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Quasi-optimality of an Adaptive Finite
Element Method for an Optimal Control

Problem

Roland Becker · Shipeng Mao

Abstract — We prove quasi-optimality of an adaptive finite element algorithm for a
model problem of optimal control including control constraints. The quasi-optimility
expresses the fact that the decrease of error with respect to the number of mesh cells is
optimal up to a constant. The considered algorithm is based on an adaptive marking
strategy which compares a standard residual-type a posteriori error estimator with a
data approximation term in each step of the algorithm in order to adapt the marking
of cells.
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Introduction

We consider a model problem of optimal control, the solution of which is approximated by
an adaptive finite element method. The analysis of adaptive finite element methods has
made important progress in recent years. Based on classical residual-based a posteriori error
estimators [2, 11, 21] it has been shown by Dörfler [10] and Morin, Nochetto, and Siebert [18]
that an adaptive mesh refinement algorithm converges towards the solution of the Poisson
equation. An important further result is the estimation of the dimension of the adaptively
constructed discrete spaces by Binev, Dahmen, and DeVore in [5], and Stevenson [20]. The
importance of these contributions lays in the fact that they prove quasi-optimality in the
following sense: if the solution of the problem can be approximated by the given discretization
method on a given family of meshes at a certain rate, the iteratively constructed sequence
of meshes will realize this rate up to a constant factor.

In this work, we present an adaptive finite element method for an optimal control prob-
lem. Our approach is based on continuous finite elements of fixed degree on locally refined
triangular meshes. Following the idea of [4], we use an adaptive marking strategy which
either performs the refinement according to a standard residual-type estimator or according
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to a data approximation term. From a computational point of view, the resulting algorithm
is simpler than the MNS algorithm [18], which is underlaying the work of [12], where conver-
gence for an optimal control problem similar to the one considered here is shown. Improving
upon the known results in the literature, we prove convergence and optimal complexity of
the adaptive algorithm without assuming the interior node property of the local refinement
algorithm, as is done in [12], for example. The optimality proof, which seems to be new for
optimal control problems, is our main contribution, since it gives a rigorous justification of
adaptive finite element algorithms in comparison with non-adaptive methods.

The paper is organized as follows: After introduction of the optimal control problem and
its discretization on a single mesh in Sections 1 and 2, in Section 3 we define the adaptive
algorithm. In Section 4 we establish some lemmata, which are used later on. Section 5 is
devoted to the proof of geometrical convergence of the error of the adaptive algorithm under
natural assumptions. In Section 6 we prove an asymptotic estimate for the complexity of
the sequence of meshes. Finally, we report on some numerical experiments in Section 7.

Throughout the paper we use the following notation. For the norm of the standard

Sobolev space H1
0 (Ω) we write |u|1 :=

(∫
Ω
|∇u|2 dx

)1/2
. The L2(A)-scalar product and norm

are denoted by 〈·, ·〉A and ‖ · ‖A, respectively, omitting the subscript in case A = Ω, for
either a measurable subset A ⊂ Ω or for an edge of a finite element mesh (with obvious
modification of the measure).

We work with families of shape regular triangular meshes in the sense of [8]. We denote
by h a mesh in a family of admissible meshes H, and by uh the corresponding finite element
solution. The set of cells of mesh h is denoted by Kh, the diameter of K ∈ Kh is denoted by
ρK , and in addition we define ρ(h) := maxK∈Kh ρK . As compared to standard notation in
finite element literature, h denotes a mesh in a family of meshes H and not a global maximal
cell width.

1. The optimal control problem

Let Ω ⊂ R2, be a bounded domain with polygonal boundary ∂Ω. Let ΩB ⊂ Ω and ΩC ⊂ Ω
be polygonal subdomains. Further let f ∈ L2(Ω) and α > 0 be given. We consider the
following optimization problem:

inf
q∈L2(ΩB),u∈H1

0 (Ω)

α

2
‖q‖2

ΩB
+

1

2
‖u‖2

ΩC
subject to:

−∆u = f + q in ΩB, −∆u = f in Ω \ ΩB, u = 0 on ∂Ω,

q > 0 a.e. ΩB.

(1.1)

This is a linear-quadratic problem. Denoting by B : L2(ΩB) → L2(Ω) the trivial extension
operator, we may alternatively write the state equation as

−∆u = f +Bq in Ω, u = 0 on ∂Ω. (1.2)

The state equation can be used to eliminate the state variable, such that we end up with
the minimization of a quadratic functional in the control variable q alone. Although con-
ceptionally important, such a formulation hides the main difficulty inherent to optimization
problems containing a partial differential equation as constraint: the discretization of the
state equation.
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We remark that α > 0 is necessary for well-posedness. However, in case of finite-
dimensional controls (where q is sought in the linear space spanned by given functions
ψi ∈ L2(ΩB), i = 1, . . .m), α = 0 may lead to a well-posed minimization problem. This
case will be addressed elsewhere. Here we suppose α > 0.

More general linear-quadratic optimal control problems involving non-zero observations
ud ∈ L2(ΩC), a reference control value qd ∈ L2(ΩB), and inhomogenous Dirichlet boundary
data can be directly reduced to (1.1). It is well-know that (1.1) admits a unique solution;
for this and further results concerning the solution of (1.1) we refer to [16].

Writing u(q) for the unique solution of the state equation for given control, the reduced
functional is defined as

j(q) :=
α

2
‖q‖2

ΩB
+

1

2
‖u(q)‖2

ΩC

We denote by L2
+(Ω) the cone of positive square-integrable functions. Let Q = L2

+(ΩB) be
the set of admissible controls.

In terms of the reduced functional, the optimization problem (1.1) simply reads

inf
q∈Q

j(q). (1.3)

We note that j is quadratic since q 7→ u(q) is affine-linear. Its first- and second-order
derivatives are given by

j′(q)(p) = α〈q, p〉ΩB + 〈u(q), u′(p)〉ΩC , j′′(p1, p2) = α〈p1, p2〉ΩB + 〈u′(p1), u′(p2)〉ΩC , (1.4)

where u′(p) is the solution of (1.2) with control p and f = 0.
We observe that j′′(p, p) > α‖p‖2

ΩB
such that j is strictly convex and the minimization

problem (1.3) admits a unique solution which is characterized by the variational inequality

j′(q)(p) = 〈∇j(q), p〉ΩB > 0 ∀p ∈ Q. (1.5)

Next we define the Lagrange functional by

L(q, u, z) :=
α

2
‖q‖2

ΩB
+

1

2
‖u‖2

ΩC
+ 〈f, z〉+ 〈q, z〉ΩB − 〈∇u,∇z〉.

The first-order necessary conditions, which we also call optimality system, is the variational
system

〈∇u,∇v〉 − 〈q, v〉ΩB = 〈f, v〉 ∀v ∈ H1
0 (Ω), (1.6)

〈∇v,∇z〉 − 〈u, v〉ΩC = 0 ∀v ∈ H1
0 (Ω), (1.7)

α〈q, p〉+ 〈z, p〉ΩB > 0 ∀p ∈ Q. (1.8)

Let (q, u, z) be the solution of (1.6-1.8). In addition it holds that α‖q‖2
ΩB

+ 〈z, q〉ΩB = 0.
Note that equation (1.8) simply translates the inequality j′(q)(p) = Lq(q, u, z)(p) > 0. We
have that q > 0 and αq + z > 0 almost everywhere. The variational inequality also implies
that

αq + z− = 0, (1.9)

with x+ := max(0, x) and x− := x− x+. We can use (1.9) in order to eliminate the control
variable from the system, leading to the nonlinear system of partial differential equations

−∆u = f − α−1χΩBz
−, −∆z = χΩCu, (1.10)
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which can be written after the rescaling α−1z → z as the notationally more convenient
system

−∆u = f − χΩBz
−, −∆z = α−1χΩCu. (1.11)

In order to simplify the notation, we consider in the following the reduced system (1.11).
See also [15], where the reduced system is used to derive a discrete control space adapted to
the adjoint variable via (1.9). Our results carry immediately over to this approach, but the
generalization to discretiztaion of (1.6-1.8) is also possible.

In order to simplify the exposition, we introduce some notation. Let V = H1
0 (Ω) and

define a0 : V × V → R and a : V × V → R by

a0((u, z), (v, w)) := 〈∇u,∇v〉+ 〈∇w,∇z〉+ 〈z, v〉ΩB − α−1〈u,w〉ΩC ,
a((u, z), (v, w)) := a0((u, z), (v, w))− 〈z+, v〉ΩB .

(1.12)

Then the variational problem read corresponding to (1.11) reads: Find (u, z) ∈ V × V such
that for all (v, w) ∈ V × V

a((u, z), (v, w)) := 〈f, v〉. (1.13)

Let us set for abbreviation

‖|(u, z)|‖ =
√
|u|21 + |z|21. (1.14)

The bilinear form a0 has the following stability property.

Lemma 1.1. There is a constant γis > 0 such that

sup
(v,w)∈V \{0}×V \{0}

a0((u, z), (v, w))

‖|(v, w)|‖
> γis‖|(u, z)|‖. (1.15)

Proof. Testing with (v, w) = (u, z) gives

a0((u, z), (v, w)) = |u|21 + |z|21 + 〈z, u〉ΩB − α−1〈u, z〉ΩC
> ‖|(u, z)|‖2 −

(
‖z‖ΩB‖u‖ΩB + α−1‖z‖ΩC‖u‖ΩC

)
> ‖|(u, z)|‖2 − 1

2ε
‖z‖2

ΩB
− ε

2
‖u‖2 − ε

2
‖z‖2 − 1

2εα
‖u‖2

ΩC
.

With the Poincaré inequality

‖z‖2 + ‖u‖2 6 CΩ (|u|1 + |z|1)

it follows with ε = 1/CΩ that

a0((u, z), (v, w)) >
1

2
‖|(u, z)|‖2 − 1

2ε
‖z‖2

ΩB
− 1

2αε
‖u‖2

ΩC

On the other hand, testing with (v, w) = (z,−u) leads to

a0((u, z), (v, w)) = ‖z‖2
ΩB

+ α−1‖u‖2
ΩC
.

Therefore, choosing (v, w) = (u, z) + 1
2ε

(z,−u), we have ‖|(v, w)|‖ 6 C ‖|(u, z)|‖ and

a0((u, z), (v, w)) >
1

2
‖|(u, z)|‖2.

The result follows with γis = 1/(2C).
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2. Discretization of the optimal control problem

In this Section, we consider the discretization of the optimal control problem on a fixed
triangular mesh h ∈ H. Let h be a shape-regular partition of Ω into triangles satisfying the
standard assumptions [8]. We suppose for simplicity that

⋃
K∈Kh

K covers Ω accurately, and

that there exist subsets KBh ⊂ Kh and KCh ⊂ Kh such that
⋃

K∈KBh

K = ΩB and
⋃

K∈KCh

K = ΩC ,

respectively. Finally, we denote by Nh the number of cells of mesh h ∈ H.
The finite-element spaces of Vh ⊂ H1

0 (Ω) with k > 1 is defined in standard way

Vh := {v ∈ H1
0 (Ω) : v|K ∈ P k for all K ∈ Kh}.

We denote by πh the L2-projection on the discrete space of discontinuous piecewise poly-
nomials of order k. For K ∈ Kh let πKu := (πhu)|K such that 〈u − πKu,w〉K = 0 for all
polynomials w of maximal order k.

Next we introduce the discrete system to be solved : Find (uh, zh) ∈ Vh × Vh such that

a((uh, zh), (vh, wh)) = 〈f, vh〉 ∀(vh, wh) ∈ Vh × Vh. (2.1)

The corresponding discrete control qh is obtained by qh := −z−h , which is not a member of
Vh. This approach of indirectly discretizing the control variable has been used in [15] in
order to derive a priori error estimates. If we use instead a discretization of the control space
by piecewise constants, we would end up with the relation qh = −(π0

hzh)
−, where π0

h denotes
the projection on the piecewise constants, instead.

We solve the coupled system of equations (2.1) by a semi-smooth Newton method [13],
based on the propertied of the negative-part-function, combined with a multigrid algorithm
for the linear problems arising in each iteration.

Throughout the rest of this paper, we assume that for the solution to the Poisson equation
in Ω, the regularity shift L2(Ω) → H1+τ (Ω) holds for some τ with 0 < τ 6 1. It is well-
known that τ = 1/2 for all Lipschitz domains, see for example [19]. This implies that there
exists a constant C > 0, depending only on the shape regularity of the triangulations and
f , such that for ρ(h) denoting the maximal diameter of the elements in mesh h, we have the
following relation between the L2-norm and H1-norm,

‖u− uh‖2 + ‖z − zh‖2 6 Cρ2τ (h)(|u− uh|21 + |z − zh|21). (2.2)

We will give a detailed proof of this result in the appendix.

3. Definition of the adaptive algorithm

We define the family of admissible meshes H in the following recursive way. Starting from
an initial mesh h0, we denote by Rloc(h,M) with M ⊂ Kh the mesh resulting from a local
mesh refinement algorithm which subdivides triangles in such a way that at least any edge
belonging to a cell of M is bisected. We make the following assumption concerning the
refinement algorithm.

Assumption 3.1. Let hk, k = 0, . . . n be a sequence of locally refined triangulations cre-
ated by the local refinement algorithm, starting from the initial mesh h0. LetMk ⊂ Khk , k =
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0, . . . n− 1 be the set of marked cells in step k and set Nk = #Khk . Then {hk} is uniformly
shape regular and we have

Nn 6 N0 + C
n−1∑
k=0

#Mk. (3.1)

Assumption 3.1 and especially the complexity estimate (3.1) are known to be true for the
newest vertex bisection algorithm [17], see Theorem 2.4 of [5]. It is likely to hold for other
local mesh refinement algorithms.

We now define for given h ∈ H, M⊂ Kh, and K ∈ Kh the data approximation term

µK := |K|1/2 ‖f − πKf‖K , µh(M) :=

(∑
K∈M

µ2
K

)1/2

(3.2)

and the estimator

η2
K :=

∑
E⊂∂K\∂Ω

|E|
(
‖[∂uh
∂n

]‖2
E + ‖[∂zh

∂n
]‖2
E

)

+ |K|
(
‖πKf + ∆uh − χBz−h ‖

2
K + α−1‖∆zh + α−1χCuh‖2

K

)
,

η2
h(M) :=

∑
K∈M

η2
K .

(3.3)

We set for brevity µh := µh(Kh) and ηh := ηh(Kh).
Remark 3.1. For linear finite elements, k = 1, the volume term in (3.3) can be removed,

see [7]. The quasi-optimality of the resulting AFEM for the Poisson equation has been shown
in [3].

The purpose of this article is to analyze the following adaptive finite element algorithm.
It generates sequences of meshes {hk}k ⊂ H, discrete solutions {(uk, zk)}k, errors {ek}k,
estimators {ηk}k, data approximation errors {µk}k, and sets of marked cells {Mk}k.

Remark 3.2. The refinement is only determined by the data approximation term if it is
large compared to the estimator, following the idea of [4].

Remark 3.3. The choice of parameters can be guided by our theoretical results. For our
convergence result presented below, the parameters θ, σ, and γ are arbitrary. For our proof
of quasi-optimality, we will suppose that the marking parameter θ is small enough. Such an
assumption is known from other complexity estimates [5, 20].

4. Estimates for the error, estimator, and data approximation term

For the purpose of the later convergence and complexity proofs, we collect in this section
some lemmata, which form the basis of our convergence and complexity analysis.

We first note that the error eh := (u− uh, z − zh) satisfies for all (vh, wh) ∈ Vh × Vh the
Galerkin relation

a0((u− uh, z − zh), (vh, wh)) = 〈z+ − z+
h , vh〉ΩB =: S(z, zh, vh) (4.1)

A similar relation holds for the difference between two successive meshes h and h′, eh,h′ :=
(uh′ − uh, zh′ − zh).

The right-hand-side of (4.1) is estimated in the first lemma of this section.
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Algorithm 1 AFEM

(0) Choose parameters 0 < θ, σ < 1, γ > 0, and an initial mesh h0, and set k = 0.

(1) Solve the discrete optimization problem (2.1) with h replaced by hk in order to obtain the
finite element solutions (uk, zk).

(2) Compute the estimator ηk and data approximation term µk.

(3) – If µ2
k 6 γ η2

k then find a set M⊂ Khk with minimal cardinality such that

η2
k(M) > θ η2

k. (3.4)

– else find a set M⊂ Khk with minimal cardinality such that

µ2
k(M) > σ µ2

k. (3.5)

(4) Adapt the mesh : hk+1 := Rloc(hk,M).

(5) Set k := k + 1 and go to step (1).

Lemma 4.1. Let S be the term on the right of (4.1). Then we have for all v ∈ V

|S(z, zh, v)| 6 ‖z − zh‖ΩB‖v‖ΩB . (4.2)

Proof. We first use the Cauchy-Schwarz inequality to bound |S(z, zh, v)| 6 ‖z+−z+
h ‖ΩB‖v‖ΩB .

It then remains to show that

‖z+ − z+
h ‖ΩB 6 ‖z − zh‖ΩB . (4.3)

Define ΩA := {x ∈ ΩB : z(x)zh(x) > 0}. Then∫
ΩB

|z+ − z+
h |

2 =

∫
ΩA

|z+ − z+
h |

2 +

∫
ΩB\ΩA

|z+ − z+
h |

2

6
∫

ΩA

|z − zh|2 +

∫
ΩB\ΩA

|z+ − z+
h |

2.

Now, for x ∈ ΩB \ ΩA, one of the terms z+(x) and z+
h (x) vanishes. This implies in the

case z+(x) = 0, that |z+(x) − z+
h (x)| = |zh(x)| 6 |zh(x) − z(x)|. Similarly, in the case

z+
h (x) = 0, we have by the same argument that |z+(x)− z+

h (x)| 6 |zh(x)− z(x)|. It follows
that ‖z+ − z+

h ‖ΩB\ΩA 6 ‖z − zh‖ΩB\ΩA , finishing the proof.

The upper bounds used in the analysis of the adaptive algorithms are given next.

Lemma 4.2. (Upper bounds) Under the assumption that ρ(h0) is sufficiently small,
there exists a constant C1 > 0 depending only on the minimum angle of h0 such that

‖|eh|‖2 6 C1

(
η2
h + µ2

h

)
. (4.4)

In addition, if M⊂ Kh and h′ = Rloc(h,M), there exists a subset R ⊂ Kh with

‖|eh,h′|‖2 6 C1

(
η2
h(R) + µ2

h(R) + ρ2τ (h)‖|eh|‖2
)

(4.5)
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and
#R 6 C3 #M. (4.6)

Proof. We first prove (4.4).
First, from the stability estimate (1.15), there exists (v, w) ∈ V × V with ‖|(v, w)|‖ 6 1

and
γ‖|(u− uh, z − zh)|‖ 6 a0((u− uh, z − zh), (v, w)).

With the help of (4.1) and Lemma 4.1, we get with arbitrary (vh, wh) ∈ Vh × Vh

γ‖|(u− uh, z − zh)|‖ 6 a0((u− uh, z − zh), (v − vh, w − wh)) + ‖z − zh‖ΩB‖vh‖ΩB .

Since

a0((u, z), (v − vh, w − wh)) = a((u, z), (v − vh, w − wh)) + 〈z+, v − vh〉ΩB

and similarly for a0((uh, zh), (v − vh, w − wh)), we have

a0((u−uh, z−zh), (v−vh, w−wh)) = 〈f, v−vh〉−a((uh, zh), (v−vh, w−wh))+S(z, zh, v−vh).

Therefore, we have from (4.7) and Lemma 4.1

γis‖|(u− uh, z − zh)|‖ 6〈f, v − vh〉 − a((uh, zh), (v − vh, w − wh))
+ ‖z − zh‖ΩB (‖vh‖ΩB + ‖v − vh‖ΩB) .

(4.7)

We now chose vh = Chv and wh = Chw with the Clément interpolation operator Ch = V →
Vh. It verifies the interpolation estimate

|K|−1/2 ‖v − Chv‖K + |E|−1/2 ‖v − Chv‖E 6 C |v|1,ωK

with ωK denoting the set of neighboring elements of K ∈ Kh and E ⊂ ∂K. For the last
term in (4.7), we have with (2.2)

‖z − zh‖ΩB (‖vh‖ΩB + ‖v − vh‖ΩB) 6 Cρ(h)τ |z − zh|1 6 Cρ(h0)τ‖|eh|‖. (4.8)

For the other terms on the right-hand side of (4.7) we have

〈f, v − vh〉 − a((uh, zh), (v − vh, w − wh)) = 〈f, v − Chv〉 − 〈∇uh,∇(v − Chv)〉
+ 〈∇(w − Chw),∇zh〉+ 〈z−h , (v − Chv)〉ΩB − 〈α−1uh, (w − Chw)〉ΩC

6 C

∑
K∈Kh

∑
E⊂∂K\∂Ω

|E|1/2 ‖[∂uh
∂n

]‖∂K\∂Ω|v|1,ωK

+
∑
K∈Kh

|K|1/2
(
‖f − πKf‖K |v|1,ωK + ‖πKf + ∆uh − χBz−h ‖K |v|1,ωK

)
+
∑
K∈Kh

∑
E⊂∂K\∂Ω

|E|1/2 ‖[∂zh
∂n

]‖∂K\∂Ω||w|1,ωK + ‖∆zh + α−1χCuh‖K |w|1,ωK


6 C

(
µ2
h + η2

h

)1/2 (|v|21 + |w|21
)1/2

6 C
(
µ2
h + η2

h

)1/2
,
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where we have used the shape-regularity of the mesh. This leads with, together with (4.8), to

‖|eh|‖2 6 C
(
η2
h + µ2

h + ρ(h)2τ‖|eh|‖2
)
. (4.9)

By the smallness assumption on h0 we obtain (4.4).
Now we consider (4.5). The arguments which lead to (2.2) are valid, if we replace u, z, v,

and w by uh′ , zh′ , vh′ , and wh′ , respectively. Noting that Chvh′ − vh′ and Chwh′ −wh′ vanish
on all cells, which are not neighbors of refined cells, we can take R as the setM augmented
by all its neighbors. We then obtain

‖|eh,h′ |‖2 6 C
(
η2
h(R) + µ2

h(R) + ‖zh′ − zh‖2
)
. (4.10)

By the triangle inequality, we have ‖zh′ − zh‖ 6 ‖z − zh‖ + ‖z − zh′‖ 6 2ρ(h)τ‖|eh|‖. This
yields (4.5).

The next lemma concerns a lower bound of the error for the optimal control system. The
proof is based on standard techniques for lower bounds of elliptic equations, see [21], and is
omitted here.

Lemma 4.3. (Lower bound) There exists a constant C2 > 0 depending only on the
minimum angle of h0 such that

η2
h 6 C2

(
‖|eh|‖2 + µ2

h

)
. (4.11)

The local variant of Lemma 4.3 replacing eh by eh,h′ on the right-hand side of (4.11)
only holds for certain type of mesh refinement algorithms. Therefore, we will use instead an
estimate for the decrease of the estimator under refinement, which is given next.

Lemma 4.4. (Decrease of estimator and data approximation) Let h′ = Rloc(h,M).
There exist constants C4 > 0 and ξ with 0 < ξ < 1 depending only on the minimum angle of
h0 such that for any δ > 0

η2
h′ 6 (1 + δ)η2

h − ξ(1 + δ)η2
h(M) + C4(1 + 1/δ) ‖|eh,h′|‖2 (4.12)

and

µ2
h′ 6 µ2

h − ξ µ2
h(M). (4.13)

Proof. The estimate (4.13) follows from our assumptions on the mesh refinement algorithm
and the properties of the local L2-projection.

The technique developed in [3] leads to∑
K∈Kh′

∑
E⊂∂K\∂Ω

|E| ‖[∂uh
′

∂n
]‖2
E 6 (1 + δ)

∑
K∈Kh

∑
E⊂∂K\∂Ω

|E| ‖[∂uh
∂n

]‖2
E

− 1 + δ

2

∑
K∈M

∑
E⊂∂K\∂Ω

|E| ‖[∂uh
∂n

]‖2
E + C4(1 + 1/δ) |uh′ − uh|21.

(4.14)

Indeed, for a new edge produced by the last mesh refinement we have

|E| ‖[∂uh
′

∂n
]‖2
E = |E| ‖[∂(uh′ − uh)

∂n
]‖2
E 6 C ‖∇(uh′ − uh)‖2

ωE
,
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where ωE is the patch of cells containing E. Next, for an edge which has not been refined,
since for all real numbers x, y and δ > 0 it holds (x+ y)2 6 (1 + δ)x2 + (1 + 1/δ)y2, we have

|E| ‖[∂uh
′

∂n
]‖2
E 6 (1 + δ)|E| ‖[∂uh

∂n
]‖2
E + (1 + 1/δ)|E| ‖[∂(uh′ − uh)

∂n
]‖2
E,

and the last term can be estimates as before. It remains to consider the case that an edge
E is bisected into Ei, i = 1, 2. A similar argument ad before combined with the reduction
of |E| under bisection leads to

2∑
i=1

|Ei| ‖[
∂uh′

∂n
]‖2
Ei

6 (1 + δ − 1 + δ

2
)|E| ‖[∂uh

∂n
]‖2
E + C(1 + 1/δ)|E| ‖∇(uh′ − uh)‖2

ωE
.

Putting together these estimates gives (4.14). The estimates are identical for the terms
corresponding to the jumps of the normal derivatives of zh.

It remains to bound the volume terms in similar way. We consider the term concerning
the residual of the state equation. If K 6∈ M we have

|K|‖πKf + ∆uh′ − χBz−h′‖
2
K 6 (1 + δ)|K|‖πKf + ∆uh − χBz−h ‖

2
K

+ (1 + 1/δ)|K|‖∆(uh′ − uh)‖2
K + (1 + 1/δ)|K|‖zh′ − zh‖2

K .

The first term in the last line is bounded by an inverse estimate.

On the other hand, if K ∈M, we have∑
K′⊂K

|K ′|‖πK′f + ∆uh′ − χBz−h′‖
2
K′ 6 (1 + δ)(1− ξ)|K|‖πKf + ∆uh − χBz−h ‖

2
K

+ (1 + 1/δ)|K|‖∆(uh′ − uh)‖2
K + (1 + 1/δ)|K|‖zh′ − zh‖2

K .

Putting these estimates together, we obtain∑
K′∈Kh′

|K ′|‖πK′f + ∆uh′ − χBz−h′‖
2
K′ 6 (1 + δ)

∑
K∈Kh

|K|‖πKf + ∆uh − χBz−h ‖
2
K

− (1− ξ)(1 + δ)
∑
K∈Kh

|K|‖πKf + ∆uh − χBz−h ‖
2
K + (1 + 1/δ)C|uh′ − uh|21 + (1 + 1/δ)‖zh′ − zh‖2.

Bounding the last term by Poincaré’s inequality yields the result for the volume residuals
of the state equation. Finally, we consider the volume terms of the estimator of the adjoint
equation. If K 6∈ M we have

|K|‖∆zh′ + α−1χCuh′‖2
K 6 (1 + δ)|K|‖∆zh + α−1χCuh‖2

K

+ (1 + 1/δ)|K|‖∆(zh′ − zh)‖2
K + (1 + 1/δ)α−1|K|‖uh′ − uh‖2

K

and we use again an inverse estimate for the first term on the last line. If K ∈M we have∑
K′⊂K

|K ′|‖∆zh′ + α−1χCuh′‖2
K′ 6 (1 + δ)(1− ξ)|K|‖∆zh + α−1χCuh‖2

K

+ (1 + 1/δ)|K|‖∆(zh′ − zh)‖2
K + (1 + 1/δ)α−1|K|‖uh′ − uh‖2

K .
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Putting these estimates together, we obtain∑
K′∈Kh′

|K ′|‖∆zh′ + α−1χCuh′‖2
K′ 6 (1 + δ)

∑
K∈Kh

|K|‖∆zh + α−1χCuh‖2
K

− (1− ξ)(1 + δ)
∑
K∈Kh

|K|‖∆zh + α−1χCuh‖2
K

+ (1 + 1/δ)C|zh′ − zh|21 + (1 + 1/δ)α−1‖uh′ − uh‖2.

With an application of the Poincaré inequality, we obtain the result for the volume terms of
the estimator of the adjoint equation. This concludes the proof.

The last Lemma deals with the coupling due to control.

Lemma 4.5. (coupling) Let κ and ε with 0 < κ < 1 and 0 < ε 6 1 be given. If ρ(h0)
is sufficiently small, there holds

(1− ε)‖|eh′|‖2 6 ‖|eh|‖2 − (1− κ2

ε
)‖|eh,h′ |‖2. (4.15)

In addition, we have
‖|eh|‖2 6 (1 + κ2)

(
‖|eh′|‖2 + ‖|eh,h′|‖2

)
. (4.16)

Proof. We first note that

|u− uh′ |21 = |u− uh|21 − |uh′ − uh|21 + 2〈∇(u− uh′),∇(uh′ − uh)〉.

and similarly

|z − zh′ |21 = |z − zh|21 − |zh′ − zh|21 + 2〈∇(z − zh′),∇(zh′ − zh)〉.

By the Galerkin relation (4.1), (4.2), (2.2), and Young’s inequality it follows:

〈∇(u− uh′),∇(uh′ − uh)〉+ 〈∇(z − zh′),∇(zh′ − zh)〉

=

∫
ΩB

(z− − z−h′)(uh′ − uh) + α−1

∫
ΩC

(u− uh)(zh′ − zh)

6 ‖z − zh′‖ΩB ‖uh′ − uh‖ΩB + α−1‖u− uh′‖ΩC ‖zh′ − zh‖ΩC

6 ε
(
|z − zh′ |21 + |u− uh′|21

)
+
C ρ(h)2τ

4ε

(
|uh′ − uh|21 + |zh′ − zh|21

)
,

with ε > 0. Therefore we have

‖|eh′ |‖2 6 ‖|eh|‖2 − ‖|eh,h′|‖2 + ε‖|eh′ |‖2 +
C ρ(h)2τ

4ε
‖|eh,h′ |‖2,

which gives (4.15) with κ =
√

C ρ(h0)2τ

4
. Finally, (4.16) follows from

‖|eh|‖2 6 ‖|eh′|‖2 + ‖|eh,h′ |‖2

+C ρ(h)2τ
(
|u− uh′|21 + |z − zh′ |21

) (
|uh′ − uh|21 + |zh′ − zh|21

)
6 ‖|eh′|‖2 + ‖|eh,h′ |‖2 + κ2‖|eh′ |‖2 + κ2‖|eh,h′ |‖2.
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5. Convergence proof

We prove convergence of the adaptive algorithm with respect to the following error measure:

Ek =
√
‖|ek|‖2 + β1η2

hk
+ β2 µ2

k (5.1)

depending on two constants β1 > 0 and β2 > 0.

Theorem 5.1. Let {hk}k>0 be a sequence of meshes generated by algorithm AFEMand
let {uk, zk}k>0 be the corresponding sequence of finite element solutions. There exist constants
β1 > 0, β2 > 0, and ρ < 1 such that for all k = 1, 2, . . .

Ek+1 6 ρEk. (5.2)

provided that ρ(h0) is sufficiently small.

Proof. Let ek+1,k := (uk+1 − uk, zk+1 − zk). We use (4.15) of Lemma 4.5 and (4.12) of
Lemma 4.4 in order to obtain

(1− ε)‖|ek+1|‖2 + β1η
2
k+1 6 ‖|ek|‖2 −

(
1− κ2

ε
− β1C4(1 + 1/δ)

)
‖|ek,k+1|‖2

+ β1(1 + δ)η2
k −

β1 (1 + δ)

2
η2
k(Mk).

(5.3)

We take ε = 3κ2 and β1 such that

0 < β1 < ξθ/(3C4). (5.4)

This choice of β1 implies that β1C4(2− ξθ) < ξθ(2/3−β1C4) such that β1C4/(2/3−β1C4) <
ξθ/(2− ξθ). This allows us to choose δ such that

0 <
β1C4

2/3− β1C4

< δ <
ξθ

2− ξθ
< 1, (5.5)

since ξθ < 1. The left part of (5.5) implies that 1 + 1/δ < 2/(3β1C4). We therefore have

1− κ2

ε
− β1C4(1 + 1/δ) > 2/3− 2/3 = 0.

Reporting this inequality into (5.3) gives

(1− ε)‖|ek+1|‖2 + β1η
2
k+1 + β2 µ

2
k+1 6 ‖|ek|‖2 + β1(1 + δ)η2

k

− ξβ1 (1 + δ)η2
k(Mk) + β2µ

2
k+1.

(5.6)

We now split the proof into two parts depending on the two cases of the algorithm.
In the first case of the algorithm, we have η2

k(Mk) > θ η2
k such that (5.6) becomes (and

using µk+1 6 µk)

(1− ε)‖|ek+1|‖2 + β1η
2
k+1 + β2 µ

2
k+1 6 ‖|ek|‖2 + β1(1 + δ)(1− ξθ)η2

k + β2µ
2
k

6 (1− ρ1)‖|ek|‖2 + (1− ρ2)β1η
2
k + (1− ρ3)β2µ

2
k

+ρ1‖|ek|‖2 + (ρ2 + δ − ξθ(1 + δ)) β1η
2
k + ρ3β2µ

2
k,
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with 0 < ρi < 1. This yields convergence, if we can show ρ1 > ε and

A := ρ1‖|ek|‖2 + (ρ2 + δ − ξθ(1 + δ)) β1η
2
k + ρ3β2µ

2
k 6 0. (5.7)

We set ρ2 = (1 + δ)ξθ/4. The second inequality of (5.5) implies that δ/(1 + δ) 6 ξθ/2 and
therefore

ρ2 + δ − ξθ(1 + δ) = δ − 3

4
ξθ(1 + δ) 6 −1

4
ξθ(1 + δ).

This, together with the upper bound (4.4) of Lemma 4.2 and the condition µ2
k 6 γη2

k, we get

A 6 ρ1‖|ek|‖2 − ξ

4
θ(1 + δ)β1η

2
k + ρ3β2µ

2
k

6

(
ρ1C1 − β1

ξθ(1 + δ)

4

)
η2
k + (ρ1C1 + ρ3β2)µ2

k

6

((
ρ1C1 − β1

ξθ(1 + δ)

4

)
+ γ(ρ1C1 + ρ3β2)

)
η2
k.

Then in order to obtain (5.2), it remains to fulfill the following inequalities:

(1 + γ)C1ρ1 −
β1ξθ(1 + δ)

4
+ γβ2ρ3 6 0 (5.8)

and
0 < ε < ρ1 < 1. (5.9)

By our assumption on ρ(h0), let κ2 be small enough such that

0 < κ2 <
β1θ(1 + δ)

12C1(1 + γ)
. (5.10)

This implies that we can choose appropriate ρ1 such that

0 < 3κ2 = ε < ρ1 <
β1θ(1 + δ)

4C1(1 + γ)
, (5.11)

which yields the iequality (5.9). Furthermore, the right hand side of (5.11) implies

C1(1 + γ)ρ1 <
β1θ(1 + δ)

4
, (5.12)

and we can therefore choose ρ3 sufficiently small such that the inequality (5.8) is fulfilled.
The fact that β2 is arbitrary up to now will be used in the second part of the proof. This
concludes the convergence proof in the first case.

Now we consider the second case. The decrease of the data approximation term (4.13)
yields

µ2
k+1 6 (1− ξσ)µ2

k. (5.13)

We therefore obtain from (5.6)

(1− ε)‖|ek+1|‖2 + β1η
2
k+1 + β2 µ

2
k+1 6 ‖|ek|‖2 + β1(1 + δ)η2

k + β2(1− µσ)µ2
k

6 (1− ρ1)‖|ek|‖2 + β1(1− ρ2)η2
k + β2(1− 1

2
µσ)µ2

k

+ ρ1‖|ek|‖2 + β1(δ + ρ2)η2
k −

1

2
β2µσµ

2
k.
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We thus have convergence if ρ1 > ε and

A := ρ1‖|ek|‖2 + β1(δ + ρ2)η2
k −

1

2
β2µσµ

2
k 6 0.

Using the global upper bound and η2
k 6 γ−1µ2

k, it turns out that

A = ρ1‖|ek|‖2 + β1(δ + ρ2)η2
k −

1

2
β2µσµ

2
k

6 (ρ1C1 + β1(δ + ρ2)) η2
k +

(
ρ1C1 −

1

2
β2µσ

)
µ2
k

6

(
γ−1 (ρ1C1 + β1(δ + ρ2)) + ρ1C1 −

1

2
β2µσ

)
µ2
k.

We choose ρ1 > ε and take β2 large enough such that the following inequality is satisfied:

1

2
β2µσ > (1 + γ−1)ρ1C1 + γ−1β1(δ + ρ2), (5.14)

which is possible since β2 was arbitrary in the first part of the proof.

6. Quasi-optimality

In order to express the quasi-optimality, we introduce some notation from nonlinear approx-
imation theory, see [5, 9]. Let HN be the set of all meshes h which satisfy Nh 6 N .

Next we define the approximation class

Ws :=
{

(u, z, f) ∈ (H1
0 (Ω), H1

0 (Ω), L2(Ω)) : ‖(u, z, f)‖Ws < +∞
}
. (6.1)

with

‖(u, z, f)‖Ws := sup
N>N0

N s inf
h∈HN

(
‖|eh|‖2 + µ2

h

)1/2

.

We say that an adaptive finite element method realizes optimal convergence rates if, whenever
(u, z, f) ∈ Ws, it produces a sequence of meshes {hk} and corresponding approximations
{uk, zk} such that the error {ek} and data approximation {µk} satisfy

‖|ek|‖2 + µ2
h 6 C N−2s

k . (6.2)

Theorem 6.1. Suppose (f, u, z) ∈ Ws. Let {hk}k>0 be a sequence of meshes generated
by algorithm AFEMand let {Vk}k>0 and {uk, zk}k>0 be the corresponding sequences of finite
element spaces and solutions. Let εk :=

√
‖|ek|‖2 + µ2

k. Assuming the parameters γ and θ
to satisfy

0 < θ <
1

C1C2(1 + κ2)
, 0 < γ 6

1− C1C2(1 + κ2)θ

C2(1 + (1 + κ2)C1)
, (6.3)

we have the following estimate on the complexity of the algorithm: there exists a constant C
such that

Nk −N0 6 C ε
−1/s
k , (6.4)

provided that ρ(h0) is sufficiently small.
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Proof. From the regularity assumption we have existence of a mesh h∗ ∈ H with error
e∗ = (u− uh∗ , z − zh∗) and number of cells N∗ such that for λ > 0 to be chosen below

εh∗ :=
√
‖|e∗|‖2 + µ2

h∗
6 λ εk :=

√
‖|ek|‖2 + µ2

k, (6.5)

and

N∗ 6 Cε
−1/s
k . (6.6)

Following the proof of Stevenson [20] (proof of Lemma 5.2), we can suppose that h∗ is a
refinement of hk, if we replace (6.6) by:

N∗ −Nk 6 C ε
−1/s
k . (6.7)

Let M∗ ⊂ Khk be the set of edges which have at least to be refined in order to produce h∗.
We remember that Mk denotes the set of marked cells in iteration k.

We will prove below the estimate

#Mk 6 C ε
−1/s
k . (6.8)

This implies the complexity estimate (6.4) as follows. Let as before El = ‖|el|‖2+β1η
2
l +β2 µ

2
l .

From Theorem 6.1 we know that for some constant ρ < 1

Ek 6 ρk−lEl, 0 6 l 6 k.

We obviously have εl 6 max(1, β2)El. By the global lower bound (4.11) we also have
El 6 C εl with an absolute constant C. This implies

εk 6 C ρk−l εl, 0 6 l 6 k. (6.9)

The bound (6.9) and Lemma 3.1 imply

Nk+1 −N0 6 C
k∑
l=0

#Mk 6 C
k∑
l=0

ε
−1/s
l

6 C

(
k∑
l=0

ρ
(k−l)/s
l

)
ε
−1/s
k 6

C

1− ρ1/s
ε
−1/s
k .

yielding (6.4).
We now turn the proof of (6.8). As before, we consider the two cases of the algorithm

separately. In the first case we have

µ2
k 6 γη2

k. (6.10)

We will prove below that

η2
h(M∗) > θη2

k. (6.11)

This implies the estimate (6.8): Since F is chosen to be the set with minimal cardinality
satisfying the bound (6.11), we find that

#Mk 6 #M∗ 6 C(N∗ −Nk) 6 C ε
−1/s
k . (6.12)
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The proof of (6.11) is obtained as follows. Let ek,∗ := ((u∗ − uk), (z∗ − zk)). We successively
use(4.16), (4.5), (6.5) and (4.4) in order to obtain

‖|ek|‖2 6 (1 + κ2)‖|e∗|‖2 + (1 + κ2)‖|ek,∗|‖2

6
(

(1 + κ2) + C1ρ(h0)2τ
)
‖|e∗|‖2 + (1 + κ2)C1η

2
k(M∗)

+(1 + κ2)C1µ
2
k(M∗) + C1ρ(h0)2τη2

k

6
((

(1 + κ2) + C1ρ(h0)2τ
)
λ+ C1ρ(h0)2τ

) (
η2
k + µ2

k

)
+ (1 + κ2)C1η

2
k(M∗)

+(1 + κ2)C1µ
2
k(M∗)

6
((

(1 + κ2) + C1ρ(h0)2τ
)
λ+ C1ρ(h0)2τ

)
C1η

2
k

+
(((

(1 + κ2) + C1ρ(h0)2τ
)
λ+ C1ρ(h0)2τ

)
C1 + 1 + (1 + κ2)C1

)
µ2
k

+(1 + κ2)C1η
2
k(M∗).

Let A :=
((

(1 + κ2) + C1ρ(h0)2τ
)
λ+ C1ρ(h0)2τ

)
C1 and B := (AC1 + 1 + (1 + κ2)C1). By

the upper bond (4.11) and (6.10), in follows that

C−1
2 η2

k 6 ‖|ek|‖2 + µ2
k

6 Aη2
k +Bµ2

k + (1 + κ2)C1η
2
k(M∗) + µ2

k

6
(
A(1 + γ) + (1 + (1 + κ2)C1)γ

)
η2
k + (1 + κ2)C1η

2
k(M∗),

from which it follows that(
1

C2

−
(
A(1 + γ) + (1 + (1 + κ2)C1)γ

))
η2
k 6 (1 + κ2)C1η

2
k(M∗).

By the assumption on γ and θ in (6.3), we can choose

λ =

1−C1C2(1+κ2)θ−(1+(1+κ2)C1)γ
C1C2(1+γ)

− C1ρ(h0)2τ

(1 + κ2) + C1ρ(h0)2τ
> 0, (6.13)

provided ρ(h0) is small enough. We therefore obtain (6.11), completing the proof in the first
case.

Now we consider the second case. We thus have

η2
k 6 γ−1µ2

k. (6.14)

We will prove that
µ2
k(M∗) > σµ2

k. (6.15)

This implies (6.8) as before by the optimality of the choice of P . First we note that by (4.11)
and (6.15) we have

‖|ek|‖2 6 C1

(
η2
k + µ2

k

)
6 C1(1 + γ−1)µ2

k.

This implies together with (6.5) that

µ2
k − µ2

k(M∗) 6 µ2
h∗ 6 λ

(
η2
k + µ2

k

)
6 λ

(
1 + C1(1 + γ−1)

)
µ2
k,



Quasi-optimality of an AFEM for optimal control 123

and therefore with λ small enough, we get

σ µ2
k 6

(
1− λ

(
1 + C1(1 + γ−1)

))
µ2
k 6 µ2

k(M∗).

This concludes the proof.

Corollary 6.1. An argument similar to the one used to prove (4.3) shows that ‖q −
qh‖ΩB = ‖z− − z−h ‖ΩB 6 ‖z − zh‖ΩB 6 C |z − zh|1. Therefore Theorem 5.1 also implies con-
vergence of the control variable and the control could be included in the complexity analysis.

Let s > 0 and (u, z, f) ∈ Ws. The mesh-independence of the semi-smooth Newton method
[14] combined with with multigrid iteration [6, 22], suggests that the algorithm AFEM has
optimal work count in the sense that for a given accuracy ε > 0, the algorithm provides a
discrete solutions uh and zh satisfying ‖|eh|‖ 6 ε with a number of operations proportional
to ε−1/s . The combination of the adaptive algorithm with multigrid requires the introduction
of a stopping criterion leading to an additional iteration error. Such an algorithm has been
proposed and analyzed for the Poisson problem in [3].

We finally remark that the regularity assumption (f, u, z) ∈ Ws is difficult to verify
in practice. However, the a priori error analysis on meshes adapted to corner singularities
suggests that s = 1/2 if f ∈ L2(Ω) under mild restrictions on the domain, in the considered
two-dimensional case, see[1].

7. Numerical experiments

In this Section, we report on two numerical experiments. For the first one the exact solution
of the problem is known. We use this example in order to investigate the complexity of
the sequence of meshes generated by the adaptive algorithm. The computational domain is
Ω = (0, 1)2 and the right-hand side is constructed in such a way that u(x, y) = z(x, y) =
sin(π(x + 2y)). The parameter is α and Q = {q ∈ L2(Ω) : qmin 6 q 6 qmax} with qmin =
−50 = −qmax such that the control has the appearance shown in Figure 7.1.

Figure 7.1. Control −min(50,max(−50,−zh))/α and locally refined mesh.
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In Table 7.1 the value of the errors and estimators are given on a typical adaptive iter-
ation. The data approximation term has the expected second-order behavior. The error is
over-estimated by a factor of 3.5. This is due to the fact that we have for simplicity estimated
the constant of the interpolation error by 1.

The computational domain for the second example is the L-shaped domain Ω = (−1, 1)×
(0, 1) ∪ (−1, 0) × (−1, 0]. The parameters are α = 10−4 and qmin = −10 (qmax = ∞),
f = 0, ud = 1, ΩB = Ω ∩ {y > 0}, and ΩC := Ω ∩ {x 6 0}. The discrete solutons uh,
zh, corresponding control, and a typical mesh are shown in Figure 7.2. There is a strong
refinement at the re-entrant corner and a long the boundary of ∂ΩB \ ∂Ω. The first one is
however significantly stronger, which is due to the fact that it generates a stronger singularity.

Finally, we make a comparison of the asymptotic behavior of η2
h for different refinement

parameters θ. Note that θ = 1 leads to uniform refinement, which is known to lead to a loss
of convergence rate due to the corner singularity. It can be seen from Figure 7.3 that the
adaptive algorithm is able to regain the convergence rate −1. This follows from Theorem 6.1,
since the construction of meshes recovering the optimal rate is well known, implying u ∈ As
with s = 1/2.

Figure 7.2. Second example: uh, zh (scaled by a factor of 10), contol (scaled by a factor 0.01) and locally

refined mesh.
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Figure 7.3. Behavior of ηh vs. Nh for θ = 0.5, 0.8, 1.0 compared to first-order decrease s = 1/2 (dotted

line), log-log-scale.

Nh eh ηh µh eh/ηh
100 1.3686 0.9340 4.6864 0.292
364 0.7168 0.2609 2.5108 0.285
1244 0.4042 0.0844 1.4371 0.281
4091 0.2275 0.0453 0.8019 0.283
10752 0.1382 0.0215 0.4846 0.285
24280 0.0871 0.0069 0.3094 0.281
70468 0.0534 0.0026 0.1886 0.283
201632 0.0321 0.0010 0.1132 0.284
457800 0.0204 0.0005 0.0723 0.282

Table 7.1. Adaptive iteration with θ = 0.75.

8. Conclusion

We have proposed a new adaptive algorithm for optimal control based on standard conform-
ing finite elements, using an adaptive marking strategy. For simplicity, we have considered
triangular meshes, but the generalization to quadrilaterals and three dimensions seems pos-
sible.

We have carried out the proofs of geometric convergence of the error and quasi-optimality
in the case that the control variable is eliminated from the system. The generalization to
the more commonly studied case of Galerkin discretization of all variables including control
(see, for example, [13]).
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Appendix

In this appendix we give a proof of the L2(Ω)-error estimate announced in (2.2).

Lemma 8.1. Assume that the domain is such that the inverse Laplace-operator allows
for the regularity shift L2(Ω) → H1+τ (Ω) for 0 < τ 6 1. Then we have for h0 sufficiently
small

‖u− uh‖2 + ‖z − zh‖2 6 Cρ2τ (h)(|u− uh|21 + |z − zh|21). (8.1)

Proof. Let ψ1, ψ2 ∈ L2(Ω) and φ ∈ V and φh ∈ Vh the solutions to the equations

〈∇φ,∇v〉 = 〈ψ1, v〉 ∀v ∈ V, 〈∇φh,∇vh〉 = 〈ψ2, vh〉 ∀vh ∈ Vh. (8.2)

Then it follows from the Aubin-Nitsche duality argument and our assumption that

‖φ− φh‖ 6 C (ρτ (h)|φ− φh|1 + ‖ψ1 − ψ2‖) . (8.3)

Therefore we immediately get (with αq = −z− and αqh = −z−h

‖u− uh‖ 6 C

(
ρτ (h)|u− uh|1 + ‖q − qh‖

)
and

‖z − zh‖ 6 C

(
ρτ (h)|z − zh|1 + ‖u− uh‖

)
6 C

(
ρτ (h)

(
|z − zh|1 + |u− uh|1

)
+ ‖q − qh‖

)
.

It therefore remains to show that

‖q − qh‖ 6 Cρτ (h)

(
|z − zh|1 + |u− uh|1

)
. (8.4)

We denote by uh(q) and zh(q) the state and adjoint solutions corresponding to the control
q, i.e., the solutions to

〈∇uh(q),∇vh〉 = 〈f, vh〉+ 〈q, vh〉ΩB ∀vh ∈ Vh,
〈∇vh,∇zh(q)〉 = 〈uh(q), vh〉ΩC ∀vh ∈ Vh.

(8.5)

It follows from (8.5) that

〈q − qh, zh(q)− zh〉ΩB = 〈∇(uh(q)− uh),∇(zh(q)− zh)〉
= 〈uh(q)− uh, uh(q)− uh〉ΩC > 0.

(8.6)

Since for any real numbers a, b it holds (a− − b−)(a+ − b+) > 0, we have

α‖q − qh‖2
ΩB

= α−1〈z−h − z
−, z−h − z

−〉ΩB
= α−1〈z−h − z

−, zh − z〉ΩB − α−1〈z−h − z
−, z+

h − z
+〉ΩB

6 α−1〈z−h − z
−, zh − z〉ΩB = 〈q − qh, zh − z〉ΩB

= 〈q − qh, zh − zh(q)〉ΩB + 〈q − qh, zh(q)− z〉ΩB
6 〈q − qh, zh(q)− z〉ΩB ,
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such that
α‖q − qh‖ΩB 6 ‖zh(q)− z‖ΩB . (8.7)

We next consider the auxiliary problems w, p ∈ V such that

〈∇w,∇v〉 = 〈zh(q)− z, v〉ΩB ∀v ∈ V, 〈∇v,∇p〉 = 〈w, v〉ΩC ∀v ∈ V. (8.8)

Then it follows with an interpolant wh of w that

‖zh(q)− z‖2
ΩB

= 〈∇w,∇(zh(q)− z)〉
= 〈∇(w − wh),∇(zh(q)− z)〉+ 〈uh(q)− u,wh〉ΩC
= 〈∇(w − wh),∇(zh(q)− z)〉+ 〈uh(q)− u,wh − w〉ΩC + 〈uh(q)− u,w〉ΩC .

By our assumption we have

〈∇(w − wh),∇(zh(q)− z)〉 6 Cρτ (h)‖zh(q)− z‖ΩB |zh(q)− z|1.

Interpolation and the Poincaré inequality yield

〈uh(q)− u,w − wh〉ΩC 6 Cρτ (h)‖uh(q)− u‖‖zh(q)− z‖ΩB .

In addition we have with an interpolant ph of p, the regularity shift and the Poincaré in-
equality

〈uh(q)− u,w〉ΩC = 〈∇(uh(q)− u),∇p〉 = 〈∇(uh(q)− u),∇(p− ph)〉
6 Cρτ (h)|uh(q)− u|1‖w‖ΩC 6 Cρτ (h)|uh(q)− u|1‖zh(q)− z‖ΩB .

Putting these estimates together, we obtain

‖zh(q)− z‖ΩB 6Cρτ (h)

(
|zh(q)− z|1 + |uh(q)− u|1

)
6Cρτ (h)

(
|zh − z|1 + |uh − u|1 + |zh(q)− zh|1 + |uh(q)− uh|1

)
6Cρτ (h)

(
|zh − z|1 + |uh − u|1 + ‖q − qh‖ΩB

) (8.9)

If now h0 is sufficiently small, we conclude that

α‖q − qh‖ΩB 6 ‖zh(q)− z‖ΩB 6 Cρτ (h)

(
|zh − z|1 + |uh − u|1

)
,

as required. This ends up the proof.
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