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Abstract 
In mathematical modeling by means of performance models, the Fitness-Fatigue 
Model (FF-Model) is a common approach in sport and exercise science to study 
the training performance relationship. The FF-Model uses an initial basic level of 
performance and two antagonistic terms (for fitness and fatigue). By model 
calibration, parameters are adapted to the subject’s individual physical response to 
training load. Although the simulation of the recorded training data in most cases 
shows useful results when the model is calibrated and all parameters are adjusted, 
this method has two major difficulties. First, a fitted value as basic performance 
will usually be too high. Second, without modification, the model cannot be simply 
used for prediction. By rewriting the FF-Model such that effects of former training 
history can be analyzed separately – we call those terms preload – it is possible to 
close the gap between a more realistic initial performance level and an athlete's 
actual performance level without distorting other model parameters and increase 
model accuracy substantially. Fitting error of the preload-extended FF-Model is 
less than 32% compared to the error of the FF-Model without preloads. Prediction 
error of the preload-extended FF-Model is around 54% of the error of the FF-Model 
without preloads. 
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Introduction 

The purpose of tracking the progress of an athlete's training and performance has been a topic of 
great interest ever since. Banister, Calvert, Savage, and Bach (1975) presented a mathematica l 
model that allows simulating impulse response of training stress, called Impulse Response 
Model or Fitness-Fatigue Model (FF-Model). Usage of mathematical models itself in sport 
science has become more relevant in the last years. Additionally, the increase in usage of 
wearables can improve and simplify analysis of several topics in the area of training (Ludwig, 
Hoffmann, Endler, Asteroth, & Wiemeyer, 2018; Passfield & Hopker, 2016). 

Up to now, the FF-Model is still the most popular model in terms of simulating the relationship 
between training and performance (Kolossa et al., 2017; Passfield & Hopker, 2016) and many 
researchers presented promising and interesting extensions (see, e.g., Busso, 2003; Busso, 
Candau, & Lacour, 1994; Busso, Carasso, & Lacour, 1991; Busso, Denis, Bonnefoy, Geyssant 
& Lacour, 1997; Busso & Thomas, 2006; Hellard et al., 2006, 2005; Kolossa et al., 2017; 
Thomas, Mujika, & Busso, 2008; Turner, Mazzoleni, Little, Sequeira, & Mann, 2017, for more 
details). In the beginning of this century, Busso (2003) and Hellard et al. (2005) proposed 
nonlinear extensions for the classical FF-Model, which were further processed a few years later 
by Thomas et al. (2008) and Thomas, Mujika, and Busso (2009). In addition to the FF-Model, 
other models have been proposed, e.g., the PerPot-Metamodel (Perl, 2001; Perl & Pfeiffer, 
2011), which has been proven to be a reasonable model for the task of simulating the training-
performance relationship, too. Contrary to the FF-Model, which is static once the model 
parameters are optimized, the PerPot-Model takes internal potential levels during the simula t ion 
process into account, which results in a more dynamic nonlinear model behavior and allows for 
an incorporation of overtraining effects as well. In this paper, we will focus on the FF-Model 
despite its weaknesses, since it is widely discussed in the literature and well known to a broader 
readership. The preload concept which we present below can be applied to other models (like 
PerPot) and will be explained on the FF-Model as an example. Recently, Turner et al. (2017) 
stated again that extending the model based on the linear FF-Model might limit accuracy and 
applicability too much and therefore suggested a nonlinear development of this model, where 
the authors add exponential parameters to certain parts of the model. A comprehensive overview 
of performance modeling including the analysis of physiological assumptions motivat ing 
different types of models as well as various examples was recently published by Rasche and 
Pfeiffer (2018). 
Figure 1 illustrates a typical modeling process applied to performance modeling. Therefore, 
input data is specified as training load, output as performance measures, and the model as (any) 
performance model. The process starts with a calibration of the model. In this part, a starting 
set of (free) model parameters are optimized within given parameter boundaries and constraints 
using both, input and output, to determine the goodness-of-fit of the model. After calibratio n, 
the model can be used to estimate the performance development in two different ways 
(simulation): On the one hand, if the same training load data is used as in calibration, simula t ion 
is only the simulation of the fitting itself to determine the accuracy of calibration. On the other 
hand, new or different training loads may be used for a performance prediction by using the 
optimized parameter set attained in the calibration phase. Of course it is possible to use a non 
calibrated, theoretical parameter set for any kind of simulation, too. We will not consider the 
latter in our analysis. Both kinds of simulation can be used to, e.g., compute values to describe 
model accuracy or to visually compare simulated and measured (empirical) output data. 
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Figure 1. Methodical overview of the performance modeling process using sport and exercise science specific 
denominations used in this paper. The model input (training load) for calibration and fitting simulation  
is identical, while the training load used for performance prediction is different, either theoretically 
planned or a training load sequence following the afore used training load 

Predicting an athlete’s training progress can enhance information about the athlete's reaction to 
stress. It can support a trainer in planning or might be even useful for ambitious hobby athletes. 
With a suitable performance prediction, the model can be enhanced into a useful tool for a even 
more appropriate long-term training planning and to reduce trial-and-error adjustments in 
exercise prescription (Clarke & Skiba, 2013). Nevertheless, most research focused on fitting 
simulation of performance progress, while prediction of performance is still very sparsely 
covered (Kolossa et al., 2017). While Kolossa et al. (2017) presented a promising method for 
predicting performance progresses online during training, only Chalencon et al. (2015) seem to 
use the original FF-Model for fitting simulation and prediction, but do not describe the model 
calibration process in detail. According to Taha and Thomas (2003) the published studies 
employing the FF-Model for performance prediction reveal major inaccuracies especially for 
small data sample sizes. An overview of different settings and accuracies is given in Figure 2: 
In performance modeling with (e.g.) the FF-Model, data of training and performance is needed 
to calibrate the model. In general, if all parameters of the FF-Model including the starting 
performance level ( ) are optimized simultaneously (upper gray boxes), fitting simulat ion 
accuracy is mostly decent, but the model tends to overfit with unreasonable values of , whereas 
predefining the value of  (lower part) reduces the model accuracy. We will explain this in 
ssubsection 2.1 and subsection 2.2 in more detail.  
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Figure 2. Overview of different settings and accuracy of results for FF-Model in terms of fitting simulation and 

prediction. The upper box gives an abstract overview of different states of modeling, while the lower 
part illustrates dependencies between the way of parameter optimization and corresponding outcomes 
in those different states of modeling 

Therefore, we focus on the fitness and fatigue effects within performance models preceding 
the actual fitting simulation and prediction phases. Those phases strongly affect resulting 
performance estimation. We call the load leading to those former fitness and fatigue effects 
preload. We will show how preload terms can be extracted from the FF-Model without 
changing the model itself, and how preload can separately be analyzed. Ultimately, preload can 
be used to enhance fitting simulation and prediction accuracy in performance modeling. 

Challenges of Performance Modeling 

Depending on the point of view, modeling a person's performance is both, a problem of 
understanding dynamic processes in physiology as well as a curve fitting problem. Any model 
used for simulation needs to be calibrated (i.e., model parameters need to be fitted), and 
therefore, certain days of measurements are necessary. In terms of performance modeling, input 
data to a model usually is training load, while a performance measure is used as output. 

 
Figure 3. Independent on calibration or prediction, there is always an unknown history of training in the past

One of the big problems in modeling a person's performance progress is shown in Figure 3. Most 
of the time, only data from known history (  to ) is used in performance simulation. The 
starting point  is usually set to = 0. The prediction (i.e., a forecast) starts after the last known 
day from training history (e.g.,  days from + 1 to + ). While training data of known 
history is used for model calibration, every athlete has a training history which is often unknown 
up to a certain point (all days before day ), but can strongly affect the individual parameters 
of any model. Otherwise, the model would need to balance itself into some stable behavior, 
which might need many data points and of which the certain amount is not easy to figure out.  
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Technically, the starting point of each performance modeling process regarding the performance 
output needs to be determined as a basis of the modeled performance development. Furthermore, 
it is reasonable to assume this starting point as a baseline performance capability of a person, 
which can improve a model's accuracy if chosen properly. Notwithstanding the fact that we 
cannot measure a real baseline performance, we can assume that there is some very basic 
performance level for each individual, even if this level might change depending on, e.g., age 
and health condition. Additionally, it is often a helpful way in modeling to include a baseline, 
though using an unsuitable basic performance level as baseline can highly influence the whole 
modeling. We will explain the problem with a wrongly chosen or even fitted baseline 
performance with the FF-Model exemplary. 

The Fitness-Fatigue model 
The FF-Model by Banister et al. (1975) is still one of the most important and fundamental models 
(Rasche & Pfeiffer, 2018). It is used to estimate an athletes performance based on individua l 
fitness values and a body's strain as reaction to stress which is called fatigue. Within this section, 
we will shortly outline the structure of this model and explain limitations regarding performance 
prediction with this model exemplary in subsection 2.2. 

 
Figure 4. General concept of the FF-Model as first presented in Banister et al. (1975) 

As shown in Figure 4, the basic idea of the FF-Model is that performance is made up of two 
contracting principles. On the one hand, training results in an improved performance, but on the 
other hand it induces fatigue which diminishes performance. In 1991, Busso et al. analyzed 
different versions of the FF-Model with differing amount of components. They concluded, that 
a model version "composed of two antagonistic first-order transfer functions" (Busso et al., 1991, 
p. 2048) sufficiently models the training response.

So Busso et al. (1994) derived a feasible two-component version: 

 ( ) = + ( ) ( )
  

( ) ( )
  (1) 

where ( ) describes performance at day  and  is the initial basic performance level. The 
input  (e.g., velocity or wattage) is considered for the past 1 days of training. Furthermore 

 and are time constants, and  and  are multiplicative scaling factors. 

Limitations of the Fitness-Fatigue Model for Prediction 
General limitations of the FF-Model such as parameter stability, parameter interpretability and 
ill-conditioning, and model accuracy especially for future performance prediction have already 
been discussed by, e.g., Chiu and Barnes (2003); Hellard et al. (2006); Pfeiffer (2008); Taha and 
Thomas (2003). While Hellard et al. (2006) criticized the parameter stability, they assumed the 
small sample size and inter-dependent parameters to be reasons for this instability among other 
reasons.  
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Taha and Thomas (2003) criticized the bad prediction accuracy of the model, if parameters are 
taken from calibration on former data points. In our approach, we will focus on handling the 
basic performance level, which also affects stability of parameters in general. In the FF-Model, 
past training effects are completely covered by an additive constant , which is meant to be the 
baseline performance level of a person. While parameters , , ,  can be optimized during 
model calibration, this is not a reasonable way to find the initial performance level . In 
literature, the process of finding  is sparsely covered. We found three different methods 
published: First, is fitted as any of the other four parameters (Chalencon et al., 2015; Clarke 
& Skiba, 2013). Second, is set to 80% of the value of performance at the beginning of the 
experiment, since this would "correspond to the subjects’ performance after a few months of 
detraining" (Busso et al., 1997, p. 1688) as suggested by Busso et al. (1997). Third, can be 
estimated from prior training history data if possible or a performance level of the subject can 
be chosen if relatively detrained as suggested by Wood, Hayter, Rowbottom, and Stewart (2005). 
While the latter might be the most preferable option, it is also most difficult to realize. 
Independently on the method chosen for finding a suitable value of , there are two possibilit ies : 
First, value of  is set near the actual performance, which often suits the remaining model 
calibration best. In this case, will be too high if the person was not relatively detrained, 
resulting in a high lower bound. Due to prolonged absence of training load, performance will 
always converge against this lower bound over time. A lower bound set too high connotes that 
performance will stay that high even without training.  

 
Figure 5. Convergence to the basic performance level with two different example performance curves; 

parameters are set to = . , = . , = , =  and =  (lower performance curve) 
resp. =  (upper performance curve). If there is no new training load, modeled performance will 
converge to the level of  

Second, value of  is set to a more realistic basic performance level. This will lead to an 
inaccurate performance simulation for any person who is not accordingly detrained and whose 
actual fitness level is above her or his basic level. Both cases are illustrated in Figure 5 with two 
different exemplary values of . When using the FF-Model to simulate or predict performance, 
the process always starts with this initial performance parameter , despite the previous 
performed training. Any information about possible performance progress is missing. 
Furthermore, any choice of  affects the model calibration in terms of remaining parameters. 
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The Preload Concept 

In performance modeling, simulation of any performance value strongly depends on stress of 
past training sessions and is based on formerly afforded performances. Therefore, it is reasonable 
to store information about past training effects within the model.  
Since any training effect fades away over time, influence of the stored information should also 
disappear over time. 
The basic idea of an explicitly used preload in the FF-Model to enhance performance prediction 
accuracy was first published by Ludwig and Asteroth (2016). The great advantage of formalizing 
and analyzing the preload separately is the possibility to even fit a preload value without 
knowing past training loads. 

Since there is no clear "start" for training effects of fitness and fatigue, we assume an infinite 
period of time. Accordingly, we can define a preload in the FF-Model as follows. 
Definition 1 (Preload) The preload terms for fitness and fatigue are defined as:  

  [ , ] = ( ) ( )
 (2) 

    [ , ] = ( ) ( )
  

with  depending on the specific day simulated or predicted;  is set to the number of the 
day simulated minus the number of the first day taken into account for simulation (i.e., the day 
after computation of the preload terms ended) plus one.  

These preload-terms are added to (resp. substracted from)  in the preload FF-Model. The 

exponential function multiplicated with the sum ( ) is used to model the vanishing effect of 
the preload with respect to the currently modeled day . For example, if the last day included in 
preload is denoted with 1, the simulation starts at day  and is performed for some day  ( ), then = + 1. 
Definition 2 (FF-Model with Preload) We can interpret the preload as additional component 
for the initial performance level , which closes the gap between the initial performance level 
and the actual performance level reached by recent training stress. Performance on day  
within an observed training time frame starting at day  is calculated as 

 ( ) = +   [ , ]   [ , ] + ( ) ( ) ( ) ( )
 (3) 

Basically, Equation 3 is a mathematical re-formulation of a FF-Model including the complete 
history of a person. Please note that the actual fitting simulation or prediction of the FF-Model 
with preload starts at day , and not at day 0 or 1 as usual. Additionally, we can define a more 
feasible version of the preload terms restricted to a certain time frame. This is especially usable 
to estimate the preload present in a certain training period and for most applications more 
realistic, since the effect long bygone training load disappears over time: 
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Definition 3 (Short Term Preload) We define a short term preload for the fitness and fatigue 
component up to day  as  

  = ( ) ( )
(4) 

   = ( ) ( ) (5) 

with    the fitness component and    the fatigue component. Parameters , with {1,2} originate from the FF-Model as before. Again,  is depending on the specific day 
simulated or predicted.  

The FF-Model with short term preload is specified analogously to Equation 3. The (short term) 
preload concept should be deployed for performance prediction by using the given informa tion 
of the calibration data. This can be performed either by including the training load used for 
calibration in prediction as well (as history only, i.e., without integrating this part in any 
statistical analysis of prediction accuracy), or by saving fitness and fatigue effects in a short term 
preload, for which the time frame is limited to the length of data used for calibration. This short 
term preload can always be used, if effects of a specific period of time are to be determined. 
Technically, performing a prediction including the (calculated/computed) short term preload 
terms instead of the data used for calibration (which is based on the calibration data in terms of 
a calculated preload) is equivalent to a simulation of the complete time of both, calibration phase 
and prediction phase. This relationship is illustrated in Example 7.1 (Appendix). 
For illustration, the scenery of Equation 3 is shown in Figure 6(a), while Figure 6(b) shows the 
scenario where the short term preload is necessary.  

 
Figure 6. Scenarios for (a) preloads and (b) short term preloads. In both cases, preloads are used to memorize past 

training effects. In case of a unknown training history, preloads can also be estimated during the 
parameter optimization process. In case of the short term preload: = . Bars: training load at the 
corresponding day; stars: performance measures; line: simulated performance estimation 
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Materials and Methods 

Participants and Data 
All experiments are based on the performance and training load data of four male cyclists of the 
German national squad for road cycling (Table 1), collected for 31 (P1) resp. 35 weeks (P2, P3, 
P4). 

The season was divided into four different training periods: A preparation period of seven (P1) 
resp. nine weeks for basic endurance training (including strength endurance training), a second 
preparation period of seven weeks for basic endurance training (including maximum power 
training), eight weeks preparatory competitions including intensity training, and seven (P1) resp. 
nine weeks with competitions. Days with no cycling training at the end of the last period were 
excluded. 
Cycling performance was quantified as the relative accumulated energy exposure (kJ/kg) during 
a weekly all-out incremental step test on a cycling ergometer. Starting resistance was set to 150 
W followed by increments of 10 W every 10 seconds. To calculate the daily training load, 
training time spent cycling was divided into five levels based on the intensity (individua l 
wattage) according to the Bavarian cycling federation and accumulated at last by using 
weighting coefficients: 1 × active recovery, 2 × endurance, 4 × tempo, 7 × lactate threshold 
and 10 × VO2max / anaerobic threshold. The additional power training is not included in this 
analysis. 

Table 1. Characteristics of the cyclists who participated in this study 

  P1 P2 P3 P4 

Age (at start of the study)  17 17 18 18 
Height [cm]  174 180 182 179 

Weight [kg]  61.2 ± 0.6 68.3 ± 0.9 66.1 ± 0.6 60.8 ± 0.6 
Training load per year [km] ca. 18'000 ca. 17'000 ca. 18'000 ca. 18'000 

General Study Design 
The goal of our study is to investigate whether the additional preload terms (pr , pr ) can 
enhance the accuracy of individual performance developments modeled by the preload-extended 
FF-Model. To minimize the effects of varying training patterns and competition phases, which 
represent specific adaptation and regeneration phases, we cut a varying amount of days (0, 15, 
30, 45 or 60) off at the end of each data set before continuing with the analysis. In doing so, the 
stability of the new model can be validated and the number of data sets is increased. The resulting 
data sets were analyzed concisely according to the following partitioning. 
The analysis in this paper focuses on short-term preloads and, therefore, the data set of each 
cyclist is divided into three different parts: the "unknown" training history, which would usually 
not be available (part A, 105 days or more), calibration data to fit the model for each individua l 
(part B, 60 days) and a prediction period (part C, 30 days). Since fitting simulations as well as 
predictions are typically evaluated to assess a model's accuracy, this paper analyzes both: model-
fits for the fitting simulation of part B and the prediction of part C.  

Hence, we need to specify basic performance levels ( ) as well as the utilized preload 
calculation methods on whose basis we calibrate the model using data of part B. According to 
the goal of our study, both may be set variously and are partially dependent on each other, which 
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is explained in the following paragraph. Additionally, a comprehensive overview of the different 
parts of analysis and their purpose as well as calibration settings can be found in Figure 7.

Figure 7. Partitioning of training data before analysis and different settings for short term preload and basic 
performance level 

Short term preload (pr , pr ) 

To assess the athlete-specific preload, part A is first used to calibrate the model's parameters 
followed by a fitting simulation to compute the accumulated fitness and fatigue states at the end 
of part A. These states are the preloads and are dependent on the choice of a basic performance 
level (see next paragraph) and labeled as computed preload values for further modeling. We 
contrast these to fitted preloads stemming from the calibration process of part B (optimized 
parameters: , , ,  plus pr and pr ) on the one hand and to no preload (none) on the 
other hand representing the classic FF-Model. 

Basic performance level ( )

Generally, the basic performance level needs to be defined mainly prior to calibration and fitting 
simulation of part B, but also for the calculation of the preload based on part A. Regarding the 
former, we analyzed three options for the choice of : First, is set as 80 % of the part B's 
first performance measurement (0.8 ) or, second, is fitted besides the other parameters 
of the FF-Model for part B (optimized parameters: , , , ,  and pr /pr  if applicable ). 
Third,  is set to the same value which is used to calculate the preload based on part A referred 
to as , which may be either 80% of the first performance measurement (0.8 ), the minima l 
performance, or a fitted value based on part A's data. 

Direct comparisons with different choices of preload and different choices of are not analyzed 
since the goal is to analyze the effects of preloads. 

Statistical Measures 
Mean absolute percentage error (MAPE) is computed to compare simulated and empirica l 
(measured) performance values of different methods used, given as:  

  = 100 ( ) ( )( )  (6) 
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with  being the total number of data points, ( ) the measured performance value at time  
and ( ) the simulated performance value at time . All MAPE values are expressed as median 
values, p.r.n. supplemented with interquartile range (IQR) to describe variances. 
The null hypotheses that the underlying data is not normally distributed could not be discarded 
with level of significance at = 0.05 (Jarque-Bera test). Since we are dealing with small data 
sets in terms of statistics, differences in the error results between different experiments were 
tested with Wilcoxon rank-sum test at = 0.05. The amount of data is sufficient for this test, 
because it could be increased by the partitioning performed. With Wilcoxon rank-sum test, the 
null hypothesis indicates that results of the experiments to be compared are based on data with 
the same median. Therefore, the compared setups differ significantly from each other with level 
of significance at = 0.05, if the null hypothesis can be rejected. 

Results 

No significant differences dependent on the cuts were determined with Wilcoxon rank-sum test 
at = 0.05. Therefore, different cutoffs of the data sets are not differentiated but used all when 
taking the median. 

Fitting Simulation Accuracy 
An example of fitting accuracy is given in Figure 8. Subfigure (a) shows a typical fitting 
simulation, where = 0.8 and no preload is used. The simulation starts at a lower level 
and it takes multiple days (in this case around 20) for the FF-Model to reach the right 
performance level. The simulation is close to several empirical performances after day 125, but 
there is no trend corresponding to the underlying performance values detectable. Subfigure 
Figure 8(b) shows a typical fitting simulation, where again = 0.8  and a fitted preload is 
used. The simulated performance starts at a reasonable high. In this case, neither simulation nor 
measured performance fluctuate much.  

 
Figure 8. Fitting simulation examples (a) without and (b) with preload (athlete 3). Bars: training load at the 

corresponding day; stars: measures performance values; line: simulated performance estimation 

Accuracy of fitting simulation results is given in Figure 9. The boxplot is shown exemplary for 
the case where  (for computation of preload) is set to 80% of the first measured performance 
value in the data of part  denoted as = 0.8 . Highest errors were produced in experiments 
without preload and where is not fitted (i.e., both outer subboxes). 
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Figure 9. Boxplots of MAPE values in fitting simulation for different experiment setups. Median values are 

marked by a red horizontal line; mean values are marked by a green circle; outliers are marked with a 
red cross where existing. Different settings for  are separated by dashed lines and marked above 

Adding a preload reduces the error values for setting = 0.8 from a median MAPE of 
4.82% to 1.52% in case of fitted preloads, respectively to 2.27% for computed preloads. If =0.8 , error values reduce from a median MAPE of 6.36% to 1.48%, respectively to 2.35%. If 

 is fitted during calibration of part B, errors seem to have similar ranges with median values 
of 1.63% (no preload), 1.31% (fitted preloads), and 1.47% (computed preloads). 

Table 2: p-values of Wilcoxon rank-sum test for all fitting simulation analysis cases. Significant results indicate 
a difference in the compared (preload) settings; Non-significant results are bracketed 

options for 

 preloads 80% min fitted 

none vs. fitted  < 0.0001 < 0.0001 < 0.0001 0.8  none vs. computed < 0.0001 < 0.0001 < 0.0001 
fitted vs. computed  0.0002 0.0001 0.0003 
none vs. fitted  0.0237 0.0237 0.0237 

fitted in B none vs. computed (0.3346) (0.5798) (0.2482)
fitted vs. computed  (0.0847) 0.0354 (0.1329)
none vs. fitted < 0.0001 < 0.0001 < 0.0001 

set to none vs. computed < 0.0001 0.002 0.0445 

fitted vs. computed  0.0004 0.013 (0.1032)

The other cases got comparable results; detailed results of Wilcoxon rank-sum test for all cases 
with different values for  and different preloads is given in Table 2: If  was fitted during 
calibration of part B, there were no significant differences between the accuracy results of the 
experiments without preloads and those with computed preloads. Those with fitted preload 
reached a slightly better accuracy than those with computed preload. Those differences were 
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significant in four out of nine settings. If  is set to 80% , comparing experiments without 
preloads to those with preloads (computed or fitted) results in significant rank-sum test for all 
nine settings, similar to the same comparison if is set to the value previously determined in 
part , where only one case got non-significant results. 
All in all, the null hypotheses that results from experiments without preloads and those with 
fitted preloads have equal median values can be rejected for all cases; for the comparison of 
experiments without preloads to those with computed preloads, the equivalent null hypotheses 
can be rejected for no case if  is fitted in B, but for every other setting. It can clearly be seen 
that experiments without preload and with a  value which was not fitted results in higher 
errors than a corresponding experimental setup with preload. 

Prediction Accuracy 
A qualitative example of prediction is given in Figure 10. Subfigure (a) shows a typical 
prediction, where = 0.8  and no preload is used. Based on the result of the fitting, where 
performance simulation fluctuated much as in Figure 10, prediction starts at a more or less 
suitable performance level but fluctuates around empirical measurements. But even regarding 
the general trend, predicted performance does not behave like the empirical performance. 
Subfigure (b) shows a typical prediction, where again = 0.8  and a fitted preload is used. 
The prediction has hardly any variances and seems to follow more or less a mean performance 
line of the measured performance values. The usage of preload in the former fitting process 
ensured that predicted performances starts at a suitable performance level. 

 
Figure 10. Prediction examples (athelte 3). Bars: training load at the corresponding day; stars: measures 

performance values; line: simulated performance estimation 

Accuracy of prediction results is given in Figure 11. The boxplot is shown exemplary for the 
same case as for fitting simulation, i.e., where  is set to 80% .
Again, slightly higher errors were produced in experiments without preload and where is not 
fitted, and where both are fitted, and preload. Best accuracy results were produced where 
is fitted and no preload is used with a median MAPE of 2.55%, and where  is fitted and the 
pre-computed preload is used with a median MAPE of 2.69%. While for the other cases of , 
experiments including preload results in slightly better accuracy than those without preload, a 
clear trend cannot be determined.  
The null hypotheses that results from experiments without preload and those with fitted preload 
have equal median values cannot be rejected for any case. 
The other cases got comparable results, but none were significant with Wilcoxon rank-sum test 
at = 0.05. It has to be mentioned that the amount of data points for evaluation in the prediction 
case consists of only 1-6 performance values for evaluation of prediction accuracy. 
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Figure 11. Boxplots of MAPE values in prediction for different experiment setups. Median values are marked by 

a red horizontal line; mean values are marked by a green circle; outliers are marked with a red cross 
where existing. Different settings for are separated by dashed lines and marked above

Discussion 

In the preceding sections we introduced a way to re-formulate the FF-Model. The new 
representation allows us to analyze effects of a former, usually unknown training history, which 
we called preloads. Furthermore, adding calculated preloads to the FF-Model or fitting the 
preloads during model calibration closes the gap between a low initial performance level and the 
actual performance level of an athlete. For four athletes with training data of half a year includ ing 
different types of training, it was shown that the additional preloads significantly improve fitting 
simulation accuracies (in median) independent on the chosen initial performance value. In 
particular, the high errors which can occur by using a non-fitted, low initial performance value 
can be completely compensated by adding preloads to the FF-Model. In prediction, accuracies 
can not be improved significantly and seem to be comparable to results without preloads. 

An first overview of the findings which will be explained in the following is given in Figure 12. 

Without the additional preloads, optimizing all parameters (including ) resulted in 
unreasonable values of , tending to overfitting simulation results, with which no trustworthy 
predictions were possible (upper path way). Predefining a reasonable value of resulted in high 
errors (lower path way). The inclusion of preloads added more information about past training 
progresses, even if there is no documentation which can be used.
Both middle pathways are illustrations to highlight the gain in accuracy when using the preload 
concept: independent on the calibration of , accuracy results in lower errors compared to the 
corresponding setting without preload in both kinds of simulation. Therefore, the preload enables 
the possibility to use some reasonable values for the basic performance level ( ) of an athlete, 
without loosing accuracy in modeling results. 
A more detailed discussion regarding parameter optimization and performance accuracy is given 
in the following.  



IJCSS – Volume 18/2019/Issue 1              www.iacss.org

129 

 
Figure 12. Overview of different settings and accuracy of results for FF-Model 

Initial performance value and model parameters
Calibration of the initial performance parameter value  might lead to seemingly suitable 
results, especially in elite athletes or athletes without loss in performance. Lowering the init ia l 
performance value therefore does not work out directly. Our results of this setting had smallest 
errors, too, whether preloads were included or not. A performance value of  clearly lower than 
the first measured performance value forces the model to settle first. The time needed for the 
model to settle to the right level of performance will result in either higher errors, or – at least in 
calibration – to different parameters of  and , {1,2}. 
This finding might suggest that fitting might be a good idea. But as we mentioned, is a 
lower bound of performance in the FF-Model and any performance will converge to  if no 
further training is performed. We think that parameters fitted in combination with a wrong value 
for cannot be interpreted. Errors can accumulate over time. Hence, even a prediction will 
have no physiological meaning: based on a wrong starting point and with distorted parameters, 
a prediction might be just a meaningless curve based on some inputs. 
A qualitative example of those cases for fitting simulation of performance data of one cyclist 
(after cutting the data by 30 days) is shown in Figure 13. Part (a) illustrates the simulated 
performance while  is fitted like the other parameters, while part (b) illustrates the same for 

 set to 80% of the first performance value. In part (c) a pre-computed preload is added to the 
setting from part (b).  

Mean absolute percentage errors are 2.20% for case (a), 3.65% for case (b), and 1.89% for case 
(c). These three cases give a first impression that a preload can compensate for a more reasonable 
initial performance value without losing accuracy. 

Consequently, since changes in the basic performance level affect all other parameters, those 
changes strongly affect calculation of the preload. This has to be considered in interpretation of 
the results, where fitting simulation and prediction accuracies of the model using a calculated 
preload are included. 
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Figure 13. Comparison of different settings of  and preload exemplary for one cyclist (cutoff of 30 days 

exemplary, athlete 1). Bars: training load at the corresponding day; stars: measures performance values; 
line: simulated performance estimation 

Unfortunately, the true "initial / basic performance level" of a person is not known. Up to now, 
there are no tests or methods known to determine this value. While Wood et al. (2005) suggested 
to estimate  from former training sessions, this task might still be challenging and a concrete 
procedure is still missing. Additionally, estimate  if the athlete is relatively detrained as 
suggested might not be always possible depending on training goals, time constraints, or other 
reasons. Therefore we think that the approach to set  to about 80% of the first measured 
performance value as suggested by Busso et al. (1997) is the most suitable by now. According 
to them, this value corresponds approximately to a detraining of multiple weeks. Yet, it should 
not be forgotten that the first measured performance value might be on a day where fatigue 
decreased the performance capabilities of the athlete, or reverse that the athlete has a peak form 
day. 

A problem with this approach for  is the resulting gap between this value  and the measured 
performances. The remaining model parameters can again be strongly distorted and hence not 
be well interpreted. We saw that preload can close this gap, even if not estimated but fitted. It 
has yet to be analyzed if parameters are more meaningful according to the athlete's physiology 
or not. 

Prediction Accuracy 
In our experiments, prediction accuracies did not profit from any additional preloads used during 
calibration. One reason might be, that prediction accuracies could only be evaluated on 1-6 data 
points.  

Additionally, model calibration over 60 days seem to be sufficient enough for the model to settle 
independent on the choices for preloads and . With given parameter sets and information about 
the average training load and performance of an athlete, it is possible to estimate the amount of 
days before the effects of the preload vanish by solving an optimization problem. With parameter 
settings of our athletes, preload effects in median (and inter quartile range) vanishes completely 
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after 30 (31) days (athlete 1), 30 (52) days (athlete 2), 37.5 (104) days (athlete 3), or 25.5 (74) 
days (athlete 4).  

The high inter quartile ranges indicate that in preload effects were still present in some cases and 
completely vanished in others. Especially for athletes 1 and 2, all preload effects might have 
vanished after calibration for most experimental settings. Due to a small amount of performance 
tests, we were not able to perform our experiments with smaller calibration periods. 
In general, any evaluation based on that few data points is quite insufficient. It might give a first 
indication, but cannot be accepted to be a fact. 

Conclusion 

Fitting the initial performance value  might work in some cases, especially if the athlete is 
detrained at the beginning or has a stable performance without high variation. Nevertheless, it is 
methodically problematic, since  works as lower bound for performance if no new training 
input is given. Furthermore, any choice of  has influence on the remaining parameters which 
cannot have any reliable meaning if they are distorted by a wrong . 
On the other hand, a lower value of  leads to other artifacts. The model has to settle and the 
remaining parameters ,  will compensate the offset and are accordingly distorted. Using 
preloads for effects in both, fitness and fatigue, closes the gap between a lower value of  and 
the actual performance level of the athlete. This way, model calibration with a fitting of 
parameters  and  does not result in high amplitudes for compensation of the performance 
high. Nevertheless, determining a suitable choice of  based on physiological reasons and 
dependent on the type of sport is an important topic for future investigations of sport scientists. 
Usually, a preload cannot be computed, since information about further training history is not 
available. Otherwise, the model could have been fitted on those data. Our experimental results 
demonstrate that fitted preload values in average lead to as good accuracies as computed preload 
values, or reach even an even better accuracy. In fitting simulation, a low value of  can be 
compensated by preloads without disturbing the other parameters. In prediction, preloads 
enhance accuracies independent on the chosen  as well, but errors of 3-5.3% of performance 
in median are still quite high and might therefore not be helpful in elite sports. Nevertheless and 
supported by the effect that the simulation with preloads do not need to be balanced out during 
calibration, even usage of fitted preload values within the FF-Model might help amateur athletes 
to get at least an idea of their future performance progress, where errors around 5% are 
acceptable. 
Evaluations on training data from elite swimmers validate these findings and suggest that this 
concept is not only valid for training data from elite cyclists. In future work, it will be necessary 
to evaluate the model with preloads for amateur athletes, too, and on data sets with more 
performance measurements, especially for the prediction part. Furthermore, stability and 
interpretation of parameters in the FF-Model with and without preload will be interesting to 
compare. The model's behavior on more specific performance changes due to, e.g., competitions, 
resting periods, injuries or similar would also be interesting to evaluate in this context.  
Since the preload does not reverse other weaknesses of a model, the FF-Model with preload will 
still not be able to, e.g., predict overtraining effects. From a methodological standpoint, it should 
be avoided to fit the initial performance value. The preloads then enable a reliable calibration 
and give the opportunity for further analyzes of unknown training history effects. 
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Appendix 

Example 7.1  Assume a prediction of day  based on days  to 1 ( < ). Calibration 
was based on days 1 to 1 and accordingly, preload terms are the appropriate fitness and 
fatigue sums of the calibration phase. Predicting day  with the FF-Model including short term 
preloads is given as: 

 

( ) = ( +     ) + ( ) ( ) ( ) ( )
= ( + ( ) ( ) ( ) ( ) ( ) ( ) )
    + ( ) ( ) ( ) ( )
= ( + ( ) ( ) ( ) ( ) ( ) ( ) )
    + ( ) ( ) ( ) ( )
= ( + ( ) ( ) ( ) ( ) ( ) ( ))
    + ( ) ( ) ( ) ( )
= ( + ( ) ( ) ( ) ( ) )
    + ( ) ( ) ( ) ( )
= + ( ) ( ) ( ) ( )

 (7) 

This way it can simply be seen that using the short term preload starting at day  is equivalent 
to a whole simulation starting at day 1.   
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