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Abstract — We continue our study on variable order Arnold-Falk-Winther elements
reported in [W. Qiu, L. Demkowicz, Mixed hp-finite element method for linear elasticity

with weakly imposed symmetry. Comput. Methods Appl. Mech. Engrg., 198 (2009),
pp. 3682-3701] and [W. Qiu, L. Demkowicz, Mixed hp-finite element method for linear

elasticity with weakly imposed symmetry: stability analysis. SIAM J. Numer. Anal.,
49 (2011), pp. 619-641] for 2D elasticity in context of parametric curvilinear elements.
We present an asymptotic h-stability result.
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1. Introduction

1.1. Dual–mixed formulation of linear elasticity

Linear elasticity is a classical subject and it has been studied for a long time. Continuing
our study [17, 18], we focus on the dual–mixed formulation with weakly imposed symmetry
that may be derived by considering stationary points of the generalized Hellinger-Reissner
functional [16]. We consider the static case only and, for the sake of simplicity, we assume
that the body is fixed on the whole boundary. This formulation is to find stress tensor
σ ∈ H(div,Ω;M), displacement vector u ∈ L2(Ω;V), and infinitesimal rotation p ∈ L2(Ω;K)
satisfying

∫

Ω

(Aσ : τ + divτ · u+ τ : p)dx = 0, τ ∈ H(div,Ω;M), (1.1)
∫

Ω

divσ · vdx =

∫

Ω

f · vdx, v ∈ L2(Ω;V),
∫

Ω

σ : qdx = 0, q ∈ L2(Ω;K).
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The first equation represents a relaxed form of the constitutive equations combined with
the definition of strain, the second one represents the equilibrium equations, and the third
one enforces the symmetry of the stress tensor. We refer to the next section for a detailed
description of energy spaces: H(div,Ω;M), L2(Ω;V) and L2(Ω;K). The operator A denotes
the generalized compliance tensor mapping stress tensor into strain tensor. The operator
is bounded, symmetric, uniformly positive definite, and it preserves the symmetry of the
tensor. The usual motivation for using formulation (1.1) is to handle nearly incompressible
materials. We refer to [13] for a detailed explanation.

In two space dimensions, the skew-symmetric tensors involve a single non-zero compo-
nent p,

(

0 p
−p 0

)

.

Formulation (1.1) reduces to seek σ ∈ H(div,Ω;M), u ∈ L2(Ω;V), and p ∈ L2(Ω) satisfying

∫

Ω

(Aσ : τ + divτ · u− S1τ p) dx = 0, τ ∈ H(div,Ω;M), (1.2)
∫

Ω

divσ · v dx =

∫

Ω

f · v dx, v ∈ L2(Ω;V),
∫

Ω

S1σ q dx = 0, q ∈ L2(Ω),

where operator S1 maps a real 2× 2 matrix to a real number. For any σ ∈ R
2×2,

S1σ = σ12 − σ21. (1.3)

1.2. Purpose of the paper

There exists a large number of numerical schemes based on (1.1), see [4, 5, 9, 13, 1, 2, 3,
14, 10, 15, 19, 20, 21, 22]. In [17, 18], we generalized the mixed finite element method
of Arnold, Falk and Winther [5] to meshes using variable order elements. The motivation
for using variable order meshes is twofold. From the mathematical point of view, it is
the first step towards general hp-adaptive meshes where the element size h and polynomial
order p are varied locally to achieve superior (exponential) rates of convergence. From the
engineering point of view, variable order elements appear naturally when approximating
complex geometries. Meshing of regions with boundaries or interfaces with high curvatures
requires small elements and leads to very non-uniform meshes in element size. This in turn
motivates one to use variable order elements with high polynomial degree for large elements
and lower degree for the small ones.

All contributions mentioned above assume the domains are polygonal (polyhedral). In
contrast to the mathematical work, almost all practical engineering problems involve complex
curvilinear geometries. It is thus of a utmost importance to examine how the performace of
the mixed methods extends to meshes with curvilinear elements. In the paper, we generalize
the mixed finite element method studied in [17, 18] to a class of curvilinear meshes described
precisely in Section 3. For the sake of simplicity, we consider only the two dimensional case
using formulation (1.2). We utilize the concept of exact geometry element [11], i.e. the exact
and computational domains coincide with each other.

The main contribution of this paper is an h-asymptotic stability result. At first, it seems
that the stability analysis will be a simple variant of those in [17, 18]. However, the projection
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operators introduced therein may not be well-defined when the jacobian matrix of an element
map is not constant, i.e. when we deal with non-affine elements. In order to overcome the
difficulty, we perform a delicate analysis in Section 6 and the Appendixes. We manage to
show that all projections we need, are well-defined when the element size is small enough.
This leads to the asymptotic stability result.

1.3. Scope of the paper

An outline of the paper is as follows. Section 2 introduces notations. In Section 3, we
discuss curvilinear meshes and geometry assumptions. Section 4 reviews definitions of finite
element spaces on a reference triangle, on a (physical) curved triangle, and on curved meshes.
In Section 5, we return to the mixed formulation for plane elasticity with weakly imposed
symmetry, and recall Brezzi’s conditions for stability. In Section 6, we establish necessary
results for proving the asymptotic stability for curvilinear meshes. In Section 7 we prove
that the Brezzi conditions are satisfied asymptotically for curvilinear meshes, i.e. for meshes
that are sufficiently fine.

2. Notation

We denote by T an arbitrary triangle in R
2. And let T̂ be the reference triangle. We

denote the set of subsimplexes of dimension k of T by △k(T ), k = 0, 1, 2, and the set of all
subsimplexes of T by △(T ). △0(T ) consists of all vertices of T , △1(T ) consists of all edges
of T , and △2(T ) = T .

For U , a bounded open subset in R
n, we define:

Ck(U) = {u ∈ Ck(U) : Dα is uniformly continuous on U, ∀|α| 6 k}.

We also define

Ck,1(U) = {u ∈ Ck(U) : Dα is Lipschitz on U, ∀|α| = k}.

For any vector space X, we denote by L2(Ω;X) the space of square-integrable vector fields
on Ω with values in X. In the paper, X will be R, R2, M, or K. Here, M and K represent
matrices and skew-symmetric matrices in R

n×n, respectively. When X = R, we will write
L2(Ω). The corresponding norms will be denoted with the same symbol L2(Ω;M). The
corresponding Sobolev space of order m, denoted Hm(Ω;X), is a subspace of L2(Ω;X)
consisting of functions with all partial derivatives of order less than or equal tom in L2(Ω;X).
The corresponding norm will be denoted by ‖ · ‖Hm(Ω). The space H(div,Ω;M) is defined by

H(div,Ω;M) = {σ ∈ L2(Ω;M) : divσ ∈ L2(Ω;R2)},

where divergence of a matrix field is the vector field obtained by applying operator div
row-wise, i.e.,

divσ = (
∂σ11
∂x1

+
∂σ12
∂x2

,
∂σ21
∂x1

+
∂σ22
∂x2

)⊤.

We introduce also a special space

H(Ω) = {ω ∈ H(div,Ω) : ω|∂Ω ∈ L2(∂Ω;R2)}
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with the norm
‖ω‖H(Ω) = ‖ω‖H(div,Ω) + ‖ω‖L2(∂Ω) ∀ω ∈ H(Ω).

Notice that the space H(Ω) is just a normed linear space with the norm ‖ · ‖H(Ω). It is not a
Hilbert space. It is only used to define projection in definition 6.4 on the reference triangle.

For any scalar function u and any vector function ω with values in R
2, we denote

curl u = (
∂u

∂x2
,−

∂u

∂x1
)⊤, curl ω =







∂ω1

∂x2
, −

∂ω1

∂x1
∂ω2

∂x2
, −

∂ω2

∂x1






.

Finally, by ‖ · ‖ we denote the standard 2-norm for vectors and matrices.

3. Curvilinear Meshes

In practice, meshes generated by CAD software are usually curvilinear. In this section, we
will present our setting of curvilinear meshes and some properties which are needed in the
asymptotic h-stability analysis.

3.1. Mesh regularity assumptions

Definition 3.1. (curved triangle) A closed set T ⊂ R
2 is a curved triangle if there

exists a C1-diffeomorphism GT from reference triangle T̂ onto T . This means that GT is a
bijection from T̂ to T such that GT ∈ C1(T̂ ) and G−1

T ∈ C1(T ). We assume additionally

that det(DGT (x̂)) > 0 for any x̂ ∈ T̂ .

We represent GT in the form
GT = G̃T + ΦT , (3.1)

where G̃T : x̂ → BT x̂ + bT , BT = DGT (p̂) with p̂ being the centroid of T̂ , and ΦT a C1-
mapping from T̂ into R

2. The images of edges and vertices of T̂ by GT are edges and vertices
of T respectively. We denote △i(T ) = GT (△i(T̂ )), i = 0, 1, 2, and △(T ) = GT (△(T̂ )).

Definition 3.1 is practically identical with the definition of curved finite elements intro-
duced in [6].

Definition 3.2. A curved triangle T is of class Ck, k > 1, if the mapping GT ∈ Ck(T̂ ).
Similarly, a curved triangle T is of class Ck,1, k > 1, if the mapping GT ∈ Ck,1(T̂ ).

We define Th to be a finite set of curved triangles T , where h denotes the maximal distance
between two vertices of T ∈ Th. We define vertices of Th to be vertices of T ∈ Th, and we
define curves of Th to be edges of T ∈ Th. We assume that any edge of T ∈ Th is either an
edge of another curved triangle in Th, or part of the boundary of Th.

Each curve of Th is parametrized with a map from the reference unit interval into R
2,

[0, 1] ∋ s→ xe(s) ∈ R
2

The parametrization determines the orientation of the curve.
Let ζ(s) be the local parametrization for a particular edge of a curved triangle T ∈

Th, occupied by a curve e of Th. This means that ζ(s) is an affine mapping from the
reference interval onto an edge of the reference triangle T̂ , whose image under the mapping
GT is exactly the particular edge of T . We can choose ζ(s) so that GT (ζ(s)) has the same
orientation as xe(s).
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Definition 3.3. (C0-compatible mesh) Th is called a C0-compatible mesh if, for any curve
e and any curved triangle T which contains e as an edge, there is a local parametrization
ζ(s) of e satisfying

GT (ζ(s)) = xe(s).

The concept is illustrated in Fig 3.1.

x̂

x̂ = G (   )x

(s)ζ

x1

x2

x̂1

x̂2

x

s
s

Figure 3.1. Compatibility of edge and triangle parametrizations

We denote

ch := sup
T∈Th

((sup
x̂∈T̂

‖DΦT (x̂)‖)‖B
−1
T ‖). (3.2)

For each T ∈ Th, we define T̃ = G̃T (T̂ ). We denote by h̃T the diameter of T̃ and by ρ̃T the
diameter of the sphere inscribed in T̃ .

We define △i(Th) =
⋃

T∈Th
△iT , and △(Th) =

⋃

T∈Th
△T .

Remark 3.1. In order to simplify analysis, compared with [6], our definition of (3.2)
replaces ‖DΦT · B−1

T ‖ with the upper bound ‖DΦT‖ · ‖B
−1
T ‖.

Definition 3.4. The family (Th)h of C0-compatible meshes is said to be regular if

sup
h

sup
T∈Th

h̃T /ρ̃T = σ <∞, and lim
h→0

ch = 0.

We show the construction of (Th)h of C0-compatible meshes in Appendix A.

Lemma 3.1. There exist c1, c2 > 0 such that, for any triangle T ,

c1‖BT‖ · ‖B
−1
T ‖ 6 h̃T/ρ̃T 6 c2‖BT‖ · ‖B

−1
T ‖,

where x = BT x̂ + bT is the affine homeomorphism from T̂ to T .

Proof. h̃T/ρ̃T 6 c2‖BT‖ · ‖B−1
T ‖ comes from the geometric meaning of singular values of

matrix BT . c1‖BT‖ · ‖B
−1
T ‖ 6 h̃T /ρ̃T is a consequence of Theorem 3.1.3 in [8].
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Lemma 3.2. Let family (Th)h be regular. Then, for any indices i, j, k, l ∈ {1, 2, 3}, we
have

lim
h→0

sup
T∈Th

sup
x̂∈T̂

|
(BT )ij(DΦT (x̂))kl

det(BT )
| = 0.

Proof. For any T ∈ Th and any x̂ ∈ T̂ , we have

|
(BT )ij(DΦT (x̂))kl

det(BT )
| = |(DΦT (x̂))kl|‖B

−1
T ‖ · |(BT )ij/ det(BT )|

1

‖B−1
T ‖

.

Since ‖B−1
T ‖ · ‖BT‖ > 1,

1

‖B−1
T ‖

6 ‖BT‖. Consequently,

|
(BT )ij(DΦT (x̂))kl

det(BT )
| 6 (‖DΦT (x̂)‖ · ‖B

−1
T ‖)‖BT‖

2/| det(BT )|.

Since suph supT∈Th
h̃T /ρ̃T = σ <∞, ‖BT‖

2/| det(BT )| 6 cσ2 with c > 0.

Since limh→0 ch = 0, we have limh→0 supT∈Th
sup

x̂∈T̂ |
(BT )ij(DΦT (x̂))kl

det(BT )
| = 0.

Lemma 3.3. If a family (Th)h is regular, then we have

lim
h→0

sup
T∈Th

sup
x̂∈T̂

‖BT (DGT (x̂))
−1 − I‖ = lim

h→0
sup
T∈Th

sup
x̂∈T̂

‖(DGT (x̂))
−1BT − I‖ = 0.

Proof. For any T ∈ Th and any x̂ ∈ T̂ , we have

‖BT (DGT (x̂))
−1 − I‖ = ‖BT (BT +DΦT (x̂))

−1 − I‖ = ‖(I +DΦT (x̂)B
−1
T )−1 − I‖.

Since ch → 0 as h → 0, we have limh→0 supT∈Th
sup

x̂∈T̂ ‖BT (DGT (x̂))
−1 − I‖ = 0. Proof of

the second property is fully analogous.

Lemma 3.4. If a family (Th)h is regular, then we have

lim
h→0

sup
T∈Th

sup
x̂∈T̂

| det(DGT (x̂)B
−1
T )− 1| = lim

h→0
sup
T∈Th

sup
x̂∈T̂

| det(BT (DGT (x̂))
−1)− 1| = 0.

Proof. Since limh→0 ch = 0, limh→0 supT∈Th
sup

x̂∈T̂ | det(DGT (x̂)B
−1
T )−1| = 0. By Lemma 3.3,

limh→0 supT∈Th
sup

x̂∈T̂ | det(BT (DGT (x̂))
−1)− 1| = 0.

4. Finite element spaces

We begin by introducing the relevant finite element spaces on the reference triangle. Then,
for any curved triangle T , we define the corresponding finite element spaces on T by the
pull back mappings associated with the inverse of GT . Finally, we define the finite element
spaces on a whole mesh Th by ”gluing” the finite element spaces on curved triangles.
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4.1. Finite element spaces on the reference triangle

For any r ∈ Z+ := {n ∈ Z : n > 0}, we introduce

Pr(T̂ ) := {space of polynomials of order r on T̂}, (4.1)

PrΛ
0(T̂ ) = PrΛ

2(T̂ ) := Pr(T̂ ),PrΛ
1(T̂ ) := [Pr(T̂ )]

2,

P̊rΛ
0(T̂ ) := {ŵ ∈ PrΛ

0(T̂ ) : ŵ|ê = 0, ∀ê ∈ △1(T̂ )},

P−

r Λ
1(T̂ ) := [Pr−1(T̂ )]

2 + (x̂1, x̂2)
⊤Pr−1(T̂ ),

PrΛ
0(T̂ ;R2) = PrΛ

2(T̂ ;R2) := [Pr(T̂ )]
2,

PrΛ
1(T̂ ;R2) :=

{[

σ11 σ12
σ21 σ22

]

: (σ11, σ12)
⊤, (σ21, σ22)

⊤ ∈ PrΛ
1(T̂ )

}

.

In [4, 13], spaces in (4.1) are defined in the language of exterior calculus. Here we
just rewrite them using the language of calculus. We refer to [4] and [13] for a detailed
correspondence before the exterior and classical calculus notations.

We denote by r̃ a mapping from △(T̂ ) to Z+ such that if ê, f̂ ∈ ∆(T ) and ê ⊂ f̂ then
r̃(ê) 6 r̃(f̂). We introduce now formally the FE spaces of variable order.

Definition 4.1.

Pr̃Λ
0(T̂ ) := {û ∈ Pr̃(T̂ )Λ

0(T̂ ) : ∀ê ∈ △1(T̂ ), û|ê ∈ Pr̃(ê)(ê)},

Pr̃Λ
2(T̂ ) := Pr̃(T̂ )Λ

2(T̂ ) = Pr̃(T̂ )(T̂ ),

Pr̃Λ
1(T̂ ) := {ω̂ ∈ Pr̃(T̂ )Λ

1(T̂ ) : ∀ê ∈ △1(T̂ ), ω̂ · n̂|ê ∈ Pr̃(ê)(ê)},

P−

r̃ Λ
1(T̂ ) := {ω̂ ∈ P−

r̃(T̂ )
Λ1(T̂ ) : ∀ê ∈ △1(T̂ ), ω̂ · n̂|ê ∈ Pr̃(ê)−1(ê)},

Pr̃Λ
0(T̂ ;R2) = Pr̃Λ

2(T̂ ;R2) := [Pr̃(T̂ )]
2,

Pr̃Λ
1(T̂ ;R2) :=

{[

σ11 σ12
σ21 σ22

]

: (σ11, σ12)
⊤, (σ21, σ22)

⊤ ∈ Pr̃Λ
1(T̂ )

}

.

Here n̂ is the outward normal unit vector along ∂T̂ .

Remark 4.1. According to [4], for any ê ∈ △1(T̂ ), we have

Pr̃Λ
0(T̂ )|ê = Pr̃(ê)(ê),Pr̃Λ

1(T̂ )|ê · n̂ = Pr̃(ê)(ê),P
−

r̃ Λ
1(T̂ )|ê · n̂ = Pr̃(ê)−1(ê).

Lemma 4.1. It holds

Pr̃Λ
1(T̂ ) ⊂ P−

r̃+1Λ
1(T̂ ) ⊂ Pr̃+1Λ

1(T̂ ),

divx̂Pr̃+1Λ
1(T̂ ) ⊂ Pr̃Λ

2(T̂ ), curlx̂Pr̃+1Λ
0(T̂ ) ⊂ Pr̃Λ

1(T̂ ).

Proof. The inclusions are a straightforward consequence of Definition 4.1.
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4.2. Finite element spaces on a curved triangle

Let T be a curved triangle from Definition 3.1 with GT denoting the corresponding C1-
diffeomorphism from T̂ to T , x = GT (x̂). We begin by introducing formally the mapping r̃
from △(T ) to Z+ specifying the local order of discretization.

Definition 4.2. We denote by r̃ a mapping from △(T ) to Z+ such that if e, f ∈ △(T )
and e ⊂ f then r̃(e) 6 r̃(f). With the same symbol r̃ we denote the corresponding mapping
from △(T̂ ) to Z+, r̃(f̂) := r̃(f) for any f̂ ∈ △(T̂ ), where f = GT (f̂).

We define now the following FE spaces on T .

Definition 4.3. Let T be an curved triangle and T̂ the reference triangle.

Pr̃Λ
0(T ) := {u(x) : û(x̂) ∈ Pr̃Λ

0(T̂ ) where u(x) = û(x̂)},

Pr̃Λ
1(T ) := {ω(x) : ω̂(x̂) ∈ Pr̃Λ

1(T̂ ) where ω(x) =
1

det(DGT (x̂))
DGT (x̂)ω̂(x̂)},

P−

r̃ Λ
1(T ) := {ω(x) : ω̂(x̂) ∈ P−

r̃ Λ
1(T̂ ) where ω(x) =

1

det(DGT (x̂))
DGT (x̂)ω̂(x̂)},

Pr̃Λ
2(T ) := {u(x) : û(x̂) ∈ Pr̃Λ

2(T̂ ) where u(x) =
1

det(DGT (x̂))
û(x̂)},

Pr̃Λ
0(T ;R2) := {(u1, u2) : u1, u2 ∈ Pr̃Λ

0(T )},

Pr̃Λ
2(T ;R2) := {(u1, u2) : u1, u2 ∈ Pr̃Λ

2(T )},

Pr̃Λ
1(T ;R2) :=

{[

σ11 σ12
σ21 σ22

]

: (σ11, σ12)
⊤, (σ21, σ22)

⊤ ∈ Pr̃Λ
1(T )

}

.

Remark 4.2. Since GT : T̂ → T is a C1-diffeomorphism with det(DGT (x̂)) 6= 0, for any
x̂ ∈ T̂ , the formulae in Definition 4.3 are well-defined. The mappings used in the definition
are the standard pull back mappings for differential forms Λ0,Λ1,Λ2, see, e.g., formulas
(2.24), (2.26), (2.27) in [12].

Lemma 4.2. For any edge e ∈ △1(T ), let ζ(s) be the local parametrization for e discussed
in Definition 3.3, i.e., the affine mapping from the reference interval onto ê ∈ △1(T̂ ). Then
we have,

Pr̃Λ
0(T )|e = {u(x) where x ∈ e : u(GT (ζ(s))) ∈ Pr̃(ê)(ê)},

Pr̃Λ
1(T ) · n|e = {u(x) where x ∈ e : u(GT (ζ(s)))‖D(GT ◦ ζ)(s)‖ ∈ Pr̃(ê)(ê)},

P−

r̃ Λ
1(T ) · n|e = {u(x) where x ∈ e : u(GT (ζ(s)))‖D(GT ◦ ζ)(s)‖ ∈ Pr̃(ê)−1(ê)}.

In addition, the above equalities do not depend on the choice of the orientation of the local
parametrization ζ(s).

Proof. These are trivial observations on pull back mappings and their restrictions to edges.

Lemma 4.3. It holds

Pr̃Λ
1(T ) ⊂ P−

r̃+1Λ
1(T ) ⊂ Pr̃+1Λ

1(T ),

divPr̃+1Λ
1(T ) ⊂ Pr̃Λ

2(T ), curlPr̃+1Λ
0(T ) ⊂ Pr̃Λ

1(T ).

Proof. The embeddings are a straightforward consequence of Definition 4.3, Lemma 4.1, and
the commutativity of pull back mappings with exterior derivatives (curl, div).
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4.3. Finite element spaces on a C0-compatible mesh

Let Th be a C0-compatible mesh from Definition 3.3. We extend the r̃ mapping to a global
map defined on △(Th) with values in Z+ such that if e ⊂ f , then r̃(e) 6 r̃(f).

Definition 4.4. We put Ωh :=
⋃

T∈Th
T and define

CΛ0(Th) := {u ∈ H1(Ωh) : u is piece-wise smooth with respect to Th},

CΛ1(Th) := {ω ∈ H(div,Ωh) : ω is piece-wise smooth with respect to Th},

CΛ2(Th) := {u ∈ L2(Ωh) : u is piece-wise smooth with respect to Th}.

We define

Pr̃Λ
0(Th) := {u ∈ CΛ0(Th) : u|T ∈ Pr̃Λ

0(T ), ∀T ∈ Th},

Pr̃Λ
1(Th) := {ω ∈ CΛ1(Th) : ω|T ∈ Pr̃Λ

1(T ), ∀T ∈ Th},

P−

r̃ Λ
1(Th) := {ω ∈ CΛ1(Th) : ω|T ∈ P−

r̃ Λ
1(T ), ∀T ∈ Th},

Pr̃Λ
2(Th) := {u ∈ CΛ2(Th) : u|T ∈ Pr̃Λ

2(T ), ∀T ∈ Th},

Pr̃Λ
0(Th;R

2) := [Pr̃Λ
0(Th)]

2,Pr̃Λ
2(Th;R

2) := [Pr̃Λ
2(Th)]

2,

Pr̃Λ
1(Th;R

2) :=

{[

σ11 σ12
σ21 σ22

]

: (σ11, σ12)
⊤, (σ21, σ22)

⊤ ∈ Pr̃Λ
1(Th,R

2)

}

.

Remark 4.3. According to Lemma 4.2 and the fact that Th is C0-compatible, we can
conclude that Pr̃Λ

0(Th)|T = Pr̃Λ
0(T ), Pr̃Λ

1(Th)|T = Pr̃Λ
1(T ), P−

r̃ Λ
1(Th)|T = P−

r̃ Λ
1(T ),

Pr̃Λ
2(Th)|T = Pr̃Λ

2(T ), for any T ∈ Th. For standard (not curved) triangulations Th, spaces
Pr̃Λ

0(Th), Pr̃Λ
1(Th), P

−

r̃ Λ
1(Th), Pr̃Λ

2(Th) coincide with those analyzed in [17].

Lemma 4.4. It holds

Pr̃Λ
1(Th) ⊂ P−

r̃+1Λ
1(Th) ⊂ Pr̃+1Λ

1(Th),

divPr̃+1Λ
1(Th) ⊂ Pr̃Λ

2(Th), curlPr̃+1Λ
0(Th) ⊂ Pr̃Λ

1(Th).

Proof. This is an immediate consequence of Lemma 4.3.

5. Mixed formulation for elasticity with weakly imposed symmetry

We assume that there is rmax ∈ N such that, for any h > 0 and f ∈ ∆(Th), r̃(f) 6 rmax.
We recall the mixed formulation (1.1): Find (σ, u, p) ∈ H(div,Ω;M)×L2(Ω;R2)×L2(Ω)

such that

〈Aσ, τ〉+ 〈divτ, u〉 − 〈S1τ, p〉 = 0, τ ∈ H(div,Ω;M), (5.1)

〈divσ, v〉 = 〈f, v〉 , v ∈ L2(Ω;R2),

〈S1σ, q〉 = 0, q ∈ L2(Ω).

Here 〈·, ·〉 is the standard L2 inner product on Ω. This problem is well-posed. See [4] and
[13] for the proof.

We consider now a finite element discretization of (5.1). For this, we choose families of
finite-dimensional subspaces

Λ1
h(M) ⊂ H(div,Ω;M),Λ2

h(R
2) ⊂ L2(Ω;R2),Λ2

h ⊂ L2(Ω),
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indexed by h, and seek a discrete solution (σh, uh, ph) ∈ Λ1
h(M)× Λ2

h(R
2)× Λ2

h such that

〈Aσh, τ〉+ 〈divτ, uh〉 − 〈S1τ, ph〉 = 0, τ ∈ Λ1
h(M), (5.2)

〈divσh, v〉 = 〈f, v〉 , v ∈ Λ2
h(R

2),

〈S1σh, q〉 = 0, q ∈ Λ2
h.

The stability of (5.2) will be ensured by the Brezzi stability conditions

(S1) ‖τ‖2H(div,Ω;M) 6 c1(Aτ, τ) whenever τ ∈ Λ1
h(R

2) satisfies 〈divτ, v〉 = 0 (5.3)

∀v ∈ Λ2
h(R

2) and 〈S1τ, q〉 = 0 ∀q ∈ Λ2
h,

(S2) for all nonzero (v, q) ∈ Λ2
h(R

2)× Λ2
h, there exists nonzero (5.4)

τ ∈ Λ1
h(R

2) with 〈divτ, v〉 − 〈S1τ, q〉 > c2 ‖τ‖H(div,Ω;M) (‖v‖L2(Ω;R2) + ‖q‖L2(Ω)),

where the constants c1 and c2 are independent of h.
For meshes of arbitrary but uniform order, conditions (5.3) and (5.4) have been proved

in [4] and [13]. In what follows, we will demonstrate that they are also satisfied for (2D)
meshes with elements of variable (but limited) order.

Before presenting our proof, we would like to comment shortly on difficulties encountered
in proving stability for generalizing AFW elements with variable order. As we have shown
in Section 3, it is rather straightforward to generalize AFW elements to the variable order
case. The following commuting diagrams are essential in the stability proof from [5, 4, 13],

H1(Ω;R2)
div
−→ L2(Ω)

Π1,−
h ↓ Π2

h ↓

P−

r+1Λ
1(Th)

div
−→ PrΛ

2(Th)

(5.5a)

H1(Ω;R2)
div
−→ L2(Ω)

Π1
h ↓ Π2

h ↓

Pr+1Λ
1(Th)

div
−→ PrΛ

2(Th)

(5.5b)

H1(Ω;R2)
Id
−→ H1(Ω;R2)

Π0
h ↓ Π1,−

h ↓

Pr+2Λ
0(Th;R

2)
Π1,−

h
◦Id

−→ P−

r+1Λ
1(Th)

(5.5c)

When uniform order r is replaced by variable order r̃, then the diagrams (5.5a) and
(5.5b) do not commute if Π1,−

h and Π1
h are natural generalizations of canonical projection

operators introduced in [5, 4, 13]. A counterexample is given in the appendix of [17]. This
technical difficulty was overcome in [18] for affine meshes by constructing a new family of
new projection based interpolation Π1,−

h ,Π1
h operators, and a new operator Wh (Wh takes

place of Π0
h) so that all three diagrams commute. In the following sections, we will show

asymptotic h-stability can be achieved on curvilinear mesh, which is an analogue of the
stability analysis in [18]. But the analysis in this paper is much more technical.
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6. Preliminaries for the proof of stability for curvilinear meshes

We begin by recalling our assumptions on the domain and meshes: Ω is a (curvilinear)
polygon and it is meshed with a family (Th)h of C0-compatible meshes of class C1,1. For
any mesh Th, mapping r̃ : △(Th) → Z+ defines a locally variable order of discretization
that satisfies the minimum rule. The maximum order is limited, i.e. suph supT∈Th

r̃(T ) <∞.
In order to make this paper more readable, we will put most proofs in this section into
Appendix C.

Definition 6.1. For any T ∈ Th, we define a linear operator Π2
r̃,T : L2(T ) −→ Pr̃Λ

2(T )
by the relations

∫

T

(Π2
r̃,Tu(x)− u(x))ψ̂(x̂(x)) dx = 0 ∀ψ̂ ∈ Pr̃(T )(T̂ ) (6.1)

Above, x̂(x) signifies the inverse of the element map x = GT (x̂).

Definition 6.2. Operator Π2
r̃,T̂

: L2(T̂ ) −→ Pr̃Λ
2(T̂ ) will denote the L2-projection in the

reference space,
∫

T

(Π2
r̃,T̂
û(x̂)− û(x̂))ψ̂(x̂) dx̂ = 0 ∀ψ̂ ∈ Pr̃(T )(T̂ ) (6.2)

Remark 6.1. Operator Π2
r̃,T is a weighted L2-projection in the physical space. For a

regular triangle (affine element map), the jacobian is constant, and Π2
r̃,T reduces to the

standard L2-projection in the physical space.

Lemma 6.1. For any T ∈ Th, and arbitrary u(x) ∈ L2(T ), we define û(x̂) by the relation

u(x(x̂)) =
û(x̂)

det(DGT (x̂))

Then û(x̂) ∈ L2(T̂ ) and

Π2
r̃,Tu(x(x̂)) =

Π2
r̃,T̂
û(x̂)

det(DGT (x̂)))

Above, x(x̂) signifies the element map x = GT (x̂).

Proof. Proof follows immediately from Lemma B.6 and the definitions of the two projections.

Lemma 6.2. For any ε > 0, there exists δ > 0 such that, for any h < δ and T ∈ Th,

‖Π2
r̃,Tu− Pr̃,Tu‖L2(T ) 6 ε‖u‖L2(T ), ∀u ∈ L2(T ).

Here Pr̃,T is the standard L2-projection onto Pr̃Λ
2(T ).

Proof. Please see Appendix C.
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6.1. Projection-Based Interpolation onto Pr̃+1Λ
1(Th)

Definition 6.3. For any T ∈ Th, we define a linear operator Π1
r̃+1,T : H1(T ;R2) −→

Pr̃+1Λ
1(T ) by the relations

∫

T

div(Π1
r̃+1,Tω − ω)(x)ψ̂(x̂(x))dx = 0 ∀ψ̂ ∈ Pr̃(T )(T̂ )/R, (6.3)

∫

T

(Π1
r̃+1,Tω(x)− ω(x))⊤DGT (x̂)

−⊤curlx̂ϕ̂(x̂(x))dx = 0 ∀ϕ̂ ∈ P̊r̃(T )+2(T̂ ), (6.4)

∫

[0,1]

[(Π1
r̃+1,Tω − ω)(xe(s)) · n(xe(s))]η̂(s)‖ẋe(s)‖ds = 0 ∀η̂ ∈ Pr̃(e)+1([0, 1]) ∀e ∈ △1(T ).

(6.5)
Here x = GT (x̂) for any x̂ ∈ T̂ , xe(s) : [0, 1] → e is the parametrization of e, and n is a unit
normal vector along e (the choice of its direction does not matter).

Definition 6.4. (Projection-Based Interpolation operator onto Pr̃+1Λ
1(T̂ )) We define a

linear operator Π1
r̃+1,T̂

: H(T̂ ) −→ Pr̃+1Λ
1(T̂ ) by the relations

∫

T̂

divx̂(Π
1
r̃+1,T̂

ω̂ − ω̂)ψ̂dx̂ = 0 ∀ψ̂ ∈ Pr̃(T̂ )(T̂ )/R, (6.6)

∫

T̂

(Π1
r̃+1,T̂

ω̂ − ω̂) · curlx̂ϕ̂dx̂ = 0 ∀ϕ̂ ∈ P̊r̃(T̂ )+2(T̂ ), (6.7)

∫

ê

(Π1
r̃+1,T̂

ω̂ − ω̂) · n̂η̂dŝ = 0 ∀η̂ ∈ Pr̃(ê)+1(ê) ∀ê ∈ △1(T̂ ). (6.8)

Remark 6.2. The operator Π1
r̃+1,T̂

is the Projection-Based-Interpolation operator onto

Pr̃+1Λ
1(T̂ ) defined in [17]. The operator Π1

r̃+1,T is defined by the pull-back mapping from T̂
to T .

Lemma 6.3. For any T ∈ Th, any ω ∈ [H1(T )]2, we define ω̂ by the relation

ω(x(x̂)) =
DGT (x̂)

det(DGT (x̂))
ω̂(x̂).

Then ω̂(x̂) ∈ H(T̂ ), and

Π1
r̃+1,Tω(x(x̂)) =

DGT (x̂)

det(DGT (x̂))
Π1

r̃+1,T̂
ω̂(x̂).

Proof. Please see Appendix C.

Lemma 6.4. For any T ∈ Th, and any ω ∈ [H1(T )]2, we have Π2
r̃,Tdivω = divΠ1

r̃+1,Tω.

Proof. Please see Appendix C.

Lemma 6.5. There exists δ > 0 and C > 0 such that, for any h < δ, we have

‖Π1
r̃,Tω‖L2(T ) 6 C‖ω‖H1(T ) ∀T ∈ Th, ω ∈ H1(T ;R2)

For affine meshes, the inequality above holds for any h > 0.

Proof. Please see Appendix C.
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6.2. Modified Projection Based Interpolation onto P−

r̃+1Λ
1(T ) and modified oper-

ator W onto Pr̃+2Λ
0(T )

Definition 6.5. Let r̃ : △(T̂ ) → Z+ be a mapping that prescribes the local order of
discretization and satisfies the minimum rule, i.e. if ê, f̂ ∈ △(T̂ ) and ê ⊂ f̂ then r̃(ê) 6 r̃(f̂).
We put kr̃ = dim curlx̂P̊r̃(T̂ )+1(T̂ ). Let {f̂r̃,1(x̂), · · · , f̂r̃,kr̃(x̂)} be a basis of curlx̂P̊r̃(T̂ )+1(T̂ ).

Let {ĝr̃,1(x̂), · · · , ĝr̃,kr̃(x̂)} be a linearly independent subset of Pr̃(T̂ )−1(T̂ ;R
2) such that

span{ĝr̃,1(x̂), · · · , ĝr̃,kr̃(x̂)} ⊕ grad
x̂
Pr̃(T̂ )(T̂ ) = [Pr̃(T̂ )−1(T̂ )]

2.

For t ∈ [0, 1], we define ĥr̃,i(x̂, t) = (1− t)f̂r̃,1(x̂) + tĝr̃,1(x̂), 1 6 i 6 kr̃.

Remark 6.3. It is easy to check that kr̃ = dimPr̃(T̂ )−1(T̂ ;R
2)− dim grad

x̂
Pr̃(T̂ )(T̂ ).

Definition 6.6. (One-parameter family of PB interpolation operators onto P−

r̃+1Λ
1(T̂ ))

For any t ∈ [0, 1], we define a linear operator Π1,−

r̃+1,T̂ ,t
: H1(T̂ ;R2) −→ P−

r̃+1Λ
1(T̂ ) by the

relations
∫

T̂

divx̂(Π
1,−

r̃+1,T̂ ,t
ω̂ − ω̂)(x̂)ψ̂(x̂)dx̂ = 0 ∀ψ̂ ∈ Pr̃(T̂ )(T̂ )/R, (6.9)

∫

T̂

(Π1,−

r̃+1,T̂ ,t
ω̂(x̂)− ω̂(x̂))⊤ĥi(x̂, t)dx̂ = 0 1 6 i 6 kr̃, (6.10)

∫

ê

[(Π1,−

r̃+1,T̂ ,t
ω̂ − ω̂) · n̂]η̂dŝ = 0 ∀η̂ ∈ Pr̃(ê)(ê), ∀ê ∈ △1(T̂ ). (6.11)

Definition 6.7. We define a linear operator Ct : [H1(T̂ )]2 −→ Pr̃+2Λ
0(T̂ ;R2) by the

following relations

∫

T̂

divx̂Ctω̂(x̂)ψ̂(x̂)dx̂ =

∫

T̂

divx̂ω̂(x̂)ψ̂(x̂)dx̂ ∀ψ̂ ∈ Pr̃(T̂ )(T̂ )/R (6.12)

∫

T̂

(Ctω̂(x̂))
⊤ĥi(x̂, t)dx̂ =

∫

T̂

(ω̂(x̂))⊤ĥi(x̂, t)dx̂ 1 6 i 6 kr̃ (6.13)

∫

ê

[(Ctω̂) · n̂]η̂dŝ =

∫

ê

[ω̂ · n̂]η̂dŝ ∀η̂ ∈ Pr̃(ê)(ê), ∀ê ∈ △1(T̂ ) (6.14)

∫

ê

[(Ctω̂) · t̂]η̂dŝ =

∫

ê

[ω̂ · t̂]η̂dŝ ∀η̂ ∈ Pr̃(ê)(ê), ∀ê ∈ △1(T̂ ) (6.15)

Ctω̂ = 0 at all vertices of T̂ (6.16)

Here n̂, t̂ denote the normal and tangent unit vectors along ∂T̂ .

According to Lemma 10.7 and Lemma 10.8 (the operator Π0
r̃,T̂ ,t

in this lemma is exactly

the same as the operator Ct
r̃(T̂ )

in this paper) in [18], we can have the following definition.

Definition 6.8. Let r̃ : △(T̂ ) → Z+ be a locally variable order of discretization that
satisfies the minimum rule. Let tr̃(T̂ ) ∈ [0, 1] which depends on r̃(T̂ ) only such that both

Π1,−

r̃+1,T̂ ,t
r̃(T̂ )

and Ct
r̃(T̂ )

are well-defined (See Lemma 10.7 and Lemma 10.8 in [18]).
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Definition 6.9. (PB interpolation operator onto P−

r̃+1Λ
1(T )) For tr̃(T̂ ) given in Defini-

tion 6.8, and for any T ∈ Th, we define a linear operator Π1,−
r̃+1,T : H1(T ;R2) −→ P−

r̃+1Λ
1(T )

by the relations

∫

T

div(Π1,−
r̃+1,Tω − ω)(x)ψ̂(x̂(x)) dx = 0 ∀ψ̂ ∈ Pr̃(T )(T̂ )/R, (6.17)

∫

T

(Π1,−
r̃+1,Tω(x)− ω(x))⊤DGT (x̂(x))

−⊤ĥi(x̂(x), tr̃(T̂ ))dx = 0 1 6 i 6 kr̃, (6.18)

∫

[0,1]

[(Π1,−
r̃+1,Tω − ω)(xe(s)) · n(xe(s))]η̂(s)‖ẋe(s)‖ds = 0 ∀η̂ ∈ Pr̃(e)([0, 1]), ∀e ∈ △1(T ).

(6.19)
In the above, x̂ = x̂(x) signifies the inverse of the element map.

Theorem 6.1. The operator Π1,−
r̃+1,T : H1(T ;R2) −→ P−

r̃+1Λ
1(T ) is well-defined, and we

have

divΠ1,−
r̃+1,Tω = Π2

r̃,Tdivω ∀ω ∈ H1(T ;R2).

Moreover, there exist δ > 0 and C > 0 such that, for h 6 δ, T ∈ Th, and ω ∈ H1(T ;R2),

‖Π1,−
r̃+1,Tω‖L2(T ) 6 C‖ω‖H1(T ).

Proof. The proof is analogous to that of Lemma 6.3, Lemma 6.4, and Lemma 6.5.

Definition 6.10. For tr̃(T̂ ) given in Definition 6.8, and for any T ∈ Th, we define a linear

operator WT : H1(T ;R2) −→ Pr̃+2Λ
0(T ;R2) by the following relations

∫

T

div(WTω − ω)(x)ψ̂(x̂(x))dx = 0 ∀ψ̂ ∈ Pr̃(T )(T̂ )/R, (6.20)

∫

T

(WTω(x)− ω(x))⊤DGT (x̂(x))
−⊤ĥi(x̂(x), tr̃(T̂ ))dx = 0 1 6 i 6 kr̃, (6.21)

∫

[0,1]

[(WT,tω−ω)(xe(s))·n(xe(s))]η̂(s)‖ẋe(s)‖ds = 0 ∀η̂ ∈ Pr̃(e)([0, 1]), ∀e ∈ △1(T ), (6.22)

∫

[0,1]

[(WT,tω−ω)(xe(s)) ·t(xe(s))]η̂(s)‖ẋe(s)‖ds = 0 ∀η̂ ∈ Pr̃(e)([0, 1]), ∀e ∈ △1(T ), (6.23)

WT,tω = 0 at all vertices of T. (6.24)

Here n, t denote the normal and tangent unit vectors along ∂T .

Theorem 6.2. There exist δ > 0 and C > 0 such that, for any h < δ, T ∈ Th, the
operator WT : H1(T ;R2) −→ Pr̃+2Λ

0(T ;R2) is well-defined and,

‖curlWTω‖L2(T ) 6 C(h̃−1
T ‖ω‖L2(T ) + ‖ω‖H1(T )) ∀ω ∈ H1(T ;R2)

Moreover, for affine meshes, WT is well-defined and the above inequality holds for any h > 0.

Proof. Please see Appendix C.
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6.3. Projection operators on the whole curvilinear meshes

Definition 6.11. We define the following global interpolation operators,

Π2
r̃,Th

: L2(Ω) −→ Pr̃Λ
2(Th), (Π2

r̃,Th
u)|T = Π2

r̃,T (u|T )

Π̃2
r̃,Th

: L2(Ω;R2) −→ Pr̃Λ
2(Th;R

2), (Π̃2
r̃,Th

(u1, u2)
⊤)|T = (Π2

r̃,T (u1|T ),Π
2
r̃,T (u2|T ))

⊤

Π1,−
r̃+1,Th

: H1(Ω;R2) −→ P−1
r̃+1Λ

1(Th), (Π1,−
r̃+1,Th

ω)|T = Π1,−
r̃+1,T (ω|T )

Π̃1
r̃+1,Th

: H1(Ω;M) −→ Pr̃+1Λ
1(Th;R

2), (Π̃1
r̃+1,Th

σ)|T =

[

τ11 τ12
τ21 τ22

]

where,
[

τ11
τ12

]

= Π1
r̃+1,Th

[

σ11|T
σ12|T

]

,

[

τ21
τ22

]

= Π1
r̃+1,Th

[

σ21|T
σ22|T

]

, σ =

[

σ11 σ12
σ21 σ22

]

WTh
: H1(Ω;R2) −→ Pr̃+2Λ

0(Th;R
2), (WTh

ω)|T = WT (ω|T )

for all T ∈ Th.

Remark 6.4. Since (Th)h is C0-compatible, operators Π1,−
r̃+1,Th

, Π̃1
r̃+1,Th

and WTh
are well-

defined.

Theorem 6.3. For any ε > 0, there exists δ > 0 such that, for any h < δ,

‖Π2
r̃,Th

u− Pr̃,Thu‖L2(Ω) 6 ε‖u‖L2(Ω) ∀u ∈ L2(Ω).

Here Pr̃,Th is the standard L2-projection onto Pr̃Λ
2(Th).

Proof. This is an immediate result of Lemma 6.2.

Theorem 6.4. There exist δ > 0 and C > 0 such that, for any h < δ, we have

‖Π̃1
r̃+1,Th

σ‖L2(Ω) 6 C‖σ‖H1(Ω), ‖Π1,−
r̃+1,Th

ω‖L2(Ω) 6 C‖ω‖H1(Ω),

for any σ ∈ H1(Ω;M) and ω ∈ H1(Ω;R2). For affine meshes, the inequalities above hold for
any h > 0. Moreover,

div Π̃1
r̃+1,Th

σ = Π̃2
r̃,Th

div σ, div Π1,−
r̃+1,Th

ω = Π2
r̃,Th

div ω

Proof. This is an immediate result of Lemma 6.5 and Theorem 6.1.

Definition 6.12. Let Rh denote the generalized Clement interpolant operator from The-
orem 5.1 in [6], which maps H1(Ω;R2) into P1Λ

0(Th;R
2). And we define

W̃h =Wh(I − Rh) +Rh.

Theorem 6.5. There exist δ > 0 and C > 0 such that, for any h < δ,

‖curlW̃hω‖L2(Ω) 6 C‖ω‖H1(Ω) ∀ω ∈ H1(Ω;R2).

For affine meshes, the inequality holds for any h > 0. The operator W̃h maps H1(Ω;R2) into
Pr̃+2Λ

0(T ;R2) and satisfies the condition

Π1,−
r̃+1,Th

ω = Π1,−
r̃+1,Th

W̃hω ∀ω ∈ H1(Ω;R2).

Proof. We utilize Example 2 from [6] with uniform order equal 1 to construct operator Rh.
Since (Th)h is C0-compatible, and ch → 0 as h → 0, operator Rh maps H1(Ω;R2) into
P1Λ

0(T ;R2) ⊂ Pr̃+2Λ
0(T ;R2). Then the proof will be straightforward.
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7. Asymptotic stability of the finite element discretization on curvi-

linear meshes

Lemma 7.1. There exist δ > 0 and c > 0 such that, for any h < δ and any (ω, µ) ∈
Pr̃Λ

2(Th)×Pr̃Λ
2(Th;R

2), there exists σ ∈ Pr̃+1Λ
1(Th;R

2) such that

divσ = µ, −Π2
r̃,Th

S1σ = ω

and

‖σ‖H(div,Ω) 6 c(‖µ‖L2(Ω) + ‖ω‖L2(Ω))

Here, the constant c depends on suph supT∈Th
r̃(T ). For affine meshes, the inequality above

holds for any h > 0.

Proof. The proof is the same as that of Theorem 33 in [17].

Theorem 7.1. There exist δ > 0 and c > 0 such that, for solution (σ, u, p) of elasticity
system (1.1), and corresponding solution (σh, uh, ph) of discrete system (5.1), we have

‖σ − σh‖H(div,Ω) + ‖u− uh‖L2(Ω) + ‖p− ph‖L2(Ω)

6 c inf[‖σ − τ‖H(div,Ω) + ‖u− v‖L2(Ω) + ‖p− q‖L2(Ω)],

where the infimum is taken over all τ ∈ Pr̃+1Λ
1(Th,R

2), v ∈ Pr̃Λ
2(Th,R

2), and q ∈ Pr̃Λ
2(Th),

for h < δ. For affine meshes, the inequality holds for any h > 0.

Proof. We need to show that conditions (5.3) and (5.4) are satisfied asymptotically in h. Con-
dition (5.3) follows from the fact that, by construction, divPr̃+1Λ

1(Th,R
2) ⊂ Pr̃Λ

2(Th;R
2),

and the fact that A is coercive.

We turn now to condition (5.4). According to Lemma 7.1, there exist δ > 0 and c > 0
such that, for h < δ and (ω, µ) ∈ Pr̃Λ

2(Th)× Pr̃Λ
2(Th;R

2), there exists σ ∈ Pr̃+1Λ
1(Th;R

2)
such that divσ = µ, −Π2

r̃,Th
S1σ = ω, and ‖σ‖H(div,Ω) 6 c(‖µ‖L2(Ω)+‖ω‖L2(Ω)). We have then

〈divσ, µ〉 − 〈S1σ, ω〉 =〈divσ, µ〉 − 〈Π2
r̃,Th

S1σ, ω〉+ 〈(Π2
r̃,Th

− Pr̃,Th)S1σ, ω〉

>c‖σ‖H(div,Ω)(‖µ‖L2(Ω) + ‖ω‖L2(Ω)) + 〈(Π2
r̃,Th

− Pr̃,Th)S1σ, ω〉.

According to Theorem 6.3, for sufficiently small h,

|〈(Π2
r̃,Th

− Pr̃,Th)S1σ, ω〉| 6
c

2
‖σ‖L2(Ω)‖ω‖L2(Ω)

So, asymptotically in h, we have

〈divσ, µ〉 − 〈S1σ, ω〉 >
c

2
‖σ‖H(div,Ω)(‖µ‖L2(Ω) + ‖ω‖L2(Ω)).

For affine meshes, Π2
r̃,Th

reduces to the standard L2-projection. The inequality above holds
then for any h > 0. This finishes the proof.
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8. Conclusions

We have presented a complete asymptotic h-stability analysis for a generalization of Arnold-
Falk-Winther elements to curvilinear meshes of variable order in two space dimensions. The
asymptotic stability analysis for curvilinear elements has proved to be rather non-trivial.

The analysis of curvilinear meshes for elasticity differs considerably from that for prob-
lems involving only grad-curl-div operators. Piola maps transform gradients, curls and di-
vergence in the physical domain into the corresponding gradients, curls and divergence in the
reference domain. Consequently, problems involving the grad, curl or div operators only (e.g.
Maxwell equations or the mixed formulation for a scalar elliptic problem) can be reformu-
lated in the parametric domain at the expense of introducing material anisotropies reflecting
the geometric parametrizations. This is not the case for elasticity where the strain tensor
(symmetric part of the displacement gradient) in the physical domain does not transform
into the symmetric part of the displacement gradient in the reference domain. Consequently,
the analysis for affine meshes cannot be simply reproduced for curvilinear ones, and new in-
terpolation operators have to be carefully drafted. We have managed to prove only the
asymptotic stability for the curvilinear meshes.

A. Mesh generation

We assume that the domain Ω is a (curvilinear) polygon, and that it can be meshed with a
regular family (Th)h of C0-compatible meshes (i.e. Ω =

⋃

T∈Th
T , for all h) that satisfy the

regularity assumptions discussed in the previous section.
We will outline now shortly how one can generate such meshes in practice. Suppose

the domain Ω has been meshed with a C0-compatible initial mesh Tint, Ω =
⋃m

i=1 Ti, where
{Ti}

m
i=1 are curved triangles of class C1,1. We denote by {G1, · · · , Gm} the mappings from

T̂ to {T1, · · · , Tm}. Then Gi ∈ C1,1(T̂ ) and G−1
i ∈ C1(Ti) for any 1 6 i 6 m. For examples

of techniques to generate an initial mesh satisfying the assumptions above, see [11].

Lemma A.1. Let T = GT (T̂ ) be a closed triangle in R
2 with GT ∈ C1,1(T̂ ). Let σ̌ > 0

be a positive constant. For any ȟ > 0, we denote by Ťȟ any triangle contained in T̂ such that
the diameter of Ťȟ is ȟ, and ȟ/ρ̌ 6 σ̌ where ρ̌ is the diameter of the sphere inscribed in Ťȟ.
Let T̂ ∋ x̂ → Hx̂ = B̌x̂ + b̌ be an affine mapping from T̂ onto Ťȟ. Let p̂ be the centroid of
T̂ . We put B = D(GT ◦H)(p̂), b = (GT ◦H)(p̂), and Ψ(x̂) = (GT ◦H)(x̂)− B̌(x̂− p̂)− b.

Then, we have
(sup
x̂∈T̂

‖DΨ(x̂)‖)‖B−1‖ 6 Cȟ,

where C is a constant independent of ȟ, and Ťȟ.

Proof. Obviously, B = DGT (H(p̂))B̌. So B−1 = B̌−1(DGT (H(p̂)))−1. We have

DΨ(x̂) = (DGT (H(x̂))−DGT (H(p̂)))B̌.

Since GT is a C1-diffeomorphism from T̂ onto T , we have sup
x̂∈T̂ ‖(DGT (x̂))

−1‖ <∞. With

GT ∈ C1,1(T̂ ), we also have

‖DGT (H(x̂))−DGT (H(p̂))‖ 6M‖H(x̂)−H(p̂)‖ for any x̂ ∈ T̂

where M is the Lipschitz constant for all first order derivatives of GT on T̂ .
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With ȟ/ρ̌ 6 σ̌, we obtain that ‖B̌‖ · ‖B̌−1‖ 6
c

σ̌
, for some c > 0. With ȟ denoting the

diameter of Ťȟ, we have ‖H(x̂) − H(p̂)‖ 6 ȟ for any x̂ ∈ Ťȟ. The definition of Ψ implies
then

(sup
x̂∈T̂

‖DΨ(x̂)‖)‖B−1‖ 6
c

σ̌
M(sup

ŷ∈T̂

‖(DGT (ŷ))
−1‖)ȟ.

Setting C =
c

σ̌
M(sup

ŷ∈T̂ ‖(DGT (ŷ))
−1‖) finishes the proof.

Let T̂i be now multiple copies of the reference triangle corresponding to the initial mesh,
Ti = Gi(T̂i), i = 1, . . . , m.

Definition A.1. (Regular triangular meshes in the reference space) A family of trian-
gulations (T̂i,ȟ)ȟ of reference triangles T̂i is said to be regular provided two conditions are
satisfied:

(i) Partitions of edges of T̂i mapped into the same edge in the physical space are identical.

(ii) supȟ supŤ∈T̂i,ȟ
ȟ/ρ̌ <∞, where ȟ and ρ̌ are the outer and inner diameters of Ť .

Obviously, uniform refinements of reference triangles are regular. A number of adaptive
refinement algorithms produces regular meshes as well. To this class belong, e.g., Rivara’s
algorithm (bisection by the longest edge), Arnold’s algorithm (bisection by the newest edge),
the Delaunay triangulation (see [7]).

Using Lemma A.1 and the fact that Gi is C
1-diffeomorphism from T̂ to Ti, 1 6 i 6 m,

we easily conclude that any regular refinements in the reference space produce curvilinear
meshes that satisfy our mesh regularity assumptions.

B. Properties of Sobolev spaces on curved and reference triangles

Lemma B.1. Let T be a curved triangle. For any ω ∈ H1(T ;R2), we define ω̂(x̂) on
T̂ by

ω(x) =
DGT (x̂)

det(DGT (x̂))
ω̂(x̂) x̂ ∈ T̂ .

Then ω̂(x̂) ∈ H(T̂ ). Divergence transforms by the classical Piola’s rule:

divω(x) = (det(DGT (x̂)))
−1divx̂ω̂(x̂)

for x̂ ∈ T̂ almost everywhere.

Proof. Notice that ω̂(x̂) = det(DGT (x̂))(DGT (x̂))
−1ω(x) for any x̂ ∈ T̂ . It is straight-

forward to see that det(DGT (x̂))(DGT (x̂))
−1 is a matrix whose entries contain first order

partial derivatives of GT (x̂). Notice that

ω̂(x̂) = det(DGT (x̂))(DGT (x̂))
−1ω(x)

is the standard pull back mapping from H(div, T ) to H(divx̂, T̂ ). So we immediately

have divω(x) =
1

det(DGT (x̂))
divx̂ω̂(x̂) for x̂ ∈ T̂ almost everywhere. Since GT is a C1-

diffeomorphism from T̂ to T , we can conclude that ω̂(x̂) ∈ H(div, T̂ ).
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Let e ∈ △1(T ). We denote by ζ(s) : [0, 1] → ê, the local affine parametrization of ê. We
have then

‖ω̂‖2L2(ê) =

∫

[0,1]

(ω̂(ζ(s)))⊤ω̂(ζ(s))‖ζ̇(s)‖ds

=

∫

[0,1]

(det(DGT (ζ(s))))
2ω(GT (ζ(s)))

⊤[DGT (ζ(s))
−⊤DGT (ζ(s))

−1]

ω(GT (ζ(s)))‖(DGT (ζ(s)))
−1[DGT (ζ(s))ζ̇(s)]‖ds.

Since GT is a C1-diffeomorphism from T̂ to T , we can conclude that ω̂|∂T̂ ∈ L2(∂T̂ ;R2). So

ω̂ ∈ H(T̂ ).

Lemma B.2. There exist δ > 0 and C > 0 such that, for any h < δ and T ∈ Th,

‖ω‖L2(T ) 6 C‖ω̂‖L2(T̂ ), ∀ω ∈ L2(T ;R2),

where
DGT (x̂)ω̂(x̂)

det(DGT (x̂))
= ω(x) for any x̂ ∈ T̂ . If T is a triangle for any T ∈ Th and h > 0,

then the above inequality holds for any h > 0.

Proof.

‖ω‖L2(T ) =

∫

T

1

det(DGT (x̂))2
[DGT (x̂)ω̂(x̂)]

⊤DGT (x̂)ω̂(x̂)dx

=

∫

T̂

det((DGT )
−1)ω̂⊤[DG⊤

TDGT ]ω̂dx̂

=

∫

T̂

det(DG−1
T BT ) det(B

−1
T )ω̂⊤B⊤

T [B
−⊤

T DG⊤
TDGTB

−1
T ]BT ω̂dx̂.

Since ch → 0 as h → 0, limh→0 supT∈Th
sup

x̂∈T̂ ‖B−⊤

T DG⊤
TDGTB

−1
T − I‖ = 0. By

Lemma 3.4, we have limh→0 supT∈Th
sup

x̂∈T̂ | det(DG−1
T BT )− 1| = 0.

Since (Th)h is regular, there is a constant σ > 0 such that σ1/σ2 6 σ for any T ∈ Th,
where σ1 and σ2 denote the biggest and smallest singular value of the corresponding matrix
BT . Then ‖B⊤

T ‖ = ‖BT‖ = σ1 and det(BT ) = σ1 ·σ2. So ‖B⊤
T ‖ · ‖BT‖ det(B

−1
T ) = σ1/σ2 6 σ

for any h > 0 and any T ∈ Th.
We can conclude thus that there exist δ > 0 and C > 0 such that, for any h < δ and

T ∈ Th,
‖ω‖L2(T ) 6 C‖ω̂‖L2(T̂ ) ∀ω ∈ L2(T ;R2)

If, for all h, T ∈ Th are (regular) triangles, the asymptotic argument is not necessary, and
the above inequality holds for any h > 0.

Lemma B.3. There exist δ > 0 and C > 0 such that, for any h < δ and T ∈ Th,

‖ω̂‖2
H(div

x̂
,T̂ )

+ ‖ω̂‖2
L2(∂T̂ )

6 C‖ω‖2H1(T ) ∀ω ∈ H1(T ;R2),

where
DGT (x̂)ω̂(x̂)

det(DGT (x̂))
= ω(x) for any x̂ ∈ T̂ . If T is a triangle for any T ∈ Th and h > 0,

then the above inequality holds for any h > 0.
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Proof.

‖ω̂‖2
L2(T̂ )

=

∫

T̂

(det(DGT (x̂)))
2ω(x)⊤[DGT (x̂)

−TDGT (x̂)
−1]ω(x)dx̂

=

∫

T

det(DGT (x̂))ω(x)
⊤[DGT (x̂)

−TDGT (x̂)
−1]ω(x)dx

=

∫

T

det(DGT (x̂)B
−1
T ) det(BT )ω(x)

⊤B−⊤

T

[B⊤

TDGT (x̂)
−TDGT (x̂)

−1BT ]B
−1
T ω(x)dx.

According to Lemma 3.3, limh→0 supT∈Th
sup

x̂∈T̂ ‖B⊤
TDGT (x̂)

−TDGT (x̂)
−1BT − I‖ = 0. By

Lemma 3.4, we have limh→0 supT∈Th
sup

x̂∈T̂ | det(DGT (x̂)B
−1
T )− 1| = 0.

Since (Th)h is regular, there exists a constant σ > 0 such that σ1/σ2 6 σ for any T ∈ Th,
where σ1 and σ2 denote the biggest and smallest singular value of the matrix BT . Then
‖B−⊤

T ‖ = ‖B−1
T ‖ = σ−1

2 and det(BT ) = σ1 · σ2. So ‖B−⊤

T ‖ · ‖B−1
T ‖ det(BT ) = σ1/σ2 6 σ.

Consequently, there exist δ1 > 0 and C1 > 0 such that, for any h < δ1 and T ∈ Th,

det(DGT (x̂)B
−1
T ) det(BT )ω(x)

⊤B−⊤

T [B⊤

TDGT (x̂)
−TDGT (x̂)

−1BT ]B
−1
T ω(x)

6 C2
1ω(x)

⊤ω(x)

for all ω ∈ H1(T ;R2),x ∈ T . We can conclude that, for any h < δ1 and T ∈ Th,

‖ω̂‖L2(T̂ ) 6 C1‖ω‖L2(T ) ∀ω ∈ H1(T ;R2).

According to Lemma B.1, we have

‖divx̂ω̂‖
2
L2(T̂ )

=

∫

T̂

(det(DGT (x̂)))
2(divω(x))2dx̂ =

∫

T

det(DGT (x̂))(divω(x))
2dx

=

∫

T

det(DGT (x̂)B
−1
T ) det(BT )(divω(x))

2dx.

By Lemma 3.4, limh→0 supT∈Th
sup

x̂∈T̂ | det(DGT (x̂)B
−1
T )−1| = 0. Obviously, det(BT ) 6 h̃2T .

There must exist then δ2 > 0 and C2 > 0 such that, for any h < δ2 and T ∈ Th,

det(DGT (x̂)B
−1
T ) det(BT )(divω(x))

2
6 C2

2 h̃
2
T (divω(x))

2 ∀ω ∈ H1(T ;R2),x ∈ T.

We conclude that, for any h < δ2 and T ∈ Th,

‖divx̂ω̂‖L2(T̂ ) 6 C2h̃T‖divω‖L2(T ) ∀ω ∈ H1(T ;R2).

We take now an arbitrary e ∈ △1(T ). We denote by ζ(s) : [0, 1] → ê the local affine
parametrization of ê. We have then

‖ω̂‖2L2(ê) =

∫

[0,1]

(ω̂(ζ(s)))⊤ω̂(ζ(s))‖ζ̇(s)‖ds

=

∫

[0,1]

(det(DGT (ζ(s))))
2ω(GT (ζ(s)))

⊤[DGT (ζ(s))
−⊤DGT (ζ(s))

−1]

ω(GT (ζ(s)))‖ζ̇(s)‖ds

=

∫

[0,1]

(det(DGT (ζ(s)))B
−1
T )2(det(BT ))

2ω(GT (ζ(s)))
⊤B−⊤

T

[B⊤

TDGT (ζ(s))
−⊤DGT (ζ(s))

−1BT ]B
−1
T ω(GT (ζ(s)))‖ζ̇(s)‖ds.
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According to Lemma 3.3, we have that

lim
h→0

sup
T∈Th

sup
e∈T

sup
s∈[0,1]

‖B⊤
TDGT (ζ(s))

−⊤DGT (ζ(s))
−1BT − I‖ = 0.

By Lemma 3.4, limh→0 supT∈Th
supe∈T sups∈[0,1] |(det(DGT (ζ(s)))B

−1
T )2 − 1| = 0.

Consider again the singular values of BT , σ1 > σ2. Then ‖B−⊤

T ‖ = ‖B−1
T ‖ = σ−1

2 , and
det(BT ) = σ1 · σ2. So ‖B−⊤

T ‖ · ‖B−1
T ‖(det(BT ))

2 = (σ1)
2 6 h̃2T . Consequently, there exist

δ3 > 0 and C3 > 0 such that, for any h < δ3 and T ∈ Th,

(det(DGT (ζ(s)))B
−1
T )2(det(BT ))

2ω(GT (ζ(s)))
⊤B−⊤

T

[B⊤
TDGT (ζ(s))

−⊤DGT (ζ(s))
−1BT ]B

−1
T ω(GT (ζ(s)))

6 C3h̃
2
Tω(x)

⊤ω(x) ∀ω ∈ H1(T ;R2), e ∈ △1(T ), s ∈ [0, 1]

and

‖ζ̇(s)‖ =‖B−1
T [BTDGT (ζ(s))

−1] · [DGT (ζ(s))ζ̇(s)]‖

6C3h̃
−1
T ‖DGT (ζ(s))ζ̇(s)‖ ∀e ∈ △1(T ), s ∈ [0, 1].

We can conclude that, for any h < δ3 and T ∈ Th,

‖ω̂‖2L2(ê) 6 C2
3 h̃T

∫

[0,1]

ω(GT (ζ(s)))
⊤ω(GT (ζ(s)))‖DGT (ζ(s))ζ̇(s)‖ds

= C2
3 h̃T‖ω‖

2
L2(e).

Obviously, suph supT∈Th
h̃T < ∞. Since ω ∈ H1(T ;R2), we can use the Trace Theorem to

conclude that there exist δ > 0 and C > 0 such that, for any h < δ and T ∈ Th,

‖ω̂‖2
H(div

x̂
,T̂ )

+ ‖ω̂‖2
L2(∂T̂ )

6 C‖ω‖2H1(T ) ∀ω ∈ H1(T ;R2).

It is easy to see that, if T is a (regular) triangle for any T ∈ Th and h > 0, then the inequality
above holds for any h > 0.

Lemma B.4. There exist δ > 0 and C > 0 such that, for any h < δ and T ∈ Th,

‖curlω‖2L2(T ) 6 Ch̃−2
T ‖curlx̂ω̂‖

2
L2(T̂ )

∀ω ∈ H1(T ;R2)

where
BT ω̂(x̂)

det(BT )
= ω(x) for any x̂ ∈ T̂ . If T is a triangle for any T ∈ Th and h > 0, then the

above inequality holds for any h > 0.

Proof. We have

curlω(x) =
BT

det(BT )
(curlω̂)(x̂) =

1

det(BTDGT (x̂))
BT curlx̂ω̂(x̂)(DGT (x̂))

⊤

=
(det(B−1

T ))2

det(B−1
T DGT (x̂))

BT curlx̂ω̂(x̂)B
⊤

T (DGT (x̂)B
−1
T )⊤.
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and

‖curlω‖2L2(T ) =

∫

T

(det(B−1
T ))4

(det(B−1
T DGT (x̂)))2

(DGT (x̂)B
−1
T )BT (curlx̂ω̂(x̂))

⊤

[B⊤

T BT ]curlx̂ω̂(x̂)B
⊤

T (DGT (x̂)B
−1
T )⊤dx

=

∫

T̂

(det(B−1
T ))3

(det(B−1
T DGT (x̂)))2

(DGT (x̂)B
−1
T )BT (curlx̂ω̂(x̂))

⊤

[B⊤

T BT ]curlx̂ω̂(x̂)B
⊤

T (DGT (x̂)B
−1
T )⊤dx̂.

Since ch → 0 as h→ 0, limh→0 supT∈Th
sup

x̂∈T̂ ‖DGT (x̂)B
−1
T − I‖ = 0.

By Lemma 3.4, limh→0 supT∈Th
sup

x̂∈T̂ |(det(B−1
T DGT (x̂)))

2 − 1| = 0.
Since (Th)h is regular, there exists a constant σ > 0 such that σ1/σ2 6 σ for any T ∈ Th,

with σ1 > σ2 denoting the singular values of matrix BT . Then ‖B⊤
T ‖ = ‖BT‖ = σ1 and

det(B−1
T ) = σ−1

1 · σ−1
2 . So ‖B⊤

T ‖
2 · ‖BT‖

2(det(B−1
T ))3 = σ1/σ

3
2 6 σ/σ2

2 6 c′h̃−2
T for some

constant c′ > 0.
Consequently, there exist δ1 > 0 and C > 0 such that, for any h < δ1 and T ∈ Th,

∫

T̂

(det(B−1
T ))3

(det(B−1
T DGT (x̂)))2

(DGT (x̂)B
−1
T )BT (curlx̂ω̂(x̂))

⊤

[B⊤
T BT ]curlx̂ω̂(x̂)B

⊤
T (DGT (x̂)B

−1
T )⊤dx̂

6 Ch̃−2
T

∫

T̂

‖(curlx̂ω̂(x̂))
⊤(curlx̂ω̂(x̂))‖dx̂.

Again, it is easy to see that, if T is a (regular) triangle for any T ∈ Th and h > 0, then the
above inequality holds for any h > 0. This finishes the proof.

Lemma B.5. There exist δ > 0 and C > 0 such that, for any h < δ and T ∈ Th,

‖ω̂‖2
H(curl

x̂
,T̂ )

6 C(‖ω‖2L2(T ) + h̃2T‖curlω‖
2
L2(T )) ∀ω ∈ H1(T ;R2)

where
BT ω̂(x̂)

det(BT )
= ω(x) for any x̂ ∈ T̂ . If T is a triangle for any T ∈ Th and h > 0, then the

above inequality holds for any h > 0.

Proof. We have
‖ω̂‖2

H(curl
x̂
,T̂ )

= ‖ω̂‖2
L2(T̂ )

+ ‖curlx̂ω̂‖
2
L2(T̂ )

,

and

‖ω̂‖2
L2(T̂ )

=

∫

T̂

(det(BT ))
2ω(x)⊤B−⊤

T B−1
T ω(x)dx̂

=

∫

T

det(BT ) det(BTDGT (x̂)
−1)ω(x)⊤B−⊤

T B−1
T ω(x)dx.

By Lemma 3.4, limh→0 supT∈Th
sup

x̂∈T̂ | det(BTDGT (x̂)
−1)− 1| = 0.

Since (Th)h is regular, there exists a constant σ > 0 such that σ1/σ2 6 σ for any T ∈ Th,
where σ1 > σ2 are the singular values of matrix BT . Then ‖B−⊤

T ‖ = ‖B−1
T ‖ = σ−1

2 and
det(BT ) = σ1 ·σ2. So, ‖B

−⊤

T ‖ ·‖B−1
T ‖ det(BT ) = σ1/σ2 6 σ. Consequently, there exist δ1 > 0

and C1 > 0 such that, for any h < δ1 and T ∈ Th,

det(BT ) det(BTDGT (x̂)
−1)ω(x)⊤B−⊤

T B−1
T ω(x) 6 C2

1ω(x)
⊤ω(x)
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for any ω ∈ H1(T ;R2),x ∈ T . We can conclude that, for any h < δ1 and T ∈ Th,

‖ω̂‖L2(T̂ ) 6 C1‖ω‖L2(T ), ∀ω ∈ H1(T ;R2).

At the same time,

curlx̂ω̂(x̂) = det(BT )B
−1
T curlx̂ω(x)

= det(BT )B
−1
T curlxω(x)(DGT (x̂))

−⊤ det(DGT (x̂))

= det(BT )B
−1
T curlxω(x)B

−⊤

T (B⊤

TDGT (x̂)
−⊤) det(DGT (x̂))

= det(BT )B
−1
T curlxω(x)B

−⊤

T (DGT (x̂)
−1BT )

⊤ det(DGT (x̂)),

and

‖curlx̂ω̂‖
2
L2(T̂ )

=

∫

T̂

det(BT )
2 det(DGT (x̂))

2(DGT (x̂)
−1BT )B

−1
T (curlxω(x))

⊤

B−⊤

T B−1
T curlxω(x)B

−⊤

T (DGT (x̂)
−1BT )

⊤dx̂

=

∫

T̂

det(BT )
2 det(DGT (x̂))(DGT (x̂)

−1BT )B
−1
T (curlxω(x))

⊤

B−⊤

T B−1
T curlxω(x)B

−⊤

T (DGT (x̂)
−1BT )

⊤dx

=

∫

T̂

det(BT )
3 det(B−1

T DGT (x̂))(DGT (x̂)
−1BT )B

−1
T (curlxω(x))

⊤

B−⊤

T B−1
T curlxω(x)B

−⊤

T (DGT (x̂)
−1BT )

⊤dx.

According to Lemma 3.3, limh→0 supT∈Th
sup

x̂∈T̂ ‖DGT (x̂)
−1BT − I‖ = 0.

By Lemma 3.4, limh→0 supT∈Th
sup

x̂∈T̂ | det(B−1
T DGT (x̂))− 1| = 0.

Since (Th)h is regular, det(BT )
3‖B−⊤

T ‖2 · ‖B−1
T ‖2 6 σh̃T , for some constant σ > 0.

There exist thus δ2 > 0 and C2 > 0 such that, for any h < δ2 and T ∈ Th,

det(BT )
3 det(B−1

T DGT (x̂))(DGT (x̂)
−1BT )B

−1
T (curlxω(x))

⊤

B−⊤

T B−1
T curlxω(x)B

−⊤

T (DGT (x̂)
−1BT )

⊤dx

6 C2
2 h̃

2
T‖(curlxω(x))

⊤curlxω(x)‖ ∀ω ∈ H1(T ;R2),x ∈ T.

We conclude that, for any h < δ2 and T ∈ Th,

‖curlx̂ω̂‖L2(T̂ ) 6 C2h̃T‖curlω‖L2(T ), ∀ω ∈ H1(T ;R2).

Again, it is easy to see that, if T is a triangle for any T ∈ Th and h > 0, then the inequality
above holds for any h > 0. This ends the proof.

Lemma B.6. Let T be a curved triangle. Let u(x) be defined on T and û(x̂) be defined
on T̂ and

u = û ◦G−1
T or û = u ◦GT

where GT is the element map. Then u(x) ∈ L2(T ) if and only if û(x̂) ∈ L2(T̂ ).

Proof. This is an immediate consequence of the fact that GT is a C1-diffeomorphism.
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C. Proofs in Section 8

C.1. Proof of Lemma 6.2

Proof. We put r = r̃(T ). We assume {ξ̂1(x̂), · · · , ξ̂(x̂)lr} is a basis for Pr̃Λ
2(T̂ ). Then

Π2
r̃,Tu(x(x̂)) =

1

det(DGT (x̂))

lr
∑

i=1

αiξ̂i(x̂)

and

P 2
r̃,Tu(x(x̂)) =

1

det(DGT (x̂))

lr
∑

i=1

βiξ̂i(x̂).

Coefficients (α1, · · · , αlr)
⊤ and (β1, · · · , βlr)

⊤ are obtained by solving the following two linear
systems,

A1(α1, · · · , αlr)
⊤ = b1 and A2(β1, · · · , βlr)

⊤ = b2

with

(A1)ij =

∫

T

ξ̂i(x̂(x))ξ̂j(x̂(x))dx

det(DGT (x̂(x)))
, (b1)j =

∫

T

u(x)ξ̂j(x̂(x))dx,

(A2)ij =

∫

T

ξ̂i(x̂(x))ξ̂j(x̂(x))dx

(det(DGT (x̂(x))))2
, (b2)j =

∫

T

ξ̂j(x̂(x))dx

det(DGT (x̂(x)))
u(x),

for 1 6 i, j 6 lr. By pulling back to T̂ we obtain, for any 1 6 i, j 6 lr,

(A1)ij =

∫

T̂

ξ̂i(x̂)ξ̂j(x̂)dx̂, (b1)j = det(BT )

∫

T̂

det(B−1
T DGT (x̂))u(x)ξ̂j(x̂(x))dx̂,

(A2)ij =

∫

T̂

ξ̂i(x̂)ξ̂j(x̂)dx̂

det(DGT (x̂))
, (b2)j =

∫

T̂

u(x(x))ξ̂j(x̂)dx̂.

Since det(BT ) is a non-zero constant, (det(BT )A2)(β1, · · · , βlr)
⊤ = det(BT )b2. So we

can redefine A2 and b2 in the following way.

(A2)ij =

∫

T̂

det(BT )

det(DGT (x̂))
ξ̂i(x̂)ξ̂j(x̂)dx̂ (b2)j = det(BT )

∫

T̂

u(x(x̂))ξ̂j(x̂)dx̂.

According to Lemma 3.4, limh→0 supT∈Th
‖A1 − A2‖ = 0. And, for any ε > 0,

lim
h→0

sup
T∈Th

‖b1 − b2‖
2
6(ε det(BT ))

2

∫

T̂

u2(x(x̂))dx̂

=ε2 det(BT )

∫

T

det(BTDGT (x̂(x))
−1)u2(x)dx

64ε2 det(BT )‖u‖
2
L2(T ).

The last inequality holds when h is small enough. This implies that

lim
h→0

sup
T∈Th

‖b1 − b2‖ 6 2ε
√

det(BT )‖u‖L2(T ).
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So, for any ε > 0, there exists δ > 0 such that, for any h 6 δ and T ∈ Th, we have

‖(α1 − β1, · · · , αlr − βlr)‖ 6 3ε
√

det(BT )‖u‖L2(T ).

We have then

‖Π2
r̃,Tu− Pr̃,Tu‖

2
L2(T ) =

∫

T

1

(det(DGT (x̂(x))))2

lr
∑

i=1

ξ̂2i (x̂(x))(αi − βi)
2dx

=

∫

T̂

1

det(DGT (x̂))

lr
∑

i=1

ξ̂2i (x̂)(αi − βi)
2dx̂

6cε2‖u‖2L2(T )

∫

T̂

det(BTDGT (x̂)
−1)

lr
∑

i=1

ξ̂2i (x̂)dx̂.

Here c is a positive constant which depends on lr only. By Lemma 3.4, there exists M > 0
such that, for any h small enough and any T ∈ Th,

∫

T̂

det(BTDGT (x̂)
−1)

lr
∑

i=1

ξ̂2i (x̂)dx̂ 6M2.

We can conclude that, for any ε > 0, there exists δ > 0 such that, for any h < δ and T ∈ Th,

‖Π2
r̃,Tu− Pr̃,Tu‖L2(T ) 6 ε‖u‖L2(T ), ∀u ∈ L2(T ).

Here Pr̃,T is the standard L2-projection onto Pr̃Λ
2(T ).

C.2. Proof of Lemma 6.3

Proof. Obviously, ω̂(x̂) = det(DGT (x̂))(DGT (x̂))
−1ω(GT (x̂)). Using Lemma B.1, we can

conclude that ω̂(x̂) ∈ H(T̂ ).
By pulling back to T̂ and using the definition of Pr̃+1Λ

1(T ), we can see that (6.4) is the
same as (6.7), and (6.3) is the same as (6.6). Thus, we only need to show that (6.5) is the
same as (6.8). Since Th is C0-compatible, then GT (ζ(s)) = xe(s) for any s ∈ [0, 1] where
ζ : [0, 1] → ê is an affine local parametrization of ê.
We have then

∫

[0,1]

[ω(xe(s)) · n(xe(s))]η̂(s)‖ẋe(s)‖ds

=

∫

[0,1]

[ω(GT (ζ(s))) · n(GT (ζ(s)))]η̂(s)‖DGT (ζ(s))ζ̇(s)‖ds

=

∫

[0,1]

[

DGT (ζ(s))ω̂(ζ(s))

det(DGT (ζ(s)))
·

(DGT (ζ(s)))
−⊤n̂(ζ(s))

‖(DGT (ζ(s)))−⊤n̂(ζ(s))‖

]

η̂(s)‖DGT (ζ(s))ζ̇(s)‖ds

=

∫

[0,1]

[

ω̂(ζ(s))

det(DGT (ζ(s)))
·

n̂(ζ(s))

‖(DGT (ζ(s)))−⊤n̂(ζ(s))‖

]

η̂(s)‖DGT (ζ(s))ζ̇(s)‖ds.

Notice that ζ(s) = ct̂ where t̂ is a unit tangent vector along ê, and c is a nonzero constant,

n̂(ζ(s)) = (t̂2,−t̂1)
⊤, and (DGT (ζ(s)))

−⊤ =
A

det(DGT (ζ(s)))
with

A =

[

(DGT )22(ζ(s)) −(DGT )21(ζ(s))
−(DGT )12(ζ(s)) (DGT )11(ζ(s))

]

.
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Therefore, we have

∫

[0,1]

[

ω̂(ζ(s))

det(DGT (ζ(s)))
·

n̂(ζ(s))

‖(DGT (ζ(s)))−⊤n̂(ζ(s))‖

]

η̂(s)‖DGT (ζ(s))ζ̇(s)‖ds

= c

∫

[0,1]

[ω̂(ζ(s)) · n̂(ζ(s))] η̂(s)ds.

We conclude that (6.5) is equivalent with (6.8). This finishes the proof.

C.3. Proof of Lemma 6.4

Proof. By Lemma B.1, we have ω̂(x̂) ∈ H(T̂ ), and

div ω(x(x̂)) =
1

det(DGT (x̂))
divx̂ω̂(x̂).

for x̂ ∈ T̂ almost everywhere, provided we define ω̂(x̂) on T̂ by

ω(x(x̂)) =
DGT (x̂)

det(DGT (x̂))
ω̂(x̂)

for any x̂ ∈ T̂ .
Using Definition 6.1, Definition 6.2, Lemma 6.1, Lemma 6.3, and Lemma 10 in [17], it is

easy to see that

Π2
r̃,Tdivω(x(x̂)) =

1

det(DGT (x̂))
Π2

r̃,T̂
divx̂ω̂(x̂) =

1

det(DGT (x̂))
divx̂Π

1
r̃+1,T̂

ω̂(x̂),

divΠ1
r̃+1,Tω(x(x̂)) = div

[

DGT (x̂)

det(DGT (x̂))
Π1

r̃+1,T̂
ω̂(x̂)

]

=
1

det(DGT (x̂))
divx̂Π

1
r̃+1,T̂

ω̂(x̂).

We have thus Π2
r̃,Tdivω = divΠ1

r̃+1,Tω.

C.4. Proof of Lemma 6.5

Proof. According to Lemma B.2 and Lemma B.3, there exist δ > 0 and C1 > 0 such that,
for any h < δ and T ∈ Th,

‖Π1
r̃,Tω‖L2(T ) 6 C1‖Π

1
r̃,T̂
ω̂‖L2(T̂ ) ∀ω ∈ L2(T ;R2)

‖ω̂‖2H(div
x̂
,T ) + ‖ω̂‖2

L2(∂T̂ )
6 C1‖ω‖H1(T ) ∀ω ∈ H1(T ;R2)

By Lemma 6.3, ω̂ ∈ H1(T̂ ;R2) for any ω ∈ H1(T ;R2).
The definition of operator Πr̃,T̂ implies that there exists a constant C2 > 0 such that

∫

T̂

(Π1
r̃,T̂
ω̂(x̂))⊤Π1

r̃,T̂
ω̂(x̂)dx̂ 6 C2(‖ω̂‖

2
H(div

x̂
,T̂ )

+ ‖ω̂‖2
L2(∂(T̂ ))

), ∀ω̂(x̂) ∈ [H1(T̂ )]2.

It is easy to see that for affine meshes the above inequality holds for any h > 0. This finishes
the proof.
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C.5. Proof of Theorem 6.2

Proof. For any h > 0 and any T ∈ Th, we define a linear isomorphism AT from H1(T̂ ;R2)

to H1(T ;R2) by (AT ω̂)(x(x̂)) =
BT ω̂(x̂)

det(BT )
. It is easy to see that AT is a linear isomorphism

from Pr̃+2Λ
0(T̂ ;R2) to Pr̃+2Λ

0(T ;R2).
We define an operator ET : H1(T̂ ;R2) −→ Pr̃+2Λ

0(T̂ ;R2) by WT (AT ω̂) = AT (ET ω̂).
Obviously, WT is well-defined if and only if ET is well-defined. We denote by {ξ̂1, · · · , ξ̂lr̃} a
particular basis of Pr̃+2Λ

0(T̂ ;R2).
According to Lemma B.4 and Lemma B.5, it is sufficient to show that there exist δ > 0

and C1 > 0 such that, for any h < δ and T ∈ Th, ET is well-defined, and ‖(z1, · · · , zlr̃)‖ 6

C1‖ω̂‖H1(T̂ ) for any ω̂. Here
∑lr̃

k=1 zkξ̂k = ET ω̂.
According to the definition of WT , ET can be defined by relations

∫

T

div(ATET ω̂ −AT ω̂)(x)ψ̂(x̂(x))dx = 0 ∀ψ̂ ∈ Pr̃(T )(T̂ )/R, (C.1)

∫

T

((ATET ω̂)(x)− (AT ω̂)(x))
⊤DGT (x̂(x))

−⊤ĥi(x̂(x), tr̃(T̂ ))dx = 0 1 6 i 6 kr̃, (C.2)

∫

[0,1]

[(ATET ω̂ − AT ω̂)(xe(s)) · n(xe(s))]η̂(s)‖ẋe(s)‖ds = 0 ∀η̂ ∈ Pr̃(e)([0, 1]) ∀e ∈ △1(T ),

(C.3)
∫

[0,1]

[(ATET ω̂ − AT ω̂)(xe(s)) · t(xe(s))]η̂(s)‖ẋe(s)‖ds = 0 ∀η̂ ∈ Pr̃(e)([0, 1]) ∀e ∈ △1(T ),

(C.4)

ET ω̂ = 0 at all vertices of T̂ . (C.5)

Denote
[

b11 b12
b21 b22

]

= BT , J = det(BT ),

[

û1
û2

]

= ET ω̂,

[

ŵ1

ŵ2

]

= ω̂, ûi,j =
∂ûi
∂x̂j

, ŵi,j =
∂ŵi

∂x̂j
.

By pulling back to T̂ , ET can be defined by relations

∫

T̂

J−1[(b11(DGT )22 − b21(DGT )12)û1,1 + (b12(DGT )22 − b22(DGT )12)û2,1 (C.6)

+ (b21(DGT )11 − b11(DGT )21)û1,2 + (b22(DGT )11 − b12(DGT )21)û2,2]ψ̂(x̂)dx̂

=

∫

T̂

J−1[(b11(DGT )22 − b21(DGT )12)ŵ1,1 + (b12(DGT )22 − b22(DGT )12)ŵ2,1

+ (b21(DGT )11 − b11(DGT )21)ŵ1,2 + (b22(DGT )11 − b12(DGT )21)ŵ2,2]ψ̂(x̂)dx̂,

∀ψ̂ ∈ Pr̃(T )(T̂ )/R.

∫

T̂

(ET ω̂(x̂))
⊤B⊤

TDGT (x̂)
−⊤ĥi(x̂, t) det(B

−1
T DGT (x̂))dx̂ (C.7)

=

∫

T̂

(ω̂(x̂))⊤B⊤

TDGT (x̂)
−⊤ĥi(x̂, t) det(B

−1
T DGT (x̂))dx̂ 1 6 i 6 kr̃.
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∫

[0,1]

[BTET ω̂(ζ(s)) · (DGT (ζ(s))
−⊤n̂(ζ(s)))]η̂(s) det(B−1

T DGT (ζ(s))ds (C.8)

=

∫

[0,1]

[BT ω̂(ζ(s)) · (DGT (ζ(s))
−⊤n̂(ζ(s)))]η̂(s) det(B−1

T DGT (ζ(s))ds

∀η̂ ∈ Pr̃(e)([0, 1]), ∀e ∈ △1(T ).

∫

[0,1]

[BTET ω̂(ζ(s)) · (DGT (ζ(s))ζ̇(s))]η̂(s) det(B
−1
T )ds (C.9)

=

∫

[0,1]

[BT ω̂(ζ(s)) · (DGT (ζ(s))ζ̇(s))]η̂(s) det(B
−1
T )ds ∀η̂ ∈ Pr̃(e)([0, 1]), ∀e ∈ △1(T ).

ET ω̂ = 0 at all vertices of T̂ . (C.10)

It is easy to see that (C.6) comes from (C.1), (C.7) comes from (C.2), (C.9) comes from
(C.4), and (C.10) comes from (C.5). And (C.8) can be got from (C.3) by using the fact that
‖ẋe(s)‖ = ‖DGT (ζ(s))t̂‖ = c‖DGT (ζ(s))

−⊤n̂‖ for some non-zero constant c, which comes
from direct calculation.

Notice that vector ζ̇(s) is constant tangent vector along each edge of T̂ . Set

a = n̂⊤B⊤

T BT ζ̇(s) det(B
−1
T ), b =

det(BT )‖ζ̇(s)‖

ζ̇(s)⊤B⊤
T BT ζ̇(s)

.

Obviously, b 6= 0.
Perform now the operation: b× [(C.9)− a× (C.8)]. We have,

∫

[0,1]

[ET ω̂(ζ(s)) · FT (s)]η̂(s)ds =

∫

[0,1]

[ω̂(ζ(s)) · FT (s)]η̂(s)ds (C.11)

∀η̂ ∈ Pr̃(e)([0, 1]), ∀e ∈ △1(T ),

where

FT (s) = det(B−1
T )[B⊤

T (DGT (ζ(s)))ζ̇(s)

− det(B−1
T DGT (ζ(s)))(n̂

⊤BT
TBT ζ̇(s))B

⊤

T (DGT (ζ(s)))
−⊤n̂)]

det(BT )‖ζ̇(s)‖

ζ̇(s)⊤B⊤
T BT ζ̇(s)

.

Then the definition of operator ET can be rewritten by using conditions (C.6),(C.7), (C.8),
(C.11), and (C.10).

Using the fact that n̂⊥ζ̇(s), Lemmas 3.2,3.3,3.4, and the assumption that (Th)h is regular,
we obtain

lim
h→0

sup
T∈Th

sup
e∈△1(T )

sup
s∈[0,1]

‖FT (s) ·
ζ̇(s)

‖ζ̇(s)‖
− 1‖ = lim

h→0
sup
T∈Th

sup
e∈△1(T )

sup
s∈[0,1]

‖FT (s) · n̂‖ = 0.

Consequently,
lim
h→0

sup
T∈Th

sup
e∈△1(T )

sup
s∈[0,1]

‖FT (s)− t̂‖ = 0.

We denote now by E(T, r̃) the matrix corresponding to the left-hand side of conditions
(C.6),(C.7),(C.8), (C.11),(C.10), a particular basis of Pr̃+2Λ

0(T̂ ;R2) (the solution space),
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some basis of Pr̃(T )(T̂ )/R, and some basis of Pr̃(e)([0, 1]) for each e ∈ △1(T ). We denote by

{ξ̂1, · · · , ξ̂lr̃} a basis for Pr̃+2Λ
0(T̂ ;R2). Finally, we denote by C(r̃) the matrix corresponding

to the left-hand side of conditions (6.12), (6.13),(6.14), and (6.15), and the same bases as
above.

Using the fact that
lim
h→0

sup
T∈Th

sup
e∈△1(T )

sup
s∈[0,1]

‖FT (s)− t̂‖ = 0

and Lemmas 3.2, 3.3, 3.4, we conclude that, for any t ∈ [0, 1],

lim
h→0

sup
T∈Th

‖E(T, r̃)− C(r̃)‖ = 0.

Then, for any given t ∈ [0, 1], and any given r̃ with non-singular C(r̃), the matrix E(T, r̃)
is non-singular for any T ∈ Th when h > 0 small enough. Notice that the right-hand
sides of conditions (C.6), (C.7),(C.8),(C.11), and (C.10) are continuous linear functionals of
ω̂ ∈ H1(T̂ ;R2). We can conclude thus that the operator WT,t is well-defined for any T ∈ Th

with small enough h.
Since for any t ∈ [0, 1], limh→0 supT∈Th

‖E(T, r̃)−C(r̃)‖ = 0, and the matrix C(r̃) depends
only on r̃, we can conclude that there exists C1 > 0 such that when h > 0 small enough,
then ‖(z1, · · · , zlr̃)‖ 6 C1‖ω̂‖H1(T̂ ) for any T ∈ Th. Here

∑lr̃
k=1 zkξ̂k = ET ω̂.

Finally, it is easy to see that the operator WT will be well-defined and the inequality
in the statement of this theorem holds for any h > 0 for affine meshes. This finishes the
proof.
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