1
2
(kλl)2

→ κ2
h

∞∑
l=2

1

l2
≈ 0.635κ2

h, as k →∞,

Here κh 6 1/(1 − π2h2/6), and hence, for the limit to be less than 1, we need to have at

least 2 interior mesh-points. Clearly S̃hk is increasing in h and decreasing in k and we find
S̃0.1,0.5 = 0.9351 < 1. Hence for k > 0.5 and h 6 0.1 we have Hhk

jn > 0 for 1 6 j, n 6 N .

The above value of k1 appears pessimistic. Direct calculation to determine k1 such that
Ehk is positive for k > k1, for h = 1/10, 1/20, 1/30, and 1/40, give k1 = 0.018, 0.017, 0.017,
and 0.015, respectively.

6. The lumped mass finite element method

Consider now the lumped mass spatially semidiscrete parabolic problem (1.3), and let
Ēh(t) = e∆̄ht be its solution operator. where ∆̄h : Sh → Sh is the discrete Laplacian
defined by

−(∆̄hψ, χ)h = (∇ψ,∇χ), ∀ψ, χ ∈ Sh. (6.1)

Thus the problem (1.3) is of the form (1.4) with A = −∆̄h, in B = Sh with norm ‖ · ‖∞.
In matrix form, the problem (1.3) may be written

Ddα
dt

+ Sα = 0, for t > 0, with α(0) = v,

where D = (dij) is the diagonal matrix with elements dij = (Φi,Φj)h and S is the stiffness
matrix. The solution operator matrix is then Ēh(t) = e−Ht where H = D−1S, and, as for
Eh(t) in Section 5, Ēh(t) is positive or contractive if and only if this holds for Ēh(t). We
know from [8] that Ēh(t) is both a positive operator and contraction in maximum-norm for
t > 0, provided the triangulation is essentially of Delaunay type, or more precisely, we have
the following theorem.
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Theorem 6.1. The solution operator matrix Ēh(t) of (1.3) is positive for all t > 0 if
and only if sij 6 0 for j 6= i. It is a contraction for all t > 0 if and only if S is diagonally
dominant.

By the argument of the proof of Theorem 5.4 we find, even without diagonal dominance,
and under a mild assumption on {Th}, that ‖Ēh(t)‖∞ → 0 as t → ∞, and hence, in
particular, that Ēh(t) is a contraction for large t, independently of h. In this case, we use
the analogue of (5.4) for Ē(t) from [2], Theorem 4.4.

Theorem 6.2. Assume that the family {Th} satisfies (5.3). Then we have

‖Ēh(t)vh‖∞ 6 Ct−1‖vh‖∞, for t > 0, vh ∈ Sh.

Theorem 6.1 easily carries over to the backward Euler method:

Theorem 6.3. The backward Euler operator Ēhk = (I − k∆̄h)
−1 is positive for all k > 0

if and only if sij 6 0 for j 6= i. It is a contraction for all k > 0 if and only if S is diagonally
dominant.

Proof. For positivity the sufficiency of the condition follows from Theorem 6.1 and the
representation formula (1.6), or, in matrix form,

Ēhk = (I + kH)−1 =

∫ ∞
0

e−t Eh(kt) dt. (6.2)

On the other hand, if Ēhk is positive for small k, then Ēh(t) is positive since

Ēh(t) = e−Ht = lim
n→∞

(
I +

t

n
H
)−n

= lim
n→∞

Ēh,t/n, for t > 0. (6.3)

Hence Ēh(t) > 0, and thus sij 6 0 for j 6= i by Theorem 6.1.
By Theorem 6.1, Ēh(t), and thus Ēh(t), is a contraction for t > 0 if S is diagonally

dominant, and by (6.2) this implies that Ēhk is also a contraction, for k > 0. Also, if Ēhk is
a contraction, so is Ēh(t) by (6.3), and hence S is diagonally dominant by Theorem 6.1.

We next consider more general A−correct rational functions, and single step time dis-
cretization operators Ēhk = r(−k∆̄h), or in matrix form, with D and S as above,

Ēhk = r(kH), where H = D−1S.

As in Theorems 5.5 and 6.3 we have the following necessary conditions.

Theorem 6.4. If the time stepping operator Ēhk = r(−k∆h) is positive for k small, then
sij 6 0 for j 6= i. If Ēhk is a contraction for k small, then S is diagonally dominant.

We have the following immediate consequence of Theorems 2.4 and 6.2.

Theorem 6.5. Assume that (5.3) holds. Then the operator Ēhk = r02(−k∆̄h) is con-
tractive for large k, unformly in h. Also, if r(z) is A−correct, then r(∞) > 0 is a necessary
condition for Ēhk to be positive for k large.
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We now turn to the θ−method defined by

Ēhk = (D + θk S)−1(D − (1− θ)k S) = rθ(kH), H = D−1S, 0 6 θ 6 1, (6.4)

The following sufficient conditions are essentially contained in [3]. Note that, except for
the backward Euler method (θ = 1), k is required to be bounded above.

Theorem 6.6. Assume that sij 6 0 for j 6= i, and that

(1− θ)k sii 6 dii, for all i, with 0 6 θ 6 1. (6.5)

Then Ēhk = rθ(−k∆̄h) > 0. If, in addition, S is diagonally dominant, then Ēhk is also a
contraction.

Proof. By (6.5), D − (1 − θ)kS > 0. Further, D + θkS is a Stieltjes matrix, so that
(D + θkS)−1 > 0. Thus Ēhk > 0 by (6.4).

For the proof of contractivity, we write β = Ēhkα as

(D + θk S)β = (D − (1− θ)k S)α.

The equation in this system corresponding to the vertex Pi is

(dii + θksii)βi + θk
∑
j 6=i

sijβj = (dii − (1− θ)k sii)αi − (1− θ)k
∑
j 6=i

sijαj.

With i such that |βi| = |β|∞, (6.5) and the diagonal dominance of S imply that

(dii + θ k sii)|β|∞ 6 θk
∑
j 6=i

|sij||β|∞ + (dii − (1− θ)k sii)|α|∞

+ (1− θ)k
∑
j 6=i

|sij| |α|∞ 6 θk sii|β|∞ + dii|α|∞.

and hence |β|∞ 6 |α|∞. Thus Ēhk is a contraction in | · |∞, and Ēhk in ‖ · ‖∞.

We close with some results for the (0, 2) Padé approximation, again restricted to one space
dimension and uniform mesh. The spatially discrete solution operator is now Ēh(t) = e∆̄ht

where ∆̄h is defined by the one-dimensional version of (6.1), with (v, w)h = h
∑N

j=1 v(xj)w(xj).

The corresponding solution operator matrix is then Ēh(t) = e−Ht, where H = D−1S, with
D = hI and S = h−1(2I − J ), cf. (5.10). We now know that Ēh(t) > 0 and ‖Ēh(t)‖∞ 6 1
for t > 0, and also that, as in (5.11), that ‖Ēh(t)‖∞ 6 Ct−1/4. To study Ēhk = r02(−k∆̄h),
we write

Ēhk = r02(kH) = r02(λH̄), where λ = k/h2, H̄ = h2H = 2I − J .

We show the following.

Theorem 6.7. The operator Ēhk = r02(−k∆̄h) cannot be positive for small λ if N > 4,
nor can it be a contraction for small λ if N > 9.
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Proof. Since |H̄|∞ = 4 we have, by expansion of Ehk = r02(λH̄), for small λ,

Ēhk = Ē0 +O(λ5), where Ē0 = I − λH̄ + 1
2
λ2H̄2 − 1

4
λ4H̄4.

By the form of H̄, the elements of the fourth bidiagonal of H̄4 equal 1 (provided N > 4),
and thus the corrresponding elements of Ēhk equal −1

4
λ4 < 0. Hence Ēhk cannot be a positive

operator for λ small.
Turning now to contractivity, we note that if 5 6 i 6 N − 4 (requiring N > 9), then the

ith row sums of H, H2 and H4 equal zero, so that
∑

j(Ē0
hk)ij = 1. Further, (Ē0

hk)i,i±4 = −1
4
λ4,

and hence |Ē0
hk|∞ >

∑
j |(Ē0

hk)ij| > 1 + λ4, for such an i. Hence |Ēhk|∞ > 1 + 1
2
λ4 for λ small.

This completes the proof.

Since |Ēh(t)|∞ → 0 as t → ∞, it follows by Theorem 2.4 that Ēhk is also contractive for
sufficiently large k.

Theorem 6.8. There is a k0 > 0, independent of h, such that Ēhk = r02(−k∆̄h) is a
contraction for k > k0.

Direct calculation of the matrix norm |Ēhk|∞, for h = 1/10, 1/20, 1/30, and 1/40, shows
that we may choose k0 = 0.007, 0.009, 0.010, and 0.010, respectively.

We now show that Ēhk is positive for k large.

Theorem 6.9. There is a k1 > 0, independent of h, such that Ēhk = r02(−k∆̄h) is
positive if k > k1.

Proof. The proof is modelled after that of Theorem 4.6. We first show that, if vh > 0 in
Ω, then, for any j, Eh(t)vh(xj) is decreasing for t > 0.31. We may write

Ēh(t)vh(xj) =
N∑
n=1

Ḡh
jn(t)vh(xn), j = 1, . . . , N,

where, since the eigenvectors of −∆̄h are {φhl (xj)}Nj=1 = {
√

2h sin(lπxj)}Nj=1, we have

Ḡh
jn(t) = 2h

N∑
l=1

e−λ̄
h
l t sin(lπxj) sin(lπxn), with λ̄hl =

2(1− cos(πlh))

h2
.

By differentiation we obtain

∂

∂t
Ḡh
jn(t) = −2h

N∑
l=1

λ̄hl e
−λ̄hl t sin(lπxj) sin(lπxn)

= −2hλ̄h1e
−λ̄h1 t sin(πxj) sin(πxn)

(
1 + S̃hjn(t)

)
,

and, again using | sin(lx)/ sinx| 6 l, we find

|S̃hjn(t)| =
∣∣∣ N∑
l=2

λ̄hl
λ̄h1

e−(λ̄hl −λ̄
h
1 )t sin(lπxj)

sin(πxj)

sin(lπxn)

sin(πxn)

∣∣∣ 6 N∑
l=2

λ̄hl
λ̄h1

l2 e−(λ̄hl −λ̄
h
1 )t.

We note that since (2/π)2ξ2 6 2(1− cos ξ) 6 ξ2 for ξ ∈ (0, π), we have

4 l2 6 λ̄hl 6 π2 l2, for l = 1, . . . , N.
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Hence, since µe−µt is decreasing and µ−1eµt increasing in µ, for t > 1/µ,

|S̃hjn(t)| 6 4

π2

∞∑
j=2

l4 e−(4l2−π2)t < 1, for t > 0.31.

The remaining part of the proof follows that of Theorem 4.6, again with τ = 2.34, giving
the result stated with k1 = 0.31/2.34 ≈ 0.133.

As in an earlier case, the k1 above is pessimistic. Direct calculation to determine k1

such that Ēhk is positive for k > k1, for h = 1/10, 1/20, 1/30, and 1/40, gives k1 =
0.014, 0.016, 0.017, and 0.017, respectively.
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