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Abstract — The paper considers a method for solving nonlinear ill-posed problems
with monotone operators. The approach combines the Lavrentiev method, the fixed-
point method, and the balancing principle for selection of the regularization parameter.
The method’s optimality has been proved for some set of smooth solutions. A test
example proves the efficiency of the proposed method.
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1. Statement of the problem

The investigation of modern methods for solving nonlinear ill-posed problems in the regu-
larization theory is connected with some well-developed methods for linear problems. The
Tikhonov method is considered to be standard for regularization of both linear and nonlinear
problems (see, for example, [6, 11]). However, in the nonlinear case this method yields a
normal equation, where a Frechet derivative of the forward operator is used. Finding such an
operator is not an easy task in practice, but in some cases we can simplify the corresponding
computational algorithm. If the forward operator is monotone, then the Tikhonov method
reduces to the Lavrentiev method and the approximate solution can be found without the
Frechet derivative.

The Lavrentiev method for regularization of nonlinear ill-posed problems with a mono-
tone operator was considered in, e.g., [5, 8, 9, 1]. The optimality of the Lavrentiev method
was proved for the case of smooth solution in terms of the sourcewise condition and the gen-
eral source condition in [9] and [8], respectively. In [1], only the convergence of the Lavrentiev
method was established in combination with the fixed-point method. However, in [9] and [8]
the obtained regularized equations remain nonlinear and one may have difficulties solving
them numerically. That is why in many cases we deal with a sequence of approximations
to the solution of the regularized equation, where the corresponding numerical solution is
chosen with a given accuracy. In addition, the smaller is the value of the regularization pa-
rameter, the more instable is the corresponding equation. Hence the application of numerical
techniques requires a further investigation.

1Institute of Mathematics, National Academy of Sciences of Ukraine, Tereshscenkivska Str. 3, 01601
Kiev, Ukraine. E-mail: lebedeva@ipnet.kiev.ua



Lavrentiev regularization and balancing principle for ill-posed problems 445

In the present paper, following [1] we propose to solve a nonlinear regularized equation
by the fixed-point method. This is possible due to the strict monotonicity of the operator
obtained by the Lavrentiev regularization. To achieve optimality in the considered method,
we propose to choose an appropriate regularization parameter according to the balancing
principle [8]. The main advantage of the balancing principle is its wider applicability in
comparison with the discrepancy principle and a simpler realization in comparison, for ex-
ample, with the monotone rule [10]. Moreover, we establish the optimality of the numerical
method from [1] on the basis of the Lavrentiev regularization without strict assumptions on
the smoothness of a minimal norm solution.

2. Statement of the problem

We consider the following nonlinear equation in a Hilbert space X with the inner product
(·, ·) and the corresponding norm ‖ · ‖:

F (x) = f, (2.1)

where the operator F : D(F ) ⊂ X → X has a locally uniformly bounded Frechet derivative
F ′(·) in the domain D(F ). Denote by x = x† the minimal norm solution of equation (2.1).
It is natural to assume that (2.1) is an ill-posed problem.

Let F be a monotone operator, namely for all x, y ∈ D(F ) the inequality

(F (x)− F (y), x− y) > 0 (2.2)

holds. Suppose that the Lipschitz condition is satisfied for the operator F , namely there
exists a constant R such that for all x, y ∈ D(F )

||F (x)− F (y)|| 6 R||x− y||. (2.3)

Note that condition (2.3) can be simplified. It turns out that it is enough to require that
(2.3) should hold only for all x from some ball around x†. For simplicity, in this paper we
will consider that condition (2.3) is satisfied for all x, y ∈ D(F ).

Assume that instead of an exact right-hand side f we are given only its perturbation
fδ ∈ X, such that

‖f − fδ‖ 6 δ,

where δ is the known error level.
Now our aim is to propose a numerical solution method for (2.1) that is simple for

practical implementation, optimal in order, and does not require computing the Frechet
derivative. In the case of monotonicity of F , the Lavrentiev method is simpler than other
methods. Let the regularized approximation xδ

α have the following form:

xδ
α = Rα(fδ + αx0), (2.4)

where Rα = (F + αI)−1, the parameter α > 0 is the regularization parameter, and x0 is the
known initial guess.

Let us describe the approximation properties of the Lavrentiev method more precisely.
We denote by xα the solution of (2.4) when δ = 0. From the general regularization theory
it is known that the sequence of operators Rα at α → 0 converges pointwise to F−1. Under
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some selection of the regularization parameter, this property is sufficient for the convergence
of approximations xδ

α to x† at δ → 0, but is not sufficient for the convergence with the
optimal rate. Thus, we should introduce a stronger condition on the set of minimal-norm
solutions. Taking into account the above consideration, we assume that there exists an
increasing function ϕ(α) := ϕ(α, F, f) such that 0 = ϕ(0) 6 ϕ(α) 6 1 and

‖xα − x†‖ 6 ϕ(α). (2.5)

Remark 2.1. In the general case, the relation (2.5) holds if x† ∈ M , where M is some
compact set. For details see Section 4.2, where a wide class of possible compact sets will be
described.

The stability property of the regularization operator Rα is as follows. Since Rα is a strictly
monotone operator and its inverse satisfies the Lipshitz condition (2.3) with constant 1/α
(the proof of this fact follows from [3, pp.97,100]), the norm of the element ‖xα−xδ

α‖ can be
bounded by δ/α. However, this bound is given for the general class of operators and may be
significantly improved in special cases. We assume that there exists c1 = c1(F, y) such that

‖xα − xδ
α‖ 6 c1

δ

α
.

However, Eq. (2.4) still remains nonlinear, so it is necessary to use a known numerical
method for its solving. Now we consider the fixed-point method that consists in constructing
iterations according to the rule

xδ
αi,k+1 = Gα(x

δ
αi,k

), (2.6)

where Gα(x) = (I − γ(F + αI))(x) + αγx0 + γfδ, and γ > 0 is some arbitrary parameter of
the method.

Assume that Gα is contractive with the coefficient β < 1, and the accuracy of the
regularized approximation xδ

α is given by

‖xδ
α − xi‖ 6

czδ

α
(2.7)

for some constant cz. Here, by xi := xδ
αi,k

we mean the approximate solution of equation
(2.4) at α = αi obtained as a result of stopping the iterative process (2.6) after k steps.

Hence, the general error bound of the method Mα,γ has the following form:

‖xi − x†‖ 6 ‖x† − xα‖+ ‖xα − xδ
α‖+ ‖xδ

α − xi‖ 6 ϕ(α) + c1z
δ

α
, (2.8)

where c1z = c1 + cz.
It is evident that the minimal value of the error bound for method (2.6) is given by

‖xi − x†‖ 6 c inf
α
{ϕ(α) + c1z

δ

α
},

and infimum is reached at the point αopt = ϕ−1(δ)c1zδ defined as the cross point of the
increasing function ϕ(λ) and the decreasing function λ/α. Unfortunately, such a priori se-
lection of the parameter cannot be always realized in practice because the precise form of
the function ϕ(λ) can be unknown. To solve equation (2.6) efficiently, it is necessary to
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select an appropriate error level δ and regularization parameter α in the computational pro-
cess. The a posteriori known rules for the Lavrentiev regularization include the discrepancy
principle proposed by Bakyshinski and Smirnova [1]. In their paper a similar approach to
(2.6) was proposed, but only the convergence of the obtained approximation was proved.
One more a posteriori rule was proposed by Tautenhahn [9]. He investigated the Lavrentiev
method for solving a nonlinear equation with a monotone operator in the case of sourcewise
representation of the solution x†, where α was taken as a solution of the following nonlinear
equation:

‖α(F ′(xδ
α) + αI)−1[F (xδ

α)− yδ]‖ = Cδ.

In this paper, we propose to choose the parameter α according to the balancing principle
established by Pereverzev and Shock [8] for solving ill-posed problems. We denote by DM

the set of possible values of the parameter α

DM = {αi = α0q
i, i = 0, 1, ...,M}, q > 1.

Then the selection of the numerical value i+ for the parameter α according to the balancing
principle is performed using the rule

i+ = max{i : αi ∈ D+

M}, (2.9)

where

D+

M = {αi ∈ DM : ‖xi − xj‖ 6
(3cq + 1)c1zδ

αi

, j = 0, 1, ..., i− 1}

for some constant cq = qj−i.
In this paper, we apply the balancing principle to choose the regularization parameter in

approximately solving (2.1) by the iterative process (2.6). Our task is to prove the optimality
of the method under consideration and to find the number of iterations (2.6) required for a
given accuracy.

3. Optimality theorem

The following theorem shows that if α and δ are correlated according to the balancing
principle, then the method (2.6) is optimal in order.

Theorem 3.1. Assume that the operator F of Eq. (2.1) is monotone and condition (2.3)
takes place. If the solution x† satisfies condition (2.5), then choosing the index i+ according
to (2.9) ensures that method (2.6) is optimal in order, i.e., the following bound holds:

‖x† − xi+‖ 6
cδ

αopt

= cϕ(αopt), (3.1)

where the constant c is independent of δ.

Proof. The proof of this theorem is based on the technique used in Theorem 3.1 of [6].
Introduce the index

i⋆ = max{i : αi ∈ D⋆
M}, (3.2)

where

D⋆
M = {αi ∈ DM : ϕ(αi) 6

c1zδ

αi

}.
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Then for all numbers j 6 i⋆, taking into account (2.8), (3.2), the monotonicity property
of the function ϕ(λ), and the relation α⋆ = αjq

i⋆−j we have

‖xj − xi⋆‖ 6 ‖x† − xj‖+ ‖x† − xi⋆‖

6 ϕ(αj) +
c1zδ

αj

+ ϕ(αi⋆) +
c1zδ

αi⋆

6 ϕ(αi⋆) +
c1zδ

αj

+ ϕ(αi⋆) +
cqc

1
zδ

αj

6 2ϕ(αi⋆) +
(1 + cq)c

1
zδ

αj

6
2cqc

1
zδ

αj

+
(1 + cq)c

1
zδ

αj

6
(3cq + 1)c1zδ

αj

,

where cq = qj−i⋆ 6 1.
Therefore, using the definition of the set D+

M in (2.9) and the above relation, we obtain
that αi⋆ ∈ D+

M and

i⋆ 6 i+. (3.3)

Then from (2.5) and (3.3) it follows that

‖x† − xi+‖ 6 ‖x† − xi⋆‖+ ‖xi⋆ − xi+‖ 6
2c1zδ

αi⋆

+
4c1zδ

αi⋆

=
6c1zδ

αi⋆

. (3.4)

Since (3.2) holds only for i < i⋆ and δ = c1zϕ(αopt)αopt by the definition of αopt we obtain
that for the next element qαi⋆ > αi⋆ the following relation holds:

ϕ(qαi⋆)qαi⋆ > c1zδ = c1zϕ(αopt)αopt > ϕ(αopt)αopt. (3.5)

From (3.5) in view of the monotonicity of the function ϕ it follows that

αopt < qαi⋆ . (3.6)

Substituting (3.6) into (3.4) we obtain that

‖x† − xi+‖ 6
6δc1z
αi⋆

=
6qδc1z
qαi⋆

<
6qc1zδ

αopt

,

which proves the statement.

4. Discussion

4.1. Fixed-point iteration

Next we find the value of γ guaranteeing that the mapping Gα given in the form (2.6) is
contractive, and find the convergence rate of the fixed-point iterations.

Note that the operator F + αI acting in the Hilbert space X is strictly monotone, i.e.,
the following relation takes place for all α > 0:

((F + αI)(x)− (F + αI)(y), x− y) > α‖x− y‖2, x, y ∈ X. (4.1)
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Theorem 4.1. Let the operator F + αI be strictly monotone and Lipschitz-continuous.
Moreover, assume that γα < 1. Then the operator Gα is contractive with the constant β =
√

(1− αγ)2 + γ2R2 if γ < 2α
α2+R2 ,and the following bound takes place:

‖xδ
αi
− xi‖ 6

βk||x1 − x0||
1− β

. (4.2)

Bound (4.2) attains the best value at γ = α
α2+R2 and β = R√

α2+R2
.

Proof. To prove this statement for any x, y ∈ D(Gα), we write the expression ||Gα(x)−
Gα(y)||2 in the following form:

‖Gα(x)−Gα(y)‖2 = ‖(1− αγ)(x− y)− γ(F (x)− F (y))‖2
= ((1− αγ)(x− y)− γ(F (x)− F (y)), (1− αγ)(x− y)− γ(F (x)− F (y)))

= (1− αγ)2‖x− y‖2 − 2(1− αγ)γ(F (x)− F (y), x− y) + γ2‖F (x)− F (y)‖2.
(4.3)

If γ < 1/α, due to the monotonicity of the operator F , the second term in (4.3) is nonpositive.
Therefore, from (4.3) it follows that

‖Gα(x)−Gα(y)‖2 6 (1− αγ)2‖x− y‖2 + γ2‖F (x)− F (y)‖2. (4.4)

Next, using (2.3) we obtain

‖Gα(x)−Gα(y)‖2 6 [(1− αγ)2 + γ2R2]‖x− y‖2. (4.5)

Thus, the Lipschitz constant β for mapping Gα has the form

β =
√

(1− αγ)2 + γ2R2. (4.6)

Let us find the value of γ guaranteeing that the expression on the right-hand side of (4.6)
is less than one. Recall that the condition γ < 1/α has already been enforced. It is easy to
see that β < 1 if the following condition holds:

γ <
2α

α2 +R2
. (4.7)

Thus, by the fixed point theorem [4, section 4.3.4], the sufficient condition for the con-
vergence of the fixed point method to the solution of Eq. (2.4) is satisfied by selecting γ in
the form

γ < min{ 1
α
,

2α

α2 +R2
}. (4.8)

Besides, the solution of (2.6) is unique for each positive α, and (4.2) holds.
The next question we address is, which γ value results in the fixed point method with

the fastest convergence, i.e., we need to find γ = γmin minimizing the expression in (4.6).
We obtain

γmin =
α

α2 +R2
. (4.9)

It is evident that the given value of γ satisfies bound (4.8). The corresponding value for
βmin is

βmin =
R√

α2 +R2
. (4.10)

Finally, the rate of convergence of the fixed-point method is determined by (4.2).
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Corollary 4.1. As follows from Theorem 4.1, the number of iterations required to achieve
some accuracy ǫ can be determined as follows:

Niter 6 logβ
ǫ(1− β)

‖x1 − x0‖
. (4.11)

This number depends on the contractive coefficient β and the value of ‖x1 − x0‖. As
observed from the numerical experiments, bound (4.11) is a very rough estimate, especially
for small α.

We propose to estimate the number of the remaining iterations after each step by the
following formula:

Nn
iter = logβ

ǫ(1− β)

‖xn − xn−1‖
. (4.12)

As soon as the value of Nn
iter is smaller than one, the computation by the fixed-point method

is stopped. It appears that the number of necessary iterations may be smaller compared to
bound (4.11).

Remark 4.1. If the conditions of Theorem 4.1 are satisfied not for the entire domain
D(F ), but only for all x, y ∈ Br(x

†), where r = 2(δ/α + ‖x† − x0‖), then it is easy to show
that Theorem 4.1 also holds true.

4.2. General source condition

In this section, we establish additional assumptions to guarantee condition (2.5). Let us
introduce the smoothness properties of the minimal-norm solution given in terms of the
general source condition.

Assumption 1. (A1) Let there exist such v that the relation

x0 − x† = φ(F ′(x†))v (4.13)

holds, where the index function φ, φ(0) = 0 is a continuous nondecreasing function defined
on some interval [0, σ] containing the spectrum of F ′(x†).

It is known that for the optimal accuracy of the regularization method the index function
φ should be covered by the qualification of the regularization method. For the Lavrentiev
method under consideration, denote the qualification by ρ(α).

The theory states that the considered method has a low qualification in the case of
φ(λ) = λp, namely ρ(α) := αp, 0 < p 6 1. Thus, if 0 < p 6 1, then the accuracy of the

method is bounded by the value O(δ
p

p+1 ), but in the case of a sufficiently smooth solution,
i.e., p > 1, one obtains only an order of accuracy δ1/2. At the same time, in the case of
φ(λ) = ln−p(λ)−1, the qualification is given by ρ(α) := ln−p(α)−1, where p > 1. Hence we
obtain a convergence with the rate O(ln−p(δ−1)) for any p > 1.

Now, based on definition 2 in [7], we make the following assumption:
Assumption 2. (A2) Let there exist æ > 0, such that the relation

æ
ρ(α)

φ(α)
6 inf

α6λ6σ

ρ(λ)

φ(λ)
, 0 < α 6 σ. (4.14)

takes place.
In addition, we should make one more assumption concerning the Frechet derivative F ′(x)

introduced in [9].
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Assumption 3. (A3) Let there exist a constant k0 > 0 such that for all x ∈ D(F )
and ω ∈ X there is some element k(x, x†, ω) ∈ X with the property

[F ′(x)− F ′(x†)]ω = F ′(x)k(x, x†, ω) and ‖k(x, x†, ω)‖ 6 k0‖ω‖.

Proposition 4.1. Let assumptions A1, A2, A3 be satisfied. Then for all α > 0

‖xα − x†‖ 6 (1 + k0)æ
−1‖v‖φ(α). (4.15)

Proof. We will use the scheme from the proof of Theorem 3.3 in [9]. We introduce the
auxiliary operator

Lα =

∫

1

0

F ′(x† + t(xα − x†))dt

and the following notations:

A = F ′(x†), Kα = α(A+ αI)−1.

From the Lagrange theorem in integral form we have F (xα)− F (x†) = Lα(xα − x†), hence,
Eq. (2.4) can be written in the form

Lα(xα − x†) + α(xα − x†) = α(x0 − x†).

From the monotonicity of (2.2) it follows that the operators (Lα+αI) and (A+αI)−1 exist.
Then using A1 and the relations AKα = KαA and ALα = LαA, we obtain

xα − x† = (Lα + αI)−1α(x† − x0) = α(A+ αI)−1φ(A)v + α[(Lα + αI)−1 − (A+ αI)−1]φ(A)v

= Kαφ(A)v + (Lα + αI)−1(A− Lα)Kαφ(A)v.

Next we use Proposition 3 from [7]. According to this proposition, one can obtain that
for any decreasing function f(λ) satisfying A2 the following relation holds:

sup
06λ6σ

∣

∣

∣

∣

(

1− λ

α + λ

)

f(λ)

∣

∣

∣

∣

= α sup
06λ6σ

|(α + λ)−1f(λ)| 6 æ−1f(α).

Then, taking into account the inequality above and A3, we obtain

‖xα − x†‖ 6 ‖Kαφ(A)v‖+ ‖(Lα + αI)−1Lαk(x, x
†, ω)Kαφ(A)v‖

6 ‖Kαφ(A)v‖+ k0‖(Lα + αI)−1Lα‖‖Kαφ(A)v‖
6 æ−1φ(α)‖v‖+ k0æ

−1φ(α)‖v‖ = æ−1(1 + k0)‖v‖φ(α),

which proves the theorem.

Remark 4.2. From proposition 4.1 it follows that ϕ(α) = æ−1(1 + k0)‖v‖φ(α).

4.3. Numerical example

To show the efficiency of the proposed combination of (2.6) and (2.9), we apply our method
to the nonlinear equation from [4, §8.1]. Consider the operator F acting in the Hilbert space
L2(0, 1) in the following way:

F (x) :=

∫

1

0

R(t, s)x3(s)ds = f(t), (4.16)
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where

R(t, s) =

{

s(1− t), 0 6 s 6 t 6 1,
t(1− s), 0 6 t 6 s 6 1.

First we check that the operator F is monotone. Indeed, since the function x3(t) is increasing
on all real axes and R(t, s) > 0 for all 0 6 t, s 6 1, the following relation holds for all
x(t), y(t) : x(t) > y(t):

(F (x)− F (y), x− y) =

∫

1

0

[
∫

1

0

R(t, s)(x3 − y3)(s)ds

]

(x− y)(t)dt > 0.

The Frechet derivative of F at a point is given by x†

F ′(x†)h(s) = 3

∫

1

0

R(t, s)(x†(s))2h(s)ds.

In our computations, we use the following function for the exact solution:

x†(t) = t3

It is easy to check that if x0(t) = t3 − 3/56t8 + 3/56t, then for ν = 1 the function x0 − x†

satisfies the sourcewise condition

x0 − x† = (F ′(x†))νω.

So, we expect to obtain the rate of convergence O(δ
1

2 ).
There are two possible strategies for applying the balancing principle.

• Test the condition

‖xi − xj‖ 6
(3cq + 1)c1zδ

αi

, j = 0, 1, ..., i− 1, (4.17)

starting from a small α0 and going forward to αk = α0q
k;

• Test condition (4.17) starting from a large value αM and continuing to a smaller reg-
ularization parameter αM−k = αMq−k.

In [6], it was noted that the second strategy is more practical. At the same time there
appears to be a problem with the size of the grid M , i.e., how small should the parameter
α0 be? Since we expect to obtain an error bound of order

√
δ, we choose the parameter α0

in the form
α0 = C

√
δ, (4.18)

where C is some constant. Accordingly, the size of the grid M equals

M = logq
αM

C
√
δ
. (4.19)

The following algorithm is a realization of our method:

1. Choose a sufficiently big αM = 1 and q = 1.25, C = 0.8. This allows to define the grid

DM = {αi = α0q
i, i = 0, 1, ...,M}.
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2. Compute the approximation xi of the equation

(A+ αiI)x = fδ + αix
′, (4.20)

with the accuracy czδ/αi for i = M − 1, ..., 0.

3. For i = M,M−1, ..., 1 check condition (4.17). As soon as for some i = i+ this condition
is satisfied, the test is stopped. Output the element xi+ as an approximate solution of
Eq. (4.20) .

The test computations were performed to find the solution of Eq. (4.16) with error levels
corresponding to the data noise of 2% to 7%. The Lipschitz constant R equals approximately
0.21 for all cases. The results of the test computations are presented in Table 1, where the
column named “error” contains the accuracy of approximation in L2(0, 1) metrics. From the
log− log scale we estimated the convergence rate for our method to be O(δ0.21). The plots of
the exact solution (bold line) and the approximate solution obtained for δ = 5% are shown
in Fig. 1. Table 2 reports the numerical results for δ = 5%. In this table, the column labeled
as “iter2” gives the number of iterations carried out for achieving accuracy (2.7) by (4.12),
and the column “iter1” shows the number of iterations according to (4.11).

Table 4.1. Dependence of the error of approximation on the noise level on the right-hand side

δ error α

2%(0.000085) 0.018035 0.0863

3%(0.00013) 0.0204 0.16514

4%(0.0017) 0.02175 0.298

5%(0.00215) 0.022066 0.4164
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Table 4.2. Number of iterations computed using (4.11) and (4.12) for some values of α

α iter1 iter2

0.213 6 4

0.17055 9 5

0.13644 12 8

0.087 27 15

0.045 89 29

0.0229 293 84

0.01465 619 197
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