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On the Recovery of Continuous Functions
from Noisy Fourier Coefficients

Kosnazar Sharipov

Abstract — We consider the classical ill-posed problem of the recovery of continuous
functions from noisy Fourier coefficients. For the classes of functions given in terms of
generalized smoothness, we present a priori and a posteriori regularization parameter
choice realizing an order-optimal error bound.
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1. INTRODUCTION

Let L2 = L2(Ω) be the space of real-valued functions which are Lebesgue square summable
(integrable) on a compact measurable space Ω. Denote by C = C(Ω) the space of
continuous functions on Ω.

Assume that the system of functions {ϕk(t)}∞k=1 is orthonormal in L2 with respect to
the standard scalar product 〈·, ·〉 , and

∞∑
k=1

yk · ϕk(t)

is a Fourier series of the function y(t) ∈ C.
Suppose that instead of coefficients yk their approximate values are given, i.e., we consider

a sequence of numbers
yδ :=

{
yδ,k
}∞
k=1

,

such that

yδ,k := yk + δ · ξk, k = 1, 2, ...,

where ξ := {ξk}∞k=1 is the noise. It is assumed that δ ∈ (0, 1) and

‖ξ‖l2 :=

[ ∞∑
k=1

|ξk|2
]1/2

6 1.

As noted in [8], [9], recovery of the function y(t) at any point from the approximate
values of its Fourier coefficients is ill-posed, i.e., by direct summation of series

∞∑
k=1

yδ,k · ϕk(t)
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we cannot obtain the recovery of the function with necessary order of accuracy.
This problem was studied by many authors, for example, in [1], [2], [3], [8], [9]. In

[8] a stable method of summation was proposed. Stability of the method was shown for
an example using a series of eigenfuntions of the first boundary problem for an ordinary
differential equations. In [9] convergence and in [8] stability of the method were shown in
the case of an arbitrary orthonormal system {ϕk(t)}∞k=1 on the class of functions for which

∞∑
k=1

〈y, ϕk〉2 · ψk <∞

where {ψk}∞k=1 is the sequence of positive numbers. The order of growth of these numbers
as k →∞ is not less than k2+ε, ε > 0.

Continuing the approach from [9], in this paper the smoothness of the function y(t) is ex-
pressed in terms of spaces Wψ

2 associated with the given orthonormal system {ϕk}∞k=1,
i.e.,

Wψ
2 :=

{
y ∈ L2(Ω) : ‖y‖2ψ =

∞∑
k=1

ψ2(k) · |〈, y, ϕk〉|
2
<∞

}
,

where ψ(k) is some monotonically increasing function.
In a particular case, using ψ(k) = kµ we get the space

W µ
2 :=

{
y ∈ L2(Ω) : ‖y‖2µ =

∞∑
k=1

k2µ · |〈y, ϕk〉|
2
<∞

}
.

These spaces were considered by P.Mathe and S.Pereverzev in [5].
Let us consider in more detail the method of investigation as in [5]. Consider the following

example.

Example 1.1. For a trigonometric system and integer µ, the space W µ
2 consists of

periodic functions which have square summable derivatives up to the order µ.
Let {ϕk}∞k=1 be a system of Legendre polynomials, then the respective space W µ

2

consists (see [7], [10]) of the functions y(t) for which the derivatives y(i), i = 1, 2, ..., µ− 1
are absolutely continuous on each [a, b] ⊂ (0, 1) and

1∫
0

|y(µ)|2 · tµ · (1− t)µdt <∞.

This means that the highest derivative y(µ) may have singularities at the points 0 and 1.
Il’in and Pozniak [3] have proved for the trigonometric system that for the case

|〈y, ϕk〉| = O(k−p), p > 1 + s/2, s > 1/2

and the Tikhonov regularization

Tα,s(yδ) :=
∞∑
k=1

yδ,k
1 + α · k2s

· ϕk (1.1)

yields
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‖y − Tα,s‖C 6 c ·
(√

α +
δ

α

)
. (1.2)

Here and throughout the paper c denotes constants that can vary from appearance to ap-
pearance. In [1], such an estimate was obtained for more general case of any orthonormal
system with uniformly bounded functions

‖ϕk‖C 6 c. (1.3)

Note that the uniform boundary condition is not fulfilled for such an important case as
the system of Legendre polynomials.

We emphasize that the optimal choice of the regularization parameter α, or the dis-
cretization level n, which depends on the noise level δ, is one of the major topics within the
theory of ill-posed problems. It is easy to see that the optimal estimate (1.2) is obtained
when α0 = δ2/3

‖y − Tα0,s‖C 6 c · δ1/3.

Note that from [1], [3] it is not clear whether this estimate will improve with increasing
smoothness of the function y.

This question will be researched in the present paper.
As in [5], we consider general summation methods determined by

T λn (yδ) :=
n∑
k=1

λnk · yδ,k · ϕk, (1.4)

where λ = {λnk ; k = 1, 2, ..., n; n ∈ N} is a certain triangular array. Such summation
methods are called λ-methods (see [4]), and play an important role in the Fourier series
theory. The quality of the summation methods T λn (yδ) depends on the truncation level n
and on the properties of λ = {λnk ; k = 1, 2, ..., n; n ∈ N}.

To describe these properties, we will assume that there is a constant c and some θ such
that

|1− λnk | 6 c ·
(
k

n

)θ
, 1 6 k 6 n, n ∈ N. (1.5)

In this case, we say that T λn is of the degree θ. From the examples in [5] it is seen that
assumption (1.5) is rather natural. In particular, (1.5) holds for the Tikhonov regularization
(1.1). It is easy to see that Tα,s(yδ) as α = α(n) 6 c · n−ρ has degree 2s, if ρ > 2s
and 0, if ρ < 2s.

Moreover, we indicate the Bernstein-Rogozinsky summation method with the trigono-
metric orthonormal system, where λn2l := λn2l−1 := cos πl

2m
, l = 0, 1, ...,m; n = 2m + 1.

Since

|1− λn2l| = |1− λn2l−1| =
∣∣∣∣1− cos

πl

2m

∣∣∣∣ = 2 · sin2 πl

2m
6
π2

8
·
(
l

m

)2

,

one can see that the Bernstein-Rogozinsky method has degree θ = 2 .
We say that an orthonormal system {ϕk(t)}∞k=1 belongs to the class (Kβ), if

‖ϕk‖C � kβ, k = 1, 2, ...
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for some β > 0.
The trigonometric orthonormal system has the property (Kβ) for β = 0, and thus

satisfies (1.3) considered in [1], [3]. Where as the system of Legendre does not satisfy (1.3),
and belongs to class (Kβ) with β = 1.

In this paper, we consider orthonormal systems {ϕk(t)}∞k=1 belonging to the class (Kβ)
. Note that we thus significantly expand the analysis of the considered problem as compared
to [1], [3], where the case of a uniform bounded system, i.e., β = 0 was considered. However,
a much more important fact is that we consider a generalized smoothness expressed in terms
of spaces Wψ

2 , where, as in the previous investigations [1], [2], [3], [5], only smoothness
measured on the power scale, i.e., ψ(k) = kµ was considered. Another novelty of this
paper is that in contrast to [1], [2], [3], [5] we investigate the choice of the regularization
parameter practically of the most important case where the smoothness of the recoverable
function is unknown.

2. The case of the known smoothness

In this section, we investigate the case where the function ψ describing the smoothness of
the recoverable function y is known a priori.

First, we will prove the following lemma.

Lemma 2.1. Let {ϕk(t)}∞k=1 belong to the class (Kβ) and y ∈ Wψ
2 , where the function

ψ(k) increases faster than kp for p > β + 1/2 . Then the inequality∥∥∥∥ ∞∑
k=n+1

〈y, ϕk〉ϕk
∥∥∥∥
C

6 c1 ·
(n+ 1)β+1/2

ψ(n+ 1)
· ‖y‖ψ.

holds.

Proof. Let us recall yk = 〈y, ϕk〉. Applying the Cauchy-Schwarz inequality, we have the
following estimate:∥∥∥∥ ∞∑

k=n+1

ykϕk

∥∥∥∥
C

6
∞∑

k=n+1

kp · 1

|ψ(k)|
· |ψ(k)| · |yk| ·

‖ϕk‖C
kp

6 c · (n+ 1)p

ψ(n+ 1)
·
[ ∞∑
k=n+1

|ψ(k)|2 · |yk|2
]1/2
·
[ ∞∑
k=n+1

1

k2p−2β

]1/2
6 c1 ·

(n+ 1)β+1/2

ψ(n+ 1)
· ‖y‖ψ.

Here we have used the fact that the sequence kp

ψ(k)
, k = n + 1, ...., is unincreasing. The

proof is completed.

Theorem 2.1. Let {ϕk(t)}∞k=1 belong to the class (Kβ) and T λn (yδ) be any summation
method (1.4) of degree θ. If ψ(k) increases not faster than kθ and increases faster than
kp for p > β + 1/2, then for n � ψ−1(1/δ) we have the estimate

sup
‖y‖ψ61

sup
‖ξ‖l261

∥∥∥y − T λn (yδ)
∥∥∥
C
6 c · δ ·

[
ψ−1(1/δ)

]β+1/2

, (2.1)

where c does not depends on δ.
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Proof. For any summation method T λn (yδ) we have

∥∥∥y − T λn (yδ)
∥∥∥
C
6

∥∥∥∥ n∑
k=1

(1− λnk) · yk · ϕk
∥∥∥∥
C

+

∥∥∥∥ ∞∑
k=n+1

yk · ϕk
∥∥∥∥
C

+ δ ·
∥∥∥∥ n∑
k=1

λnk · ξk · ϕk
∥∥∥∥
C

. (2.2)

The first and last summands in (2.2) can be estimated by using the Nikolski type inequality
for any polynomials with respect to the system {ϕk}∞k=1∥∥∥∥ n∑
k=1

ak · ϕk
∥∥∥∥
C

6 c ·
n∑
k=1

|ak| · kβ 6 c ·
[ n∑
k=1

|ak|2
]1/2
·
[ n∑
k=1

k2β
]1/2

6 c · nβ+1/2 ·
[ n∑
k=1

|ak|2
]1/2
·

Then for the last summand in (2.2) we have∥∥∥∥ n∑
k=1

λnk · ξk · ϕk
∥∥∥∥
C

6 cλ · ‖ξ‖l2 · nβ+1/2. (2.3)

Note that the constant in (2.3) depends only on the method T λn , and it can be effectively
computed.

The first summand in (2.2) can be estimated as∥∥∥∥ n∑
k=1

(1− λnk) · yk · ϕk
∥∥∥∥
C

6 c · nβ+1/2 ·
[ n∑
k=1

( k
n

)2θ
· 1

ψ2(k)
· ψ2(k) · |yk|2

]1/2
6 c2 · nβ+1/2 ·

[ n∑
k=1

max
16k6n

(
kθ

ψ(k)

)2

· 1

n2θ
· ψ2(k) · |yk|2

]1/2
= c2 · nβ+1/2 ·

[ n∑
k=1

n2θ

ψ2(n)
· 1

n2θ
· ψ2(k) · |yk|2

]1/2
= c2 ·

nβ+1/2

ψ(n)
· ‖y‖ψ.

(2.4)

The middle summand in (2.2) was estimated in Lemma 2.1, that finally leads to the
inequality ∥∥∥∥y − n∑

k=1

λnk · yδ,k · ϕk
∥∥∥∥
C

6 nβ+1/2 ·
[
c1 + c2
ψ(n)

+ cλ · δ
]
· ‖y‖ψ. (2.5)

We choose n such that c1+c2
ψ(n)

� cλ · δ , consequently n � ψ−1(1
δ
). Then we have the following

estimate

sup
‖y‖ψ61

sup
‖ξ‖l261

∥∥∥y − T λn (yδ)
∥∥∥
C
6 c · δ ·

[
ψ−1

(1

δ

)]β+1/2

(2.6)

where the constant c depends on c1, c2 and cλ.

The proof is completed.

Note that estimate (2.1) in terms of the functions ψ is new. In the case of the power
function ψ(k) = kµ, estimate (2.1) coincides with the assertion of Theorem 3.1 from [5].
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3. The case of the unknown smoothness

In the previous section, we have proved the error estimation for the constructed function
T λn (yδ) in terms of ψ. In practice, we have chosen n � ψ−1(1

δ
). Recall that ψ describes the

smoothness of the recoverable function y. In practice, this information is often unavailable.
The problem is to choose n without the knowledge of ψ but with the same order of accuracy
δ · [ψ−1(1

δ
)]β+1/2. This section is devoted to the solution of this problem where we use the

idea from [6].
Let us introduce the following set:

M? :=
{
n :

c1 + c2
ψ(n)

6 cλ · δ
}

and the number
n? := min

{
n : n ∈M?

}
,

where c1, c2, cλ are constants that appear in the estimates (2.2)-(2.5).

Lemma 3.1. For a sufficiently small δ ∈ (0; 1), we have the inequality

nβ+1/2
? 6 cβ ·

[
ψ−1

( 1

δ

)]β+1/2

,

where the constant cβ depends only on β.

Proof. Denote

nopt = ψ−1
( 1

δ

)
.

It is obvious that
n? − 1 6 nopt 6 n?.

Consequently,

nβ+1/2
? 6

(
nopt + 1

)β+1/2
=

[
ψ−1

( 1

δ

)
+ 1

]β+1/2

by the assumption ψ−1
(

1
δ

)
> 1, from this it follows that

nβ+1/2
? 6 2β+1/2 ·

[
ψ−1

( 1

δ

)]β+1/2

= cβ ·
[
ψ−1

( 1

δ

)]β+1/2

.

The lemma is proved.

It is obvious that from n ∈ M? and m > n follows m ∈ M?. Then by virtue of
(15) we have∥∥∥T λn (yδ)− T λm(yδ)

∥∥∥
C
6
∥∥∥y − T λn (yδ)

∥∥∥
C

+
∥∥∥y − T λm(yδ)

∥∥∥
C

6

[
c1 + c2
ψ(n)

+ cλ · δ
]
· nβ+1/2 · ‖y‖ψ +

[
c1 + c2
ψ(m)

+ cλ · δ
]
·mβ+1/2 · ‖y‖ψ

6
[
2 · cλ · δ · nβ+1/2 + 2 · cλ · δ ·mβ+1/2

]
· ‖y‖ψ 6 4 · cλ · δ ·mβ+1/2 · ‖y‖ψ.

Now let us introduce the set
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M+ :=
{
n : ∀m > n

∥∥∥T λn (yδ)− T λm(yδ)
∥∥∥
C
6 4 · cλ · δ ·mβ+1/2 · ‖y‖ψ

}
and the number

n+ := min
{
n : n ∈M+

}
.

Note that the number n+ can be found without the knowledge of the function ψ describing
the smoothness of the recoverable function y ∈ Wψ

2 . However, there is the following theorem.

Theorem 3.1. Under the conditions of Theorem 2.1 for any functions y ∈ Wψ
2∥∥∥y − T λn (yδ)

∥∥∥
C
6 ĉ · δ ·

[
ψ−1

( 1

δ

)]β+1/2

· ‖y‖ψ,

where ĉ does not depend on δ.

Proof. Let us show that for any p ∈M? it follows that p ∈M+. Let s > p. Then∥∥∥T λs (yδ)− T λp (yδ)
∥∥∥
C
6
∥∥∥y − T λs (yδ)

∥∥∥
C

+
∥∥∥y − T λp (yδ)

∥∥∥
C

6

[
(c1 + c2) · sβ+1/2

ψ(s)
+ cλ · sβ+1/2 · δ +

(c1 + c2) · pβ+1/2

ψ(p)
+ cλ · pβ+1/2 · δ

]
· ‖y‖ψ

6 4 · cλ · sβ+1/2 · δ · ‖y‖ψ.

Consequently, p ∈M? . This means that

M? ⊆M+.

Then it is obvious that
n+ 6 n?.

Further we have∥∥∥y − T λn+
(yδ)

∥∥∥
C
6
∥∥∥y − T λn?(yδ)∥∥∥

C
+
∥∥∥T λn?(yδ)− T λn+

(yδ)
∥∥∥
C

6

[
(c1 + c2) · nβ+1/2

?

ψ(n?)
+ cλ · δ · nβ+1/2

? + 4 · cλ · δ · nβ+1/2
?

]
· ‖y‖ψ

6 6 · cλ · δ · nβ+1/2
? · ‖y‖ψ.

Taking into account Lemma 2, from this we have the estimate∥∥∥y − T λn+
(yδ)

∥∥∥
C
6 6 · cλ · cβ · δ ·

[
ψ−1

( 1

δ

)]β+1/2

· ‖y‖ψ,

which corresponds to the assertion of the theorem at ĉ = 6 · cλ · cβ.
Note that the choice of the parameter n = n+ yields estimate (2.6) with the optimal

order of accuracy δ ·
[
ψ−1(1/δ)

]β+1/2
. In contract to Theorem 2.1, the choice of n = n+ can

be realized without the knowledge of the smoothness of the recoverable function. We also
note that this way of adaptively choosing the regularization parameter was not considered in
the earlier papers [1], [2], [3], [5], [8], [9] that examined the recovery of continuous functions
from noisy Fourier coefficients.
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