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Abstract

For propositional beliefs, there are well-established connec-
tions between belief revision, defeasible conditionals and
nonmonotonic inference. In argumentative contexts, such
connections have not yet been investigated. On the one
hand, the exact relationship between formal argumentation
and nonmonotonic inference relations is a research topic that
keeps on eluding researchers despite recently intensified ef-
forts, whereas argumentative revision has been studied in nu-
merous works during recent years. In this paper, we show that
similar relationships between belief revision, defeasible con-
ditionals and nonmonotonic inference hold in argumentative
contexts as well. We first define revision operators for ab-
stract dialectical frameworks, and use such revision operators
to define dynamic conditionals by means of the Ramsey test.
We show that such conditionals can be equivalently defined
using a total preorder over three-valued interpretations, and
study the inferential behaviour of the resulting conditional in-
ference relations.

1 Introduction
Belief revision, defeasible conditionals and nonmonotonic
inference relations form a triangle of strongly connected
concepts within knowledge representation. Conditionals
(Nute 1984) have been a cause of concern for philosophers
for the better part of the history of philosophy, but within the
formal logical study of conditionals, in the last semi-century,
a lot of progress has been made. A central idea in the study
of conditionals is that in the evaluation of a conditional “if φ
then ψ” (formally, (ψ|φ)), it suffices to check for the valid-
ity of ψ in a certain subset of all models of φ. This is often
modelled using a selection function over the set of possible
worlds Ω: f : Ω × ℘(Ω) → ℘(Ω). A conditional (ψ|φ)
is then true at a world ω according to a selection function
f iff every world in f(ω, [φ]) validates ψ. Nonmonotonic
inference relations (Kraus, Lehmann, and Magidor 1990;
Shoham 1987), on the other hand, have been studied seman-
tically using a preference relation � over the set of possible
worlds. A nonmonotonic inference φ |∼ψ is then valid iff
ψ holds in all �-minimal φ-worlds. The relations between
conditionals and nonmonotonic inference relations are clear,
then, as min� can be viewed as a selection function. As
such, a conditional inference relation |∼ can be associated
with a nonmotonic inference relation s.t. � |∼ (ψ|φ) iff

φ |∼ψ. Belief revision studies the effect of the dynamics
of propositional beliefs, and the consolidation of belief re-
vision as a field of study is often identified with the for-
mulation of the AGM-theory (Alchourrón, Gärdenfors, and
Makinson 1985) of belief revision. Close relationships be-
tween belief revision and conditional logics were noticed by
means of the Ramsey test (Ramsey 1931), which also gave
rise to impossibility results on the compatibility of belief re-
vision and conditional reasoning (Gärdenfors 1986). How-
ever, when (Katsuno and Mendelzon 1991) showed that to-
tal preorders underlie AGM-belief revision in a fundamental
and inevitable way, it was at once also established that be-
lief revision, conditional logic and nonmonotonic inference
were shown to be fully compatible. They can thus be seen as
three different sides of a single topic or mode of reasoning
(Gärdenfors 1990; Makinson 1993), at least when restricted
to propositional beliefs. Indeed, when moving to other kinds
of belief revision (e.g. (Hansson 1999; Delgrande and Pep-
pas 2015)), weaker kinds of conditionals (Hawthorne 2007;
Makinson 2011) or other forms of nonmonotonic inference,
these interrelations tend to break down.

Another important field in knowledge representation is
formal argumentation. Argumentative reasoning is usu-
ally perceived as a specific form of nonmonotonic rea-
soning (see e.g. (Rienstra 2014; Booth et al. 2012; Booth
et al. 2013)) but attempts to transform reasoning systems
from one side into systems of the other side have been re-
vealing gaps that could not be closed (cf., e.g., (Thimm
and Kern-Isberner 2008; Kern-Isberner and Simari 2011;
Heyninck 2019)). Therefore, in spite of the abundance of
existing work studying connections between the two fields, a
general way of obtaining well-behaved non-monotonic con-
ditional inference relations on the basis of argumentative
contexts has not been defined yet. On the other hand, be-
lief dynamics in general and belief revision in particular has
been studied intensively for formal argumentation. There-
fore, in this paper we make a systematic and general attempt
to answer the question as to whether belief revision, non-
monotonic inference relations and defeasible conditionals
form an interconnected triangle in an argumentative context
as they do in a propositional setting. We answer this question
for Abstract Dialectical Frameworks (ADFs) (Brewka et al.
2013), an approach to formal argumentation, which sub-
sumes many other argumentative formalisms in a generic,
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Belief Revision
[φ ? ψ] = minf?(φ)[ψ]

Conditional Logic
(ψ|φ) iff [ψ] ⊇ f([φ])

Nonmonotonic Inference
φ |∼ψ iff φ ∧ ψ ≺ φ ∧ ¬ψ

Ramsey test

f = min�f? =�

Figure 1: Graphical Representation of connections between be-
lief revision, nonmonotonic inference and conditional logics. A
full line means there is a full correspondence between the two con-
cepts, whereas a dashed line means that there is additional infor-
mation needed for a full correspondence. E.g. to define a belief
revision operator on the basis of a nonmonotonic inference relation
one needs to additionally assume a context K which corresponds
to φ, see e.g. (Makinson and Gärdenfors 1991).

logic-based way.
In this paper, we investigate connections between belief

revision, nonmonotonic inference and defeasible condition-
als within abstract dialectical argumentation. We first define
and study revision of ADFs in depth and then use these re-
visions to define conditional inference for ADFs. Then, we
define dynamic nonmonotonic inference relations based on
the Ramsey test (Ramsey 1931). We study these inference
relations in terms of rationality postulates known from de-
feasible conditionals. We accordingly summarize the con-
tributions of this paper as follows: (1) definition of belief
revision of ADFs by formulas, (2) a semantical characteri-
sation of such revision operators in terms of total preorders
over three-valued interpretations, (3) the definition of dy-
namic conditional inference relations for ADFs based on the
Ramsey test, and (4) a study of dynamic conditional infer-
ence relations in terms of postulates known from defeasible
conditionals.
Outline of this Paper: We first state all the necessary
preliminaries in Section 2 on propositional logic (Section
2.1), three-valued logic (Section 2.2), reasoning with non-
monotonic conditionals (Section 2.3), propositional revision
(Section 2.4) and abstract dialectical argumentation (Section
2.5). We then define revision of ADFs under various se-
mantics, in particular under the preferred semantics (Section
3.3) and the grounded semantics (Section 3.4). Thereafter, in
Section 4, we define and study dynamic conditionals based
on such revisions. We compare our approach with related
work in Section 5.

2 Preliminaries
In the following, we briefly recall some general preliminar-
ies on propositional logic, as well as technical details on con-
ditional logic and ADFs (Brewka et al. 2013).

2.1 Propositional Logic
For a set At of atoms let L(At) be the corresponding propo-
sitional language constructed using the usual connectives
∧ (and), ∨ (or), ¬ (negation) and → (material impli-
cation). A (classical) interpretation (also called possible

world) ω for a propositional language L(At) is a function
ω : At → {T,F}. Let Ω(At) denote the set of all inter-
pretations for At. We simply write Ω if the set of atoms
is implicitly given. An interpretation ω satisfies (or is a
model of) an atom a ∈ At, denoted by ω |= a, if and only
if ω(a) = T. The satisfaction relation |= is extended to
formulas as usual. As an abbreviation we sometimes iden-
tify an interpretation ω with its complete conjunction, i. e.,
if a1, . . . , an ∈ At are those atoms that are assigned T by ω
and an+1, . . . , am ∈ At are those propositions that are as-
signed F by ω we identify ω by a1 . . . anan+1 . . . am (or any
permutation of this). For example, the interpretation ω1 on
{a, b, c} with ω(a) = ω(c) = T and ω(b) = F is abbrevi-
ated by abc. For Φ ⊆ L(At) we also define ω |= Φ if and
only if ω |= φ for every φ ∈ Φ. Define the set of models
Mod(X) = {ω ∈ Ω(At) | ω |= X} for every formula or set
of formulas X . A formula or set of formulas X1 entails an-
other formula or set of formulas X2, denoted by X1 ` X2,
if Mod(X1) ⊆ Mod(X2).

2.2 Kleenes Three-Valued Logic
A 3-valued interpretation for a set of atoms At is a func-
tion v : S → {>,⊥, u}, which assigns to each atom in
At either the value > (true, accepted), ⊥ (false, rejected),
or u (unknown). The set of all three-valued interpretations
for a set of atoms At is denoted by V(At). We sometimes
denote an interpretation v ∈ V({x1, . . . , xn}) by †1 . . . †n
with v(xi) = †i and †i ∈ {>,⊥, u}, e.g. >> denotes
v(a) = v(b) = >. A 3-valued interpretation v can be ex-
tended to arbitrary propositional formulas φ ∈ L(At) via the
truth tables in Table 1. We furthermore extend the language
with a second, weak negation ∼, which is evaluated to true
if there is no positive information for the negated formula
(i.e. the negated formula is false or undecided) and thus ex-
presses non-truth, as opposed to ¬ which expresses explicit
falsity. The truth table for∼ can also be found in Table 1.1 It
will prove convenient to define the connective� which stip-
ulates a formula is undecided. We define �φ = ∼(¬φ ∨ φ).
We define LK(At) as the language based on At, the unary
connectives 〈¬,∼,�〉 and the binary connectives 〈∧,∨,→〉.

We can show that � expresses the undecidedness of any
formula φ ∈ LK:

Fact 1. For any φ ∈ LK(At), v(�φ) = > iff v(φ) = u.

The following facts about ∼ will prove useful below:

Fact 2. For any φ ∈ LK(At) and any v ∈ V(At): (1)
v(∼φ) 6= u, and (2) v(∼∼φ) = > iff v(φ) = >.

We define the set of three-valued interpretations that sat-
isfy a formula φ ∈ LK(At) as V(φ) = {v ∈ V(At) | v(φ) =
>}. A formula X1 K-entails another formula X2, denoted
X1 `K X2, if V(X1) ⊆ V(X2). X1 ≡K X2 iff X1 `K X2

and X2 `K X1.

1In the terminology of (Urquhart 2001), the negation ∼ cor-
responds to Bochvar’s external negation (Bochvar and Bergmann
1981) and ¬ corresponds to Kleene’s negation in his three-valued
logic. ∼ is also called Kleene’s weak negation (Varzi and Warglien
2003), since the conditions for ∼φ being satisfied are weaker than
those for ¬φ being satisfied (i.e. {¬φ} `K ∼φ).
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¬ ∼ �
> ⊥ ⊥ ⊥
u u > >
⊥ > > ⊥

∧ > u ⊥
> > u ⊥
u u u ⊥
⊥ ⊥ ⊥ ⊥

∨ > u ⊥
> > > >
u > u u
⊥ > u ⊥

Table 1: Truth-tables for connectives in Kleene’s K

Given an interpretation v ∈ V(At), we define:

form(v) =
∧

v(a)=>

a ∧
∧

v(a)=⊥

¬a ∧
∧

v(a)=u

�a

Clearly, form(v) expresses exactly the beliefs expressed by
a three-valued interpretations:
Fact 3. For any v ∈ V(At) and any a ∈ At: (1) form(v) `K
a iff v(a) = >; (2) form(v) `K ¬a iff v(a) = ⊥; (3)
form(v) `K �a iff v(a) = u.

2.3 Defeasible Inference and Nonmonotonic
Conditionals

There are many different conditional logics (cf., e. g.,
(Kraus, Lehmann, and Magidor 1990; Nute 1984)), but a
common idea underlying many semantics for nonmonotonic
conditionals is that to validate the acceptance of a condi-
tional (ψ|φ), it suffices to look whether its material coun-
terpart φ → ψ is validated in a subset of possible worlds.
In this work, we will assume that a preorder�⊆ ℘(Ω(At)×
Ω(At)) over the set of possible worlds can be used to encode
relevance of the possible worlds w.r.t. evaluation of condi-
tionals. In more detail, we will state that a conditional (ψ|φ)
is accepted in a context encoded by � iff the consequent is
validated by all �-minimal worlds models of the antecedent
φ, in symbols:

Mod(ψ) ⊇ min
�

(Mod(φ))

This is in full compliance with defeasible inference rela-
tions φ |∼ψ (Makinson 1988) expressing that from φ, ψ
may be plausibly/defeasibly derived. We say that φ � ψ
iff ω � ω′ for some ω ∈ min�(Mod(φ)) and some
ω′ ∈ min�(Mod(ψ)). This allows for expressing the va-
lidity of defeasible inferences via stating that φ |∼�ψ iff
(φ ∧ ψ) ≺ (φ ∧ ¬ψ). Thus, nonmonotonic conditionals
as defined above can be seen as a syntactic counterpart to
defeasible inference, in the sense that (ψ|φ) is accepted in a
context encoded by � iff φ |∼�ψ
Example 1. Consider � defined over Ω({a, b, c}) as fol-
lows:
abc, abc, abc, abc ≺ abc, abc, abc, abc

Thus, for example, ¬a |∼�b, ¬b |∼�a, ¬a ∨ ¬b |∼�c,
> |∼�a ∨ b and a 6 |∼�c.

We recall some properties of conditional conse-
quence relations (Kraus, Lehmann, and Magidor 1990):

(REF) φ ∈ L(At) implies φ |∼φ
(CUT) φ |∼ψ and φ ∧ ψ |∼ γ imply φ |∼ γ
(CM) φ |∼ψ and φ |∼ γ imply φ ∧ ψ |∼ γ
(RW) φ |∼ψ and ψ |= γ imply φ |∼ γ
(LLE) φ ≡ ψ and ψ |∼ γ imply φ |∼ γ
(OR) φ |∼ γ and ψ |∼ γ imply (φ ∨ ψ) |∼ γ
(RM) φ |∼ γ and φ 6 |∼¬ψ imply φ ∧ ψ |∼ γ

Defeasible inference relations |∼� based on total pre-
orders � satisfy these properties:

Proposition 1 ((Makinson 1993)). For any total preorder�,
|∼� satisfies (REF), (CUT), (CM), (RW), (LLE), (OR) and
(RM).

2.4 Revising Propositional Formulas
We now recall the so-called AGM-approach to belief re-
vision (Alchourrón, Gärdenfors, and Makinson 1985) as
reformulated for propositional formulas by (Katsuno and
Mendelzon 1991). The following postulates for revision op-
erators ? : L × L → L are formulated:

(R1) φ ? ψ ` ψ
(R2) If φ ∧ ψ is satisfiable, then φ ? ψ ≡ ψ ∧ φ
(R3) If ψ is satisfiable, then so is φ ? ψ
(R4) If φ1 ≡ φ2 and ψ1 ≡ ψ2, φ1 ? ψ1 ≡ φ2 ? ψ2

(R5) (φ ? ψ) ∧ µ ` φ ? (ψ ∧ µ)
(R6) If (φ ? ψ)∧ µ is satisfiable, then φ ? (ψ ∧ µ) `

(φ ? ψ) ∧ µ
An important result is the semantical characterisation of

such a belief revision operator. For such a characterisation,
a function f : L(At) → ℘(Ω(At) × Ω(At)) that assigns
to each propositional formula φ ∈ L a preorder �φ over
Ω(At).

Definition 1 ((Katsuno and Mendelzon 1991)). Given a for-
mula φ ∈ L(At), a function f : L(At)→ ℘(Ω(At)×Ω(At))
assigning preorders �φ over Ω(At) to every formula φ ∈
L(At) is faithful iff:

1. For every φ ∈ L(At), if ω, ω′ ∈ Mod(φ) then ω 6≺φ ω′,
2. For every φ ∈ L(At), if ω ∈ Mod(φ) and ω′ 6∈ Mod(φ)

then ω �φ ω′,
3. For every φ, φ′ ∈ L(At), if φ ≡ φ′ then �φ=�φ′ .

In (Katsuno and Mendelzon 1991) the following represen-
tation theorem for an AGM revision operator ? was shown:

Theorem 1 ((Katsuno and Mendelzon 1991)). An operator
? : L(At) × L(At) → L(At) is a revision operator iff there
exists a faithful mapping f? : L(At) → ℘(Ω(At) × Ω(At))
that maps each formula φ ∈ L(At) to a total preorder s.t.:

Mod(φ ? ψ) = min
f?(φ)

(Mod(ψ)) (1)

2.5 Abstract Dialectical Frameworks
We briefly recall some technical details on ADFs following
loosely the notation from (Brewka et al. 2013). An ADF D
is a tuple D = (At, L, C) where At is a finite set of atoms,
L ⊆ At × At is a set of links, and C = {Cs}s∈At is a set
of total functions Cs : 2parD(At) → {>,⊥} for each s ∈ At
with parD(s) = {s′ ∈ At | (s′, s) ∈ L} (also called ac-
ceptance functions). An acceptance function Cs defines the
cases when the statement s can be accepted (truth value >),
depending on the acceptance status of its parents in D. By
abuse of notation, we will often identify an acceptance func-
tion Cs by its equivalent acceptance condition which mod-
els the acceptable cases as a propositional formula. D(At)
denotes the set of all ADFs D = (At, L, C).
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Example 2. We consider the following ADF D1 =
({a, b, c}, L, C) with L = {(a, b), (b, a), (a, c), (b, c)} and

Ca = ¬b Cb = ¬a Cc = ¬a ∨ ¬b
Informally, the acceptance conditions can be read as “a is
accepted if b is not accepted”, “b is accepted if a is not ac-
cepted” and “c is accepted if a is not accepted or b is not
accepted”.

An ADF D = (At, L, C) is interpreted through 3-valued
interpretations V(At). Recall that Ω(At) consists of all the
two-valued interpretations (i.e. interpretations such that for
every s ∈ At, v(s) ∈ {>,⊥}). We define the information
order ≤i over {>,⊥, u} by making u the minimal element:
u <i > and u <i ⊥ and this order is lifted pointwise as
follows (given two valuations v, w over At): v ≤i w iff
v(s) ≤i w(s) for every s ∈ At. The set of two-valued
interpretations extending a valuation v is defined as [v]2 =
{w ∈ Ω(At) | v ≤i w}. Given a set of valuations V , the
consensus operator ui is defined as: uiV (s) = v(s) if for
every v′ ∈ V , v(s) = v′(s) and uiV (s) = u otherwise.
ΓD(v) : At → {>,⊥, u} where s → ui{w(Cs) | w ∈
[v]2}. Thus, ΓD(v) assigns to s the truth-value that all two-
valued extensions of v assign to the conditionCs of s, if they
agree on Cs, and U otherwise.
Definition 2. LetD = (At, L, C) be an ADF with v : At→
{>,⊥, u} an interpretation:
• v is admissible for D iff v ≤i ΓD(v).
• v is complete for D iff v = ΓD(v).
• v is preferred for D iff v is ≤i-maximally complete.
• v is grounded for D iff v is ≤i-minimally complete.
We denote by admissible, complete(D), prf(D), re-
spectively grounded(D) the sets of complete, preferred,
grounded respectively interpretations of D.

We finally define consequence relations for ADFs:
Definition 3. Given Sem ∈ {prf, grounded}, an ADF D =
(At, L, C) and φ ∈ LK(At) we define: D |∼∩Sem φ iff v(φ) =
>[⊥] for all v ∈ Sem(D).
Example 3 (Example 2 continued). The ADF of Example 2
has three complete models v1, v2, v3 with:

v1(a) = > v1(b) = ⊥ v1(c) = >
v2(a) = ⊥ v2(b) = > v2(c) = >
v3(a) = u v3(b) = u v3(c) = u

v3 is the grounded interpretation whereas v1 and v2 are
both preferred.

It will be important to have characterisations of realizabil-
ity of sets of interpretations under some semantics:
Definition 4. Given a set of atoms At, a set of interpreta-
tions V ⊆ V(At) is realizable under semantics Sem iff there
exists an ADF D ∈ D(At) s.t. Sem(D) = V .

(Pührer 2020) shows that a set of interpretations is real-
izable under prf iff it is a ≤i-anti-chain, whereas every (and
only) singleton sets are realizable under grounded:
Proposition 2 ((Pührer 2020)). Given a set of atoms At, (1)
a set of interpretations V ⊆ V(At) is realizable under prf iff
V 6= ∅ and for every v, v′ ∈ V , v 6≤i v′ and v′ 6≤i v; (2) a set
of interpretations V ⊆ V(At) is realizable under grounded
iff V has cardinality 1.

3 ADF-revisions for Trivalent Semantics
In this section, we study revision of ADFs by formulas
under trivalent semantics, in particular the preferred and
grounded semantics. We define in Section 3.1 postulates
for revision operators under trivalent semantics, which we
characterise in terms of total preorders over three-valued in-
terpretations for the preferred semantics (Section 3.3) and
the grounded semantics (Section 3.4).

3.1 ADF-revision under Trivalent Semantics:
Postulates and Semantics

In this section we define a new approach to revision of ADFs
for three-valued semantics. In more detail, we define an op-
erator ? that allows to revise an ADF (under some three-
valued semantics) by a formula in the language LK.2 In
other words, ? : D(At) × LK(At) → D(At). We adapt
the AGM-postulates for propositional revision described in
Section 2.4 to revision operators for ADFs in the following
way:

Definition 5. An operator ? is a trivalent ADF revision op-
erator (in short, ADF3

?-operator) for a semantics Sem iff ?
satisfies (for any φ, ψ, µ ∈ LK):
(ADF3

?1) D ? ψ |∼ ∩Semψ.3

(ADF3
?2) If Sem(D) ∩ V(ψ) 6= ∅ then Sem(D ? ψ) =

Sem(D) ∩ V(ψ).
(ADF3

?3) If V(ψ) 6= ∅ then Sem(D ? ψ) 6= ∅.
(ADF3

?4) If Sem(D) = Sem(D′) and ψ ≡K ψ′ then
Sem(D ? ψ) = Sem(D′ ? ψ′).

(ADF3
?5) Sem(D ? ψ) ∩ V(µ) ⊆ Sem(D ? (ψ ∧ µ)).

(ADF3
?6) If Sem(D ? ψ) ∩ V(µ) 6= ∅, then Sem(D ?

(ψ ∧ µ)) ⊆ Sem(D ? ψ) ∩ V(µ).

We explain these postulates as follows: ADF3
?1 requires

that the formula ψ by which one revises is derivable in
every Sem interpretation of the revised ADF. The sec-
ond postulate ADF3

?2 can perhaps be better understood
in its syntactical reformulation: If D 6 |∼ ∩Sem∼ ψ, i.e. if
D has at least one Sem-interpretation that satisfies ψ,
then D ? ψ has as Sem-interpretations exactly the Sem-
interpretations of D that satisfy ψ. ADF3

?3 says that if
we revise by a consistent formula, the resulting ADF will
also admit Sem-interpretations. ADF3

?4 is a postulate of
syntax-independence, which states that revising ADFs with
the same Sem-interpretations by K-equivalent formulas re-
sults in Sem-equivalent revised ADFs. Finally, ADF3

?5 and
ADF3

?6 are direct adaptions of the super- and sub-expansion
postulates. They require, in the non-trivial case where
D?ψ 6 |∼ ∩Sem∼ µ, that the Sem-interpretations ofD?(ψ∧µ)
are exactly the Sem-interpretations of D ? ψ that satisfy µ.

The main question we answer in the rest of this section
is whether ADF3

?-operators can be characterised semanti-
cally analogously to propositional revision operators (The-
orem 1). The central concept for such a characterisation will

2Recall, LK(At) is the language based on At, the unary connec-
tives 〈¬,∼,�〉 and the binary connectives 〈∧,∨,→〉

3Or, equivalently, Sem(D ? ψ) ⊆ V(ψ).
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be that of a faithful mapping of ADFs to total preorders over
V(At):

Definition 6. Given a semantics Sem and an ADF D =
(At, L, C), a mapping f : D(At) → ℘(V(At) × V(At))
associating a total preorder �D to every ADF D is a faithful
mapping for semantics Sem if, for every D ∈ D(At) and
for every v1, v2 ∈ V(At):

1. if v1 ∈ Sem(D) then v1 �D v2; and

2. if v1 ∈ Sem(D) and v2 6∈ Sem(D) then v1 ≺D v2; and

3. if Sem(D) = Sem(D′) then �D=�D′ .

A faithful mapping is in general not sufficient to ensure
a characterisation of ADF3

?-operators. The main problem is
that a faithful mapping does not ensure that a selection of
�D-minimal interpretations that satisfy φ are realizable by
some ADFD?φ ∈ D(At) under the semantics under consid-
eration. In the folowing subsections, we investigate whether
and how such realizability can be ensured by imposing addi-
tional conditions on faithul mappings. We shall see (in Sec-
tion 3.2) that in general, such conditions cannot be found,
by showing that for admissible and complete semantics no
ADF3

?-operator satisfying all postulates exists. Thereafter,
we shall provide conditions and corresponding characterisa-
tion theorems for preferred (Section 3.3) and grounded (Sec-
tion 3.4) semantics.

Remark 1. We have carried out a study similar to the one
developed below for two-valued semantics such as the two-
valued models and stable models. In view of space limita-
tions, we merely remark here that the developments are en-
tirely analogous to the development of revision under three-
value semantics: AGM-like revisions under a selected two-
valued semantics can be characterized in terms of faithful
mappings of ADFs to preorders, imposing additional con-
ditions to ensure realizability of every selection of possible
worlds.

3.2 Impossibility of Rational Revision under
Admissible and Complete Semantics

In this section, we show that a revision operator that satis-
fies ADF3

?1-ADF3
?6 for the admissible or complete seman-

tics does not exist. In particular, we show that no revi-
sion operator can satisfy ADF3

?2. A similar result can be
found in (Diller et al. 2018, Proposition 2) for revision of
abstract argumentation frameworks under complete seman-
tics. Intuitively, the reason that no revision operator sat-
isfying ADF3

?2 for these semantics exists is that not every
subset of Sem(D) is realizable under Sem for Sem ∈
{complete, admissible}. For example, a set not containing
the interpretation that sets v(s) = u for every s ∈ At is not
realizable under admissible semantics. Thus, if we revise D
by φ that is satisfied by exactly such a subset, ADF3

?2 forces
Sem(D ? φ) to equal a non-realizable set of interpretations.

Proposition 3. There is no operator ? : D(At)×LK(At)→
D(At) that satisfies ADF3

?2 for Sem = complete or
Sem = admissible.

Proof. Suppose towards a contradiction that ADF3
?2 holds

for an operator ? for Sem ∈ {complete, admissible}. No-
tice that complete(D) = {u,>,⊥} = admissible(D).
Consider the revision D ? (a ∨ ¬a). Since V(a ∨
¬a) = {>,⊥}, V(a ∨ ¬a) ∩ Sem(D) 6= ∅ for Sem ∈
{complete, admissible}, and thus, with our supposition
that ADF3

?2 holds for ? under Sem, Sem(D ? (a ∨ ¬a)) =
Sem(D) ∩ V(a ∨ ¬a) = {>,⊥}. But there is no ADF
D ? (a∨¬a) ∈ D({a}) s.t. Sem(D ? (a∨¬a)) = {>,⊥},
i.e. the result of this revision is not realizable under Sem.
To see this for Sem = admissible, it suffices to observe
that u ∈ admissible(D′) for any D′ ∈ D({a}). To see this
for Sem = complete, it suffices to observe that there ex-
ists for any ADF a unique ≤i-minimal complete extension
(Brewka et al. 2013). However, {>,⊥} does not contain a
unique ≤i-minimal element.

3.3 Revision of ADFs under Preferred Semantics
In this section, we give a semantical characterisation of revi-
sion operators for preferred semantics, in terms of i-modular
faithful mappings (imf-mappings). The following example
shows that faithful mappings do not always lead to a sound
semantical characterisation of ADF3

?-revision operators for
preferred semantics:
Example 4. We show that a naive adaption of Dalal’s revi-
sion operator (Dalal 1988) does not lead to a well-defined
revision operator. We use the symmetric distance function
4 defined between truth-values as follows: >4⊥ = 1,
>4u = ⊥4u = 0.5 and x4x = 0 for any x ∈ {>,⊥, u}
(cf. (Strass 2014)). We then lift this to interpretations v, v′ ∈
V(At) as follows: v4v′ = Σs∈Atv(s)4v′(s). Defining
a faithful preorder �D based solely on this distance func-
tion (e.g. by setting v1 �prf,∆

D v2 iff minv∈prf(D)(v∆v1) ≤
minv∈prf(D)(v∆v2)) would not result in an selection realiz-
able under prf, since there could be �prf,∆

D -equal interpreta-
tions that are not ≤i-incompatible.

Take e.g. the ADF D1 from Example 2. No-
tice that prf(D) = {>⊥>,⊥>>} and >uu,>⊥⊥ ∈
min�prf,∆

D
V(a ∧ ∼b ∧ ∼c). Revising D with a ∧ ∼b ∧ ∼c

would thus result in an ADF D1 ? a ∧ ∼b ∧ ∼c which has
>uu and >⊥⊥ among it’s preferred extensions, which is
impossible in view of Proposition 2, since >uu and >⊥⊥
are not ≤i-incompatible.

To avoid selections of interpretations that are non-
realizable under preferred semantics like in Example 4, an
additional condition on faithful mappings has to be imposed.
This condition we call i-modularity, and requires that every
�D-layer is an≤i-antichain, i.e. all interpretations in a�D-
layer are ≤i-incompatible. We denote, for a preorder �,
v � v′ and v′ � v as v ≈ v′.
Definition 7. Given a semantics Sem and an ADF D =
(At, L, C), a mapping f : D(At) → ℘(V(At) × V(At))
associating a total preorder �D to every ADF D is an i-
modular faithful mapping (imf-mapping) for semantics Sem
if it is faithful w.r.t. Sem and for every D ∈ D(At) and
every v1, v2 ∈ V(At): if v1 ≈D v2 then v1 6<i v2 and
v2 6<i v1.
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In Theorem 2 we show that ADF3
?-operators for the pre-

ferred semantics can be characterized by imf-mappings. The
proof of this theorem is analogous to the proof of the simi-
lar theorem for propositional belief revision in (Katsuno and
Mendelzon 1991), with two exceptions: (1) every mention
of propositional logic respectively possible worlds is sub-
stituted by Kleene’s three-valued logic respectively three-
valued interpretations and (2) realizability ofD?φ has to be
accounted for and is shown to correspond to the requirement
of i-modularity.

Theorem 2. 4 ? : D(At) × LK(At) → D(At) is a trivalent
ADF revision operator ? for the preferred semantics prf iff
there exists a function f? : D(At)→ ℘(V(At)×V(At)) that
is imf-faithful w.r.t. prf s.t.:

prf(D ? ψ) = min
f?(D)

(V(ψ)) (2)

Remark 2. It can be shown that revision of formulas in LK,
i.e. operators of the type ? : LK × LK → LK, are sound and
complete w.r.t. faithful total preorders over the three-valued
interpretations, completely analogous to the two-valued case
(see Section 2.4). Thus, revision of ADFs equals revision of
three-valued formulas plus realizability.

Remark 3. Kleene’s logic is not the only logic for which the
above characterisation result can be shown. In fact, careful
inspection of the proof of Theorem 2 and 3 reveals that a
similar characterisation result can be shown for any logic L
for a language LL(At) based on an interpretation function
σL : LL(At) → V(At) for which the following properties
hold:

1. σL
L(φ ∧ ψ) = σL(φ) ∩ σL(ψ) for any φ, ψ ∈ L(At);

2. σL
L(φ ∨ ψ) = σL(φ) ∪ σL(ψ) for any φ, ψ ∈ L(At);

3. for every v ∈ V(At) there is some φv ∈ LL(At) s.t.
σL(φv) = {v}.

The results for grounded semantics that will be shown in the
next section can likewise be adapted to other three-valued
logics. The reason we used Kleene’s three-valued logics in
this paper is because it satisfies the above conditions and is
a well-known and -studied logic for reasoning about unde-
cidedness.

We now show how to overcome the problems described
in Example 4 by refining the naive Dalal operator based on
�prf,∆
D :

Example 5. We define �prf,d+i
D as a lexicographic combina-

tion of the information order and the order based on distance
to preferred interpretations of the ADF D under considera-
tion. We first define the number of undecided nodes of an in-
terpretation v ∈ V(At) as und(v) = |{s ∈ At | v(s) = u}|.
We now define (given two interpretations v1, v2 ∈ V(S)):
v1 �prf,d+i

D v2 iff:

1. v1 ∈ prf(D), or
2. v1, v2 6∈ prf(D) and und(v1) < und(v2); or

4Due to spatial restrictions, we were not able to include all
proofs.

3. v1, v2 6∈ prf(D) and und(v1) 6< und(v2) and
minv∈prf(D)(v∆v1) ≤ minv∈prf(D)(v∆v2).

It can be showns that �prf,d+i is a total preoder.
We illustrate this preorder with the ADF D1 from Exam-

ple 2. We get the following preorder on interpretations:

>⊥>, ⊥>> ≺prf,d+i
D

>>>, ⊥>⊥, ⊥⊥>, >⊥⊥ ≺prf,d+i
D

>>⊥, ⊥⊥⊥ ≺prf,d+i
D

⊥u>, >u>, ⊥>u, >⊥u, u>>, u⊥> ≺prf,d+i
D

u⊥⊥, >>u, >u⊥, ⊥u⊥, ⊥⊥u, u>⊥ ≺prf,d+i
D

⊥uu, u>u, uu>, u⊥u, >uu ≺prf,d+i
D

uu⊥ ≺prf,d+i
D

uuu

We give two examples of revisions. First consider
D ? ∼b which has as preferred models prf(D ? ∼c) =
{⊥>⊥,>⊥⊥}. Second, consider D ?�b which has as pre-
ferred models prf(D ? �b) = {⊥u>,>u>}. Notice that a
benefit of the approach to belief revision of ADFs presented
in this section is that it is possible to revise by formulas hav-
ing the third truth value u.

We now show with a second example that imf-mappings
do not necessarily have to be refinements of the information-
ordering on interpretations.

Example 6. We can even reverse the second item of the def-
inition of �prf,d+i

D and still obtain an imf-mapping. We de-
fine �prf,d+ri

D just like v1 �prf,d+i
D in Example 5, but replace

the third condition with: v1, v2 6∈ prf(D) and und(v1) 6≤i
und(v2) and minv∈prf(D)(v∆v1) ≤ minv∈prf(D)(v∆v2).
For ADF D1 from Example 2 we then obtain the following
�prf,d+ri
D -order on three-valued interpretations:

⊥>>, >⊥> �prfd+ri
D

uuu �prfd+ri
D

⊥uu, u>u, uu>, u⊥u, >uu �prfd+ri
D

uu⊥ �prfd+ri
D

>⊥u, ⊥u>, >u>, ⊥>u, u⊥>, u>> �prfd+ri
D

u>⊥, ⊥u⊥, ⊥⊥u, >>u, >u⊥, u⊥⊥ �prfd+ri
D

>>>, ⊥>⊥, ⊥⊥>, >⊥⊥ �prfd+ri
D

>>⊥, ⊥⊥⊥

To illustrate the difference with�prf,d+i
D , observe that now

prf(D ?∼c) = {uuu}.5

3.4 Revision of ADFs under Grounded Semantics
In this section we characterise revisions under the grounded
semantics by a class of total preorders. The basic idea is
that every “layer” contains exactly one interpretation, which
ensures that every �D-minimal set of interpretations is sin-
gleton and thus realizable under the grounded semantics.

5The revision operator from Examples 5 and 6 have been im-
plemented in Java using the Tweety-library (Thimm 2017).
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Definition 8. Given a semantics Sem and an ADF D =
(At, L, C), a mapping f : D(At) → ℘(V(At) × V(At))
associating a total preorder �D to every ADF D is an
anti-symmetric faithful mapping (asf-mapping for seman-
tics Sem if it is faithful w.r.t. Sem and for everyD ∈ D(At)
and for every v1, v2 ∈ V(At): if v1 ≈D v2 then v1 = v2.

We now show that ADF3
?-operator for the grounded se-

mantics can be characterized by asf-mappings. The proof
of this Theorem is analogous to the proof of Theorem 2,
besides that realizability of D ? φ now corresponds to the
anti-symmetry condition.

Theorem 3. An operator ? : D(At) × LK(At) → LK(At)
is an ADF3

?-operator for grounded iff there exists a function
f? : D(At) → ℘(V(At) × V(At)) that is asf-faithful w.r.t.
grounded s.t.:

grounded(D ? ψ) = min
f?(D)

(V(ψ)) (3)

4 Nonmonotonic Inference and Defeasible
Conditionals for ADFs

In this section, we study interrelations between ADF3
?-

operators, trivalent defeasible conditionals and nonmono-
tonic inference based on three-valued logic. We first de-
fine nonmonotonic inference based on three-valued logic
and show how they can be equivalently viewed as trivalent
defeasible conditionals. Thereafter, we define both static
conditionals and dynamic conditionals for ADFs, which are
defined using the Ramsey test on the basis of the revision
operators defined and studied above. Finally, we show that
the interrelations between revision, conditionals and infer-
ence relations known from propositional beliefs hold also in
our argumentative setting.

4.1 Three-valued Nonmonotonic Inference and
Defeasible Conditionals

Nonmonotonic inference on the basis of three-valued logics
such as K can be defined completely analogously to the two-
valued case, by specifying total preorders � that express a
comparative measure of plausibility over the set of three-
valued interpretations. We can then easily generalize the
definition of conditional entailment to sets of three-valued
interpretations. Given a set of atoms At, we assume a to-
tal preorders � over V(At). We can now define conditional
entailment based on Kleene’s three-valued logics as follows:

Definition 9. Given a set of atoms At, a total preorder �
over V(At), and some φ, ψ ∈ LK(At), φ |∼ K

�ψ iff v ≺ v′ for
some v ∈ min�(V(φ ∧ ψ)) and v′ ∈ min�(V(φ ∧ ∼ψ)).6

Notice the choice of negation in the definition above. This
is to ensure that an inference φ |∼ K

�ψ is valid iff all �-
minimal worlds that validate φ validate ψ. That using ∼
in the above definition of conditional inference ensures this
is shown by the following fact:

6Since� is a total order, we can equivalently replace any of the
two existential quantifiers expressed by “for some” by a universal
quantifier.

Fact 4. φ |∼ K
�ψ iff min� V(φ) ⊆ V(ψ).

This fact shows that, just like in the case of classical non-
monotonic inference relations, three-valued nonmonotonic
inference relations obtained on the basis of a total preorder
can be equivalently viewed as conditional inference rela-
tions on the basis of the selection function min�. In other
words, conditionals (ψ|φ), defined on the basis of the se-
lection function min� can be simply seen as the syntactic
counterparts of the nonmonotonic inference relation |∼ K

�.
We show that any inference relation based on a to-

tal preorder over V(At) satisfies (REF), (CUT), (CM),
(RW), (LLE), (OR) and a postulate we call weak Rational
Monotony (wRM):
(wRM) φ |∼ γ and φ 6 |∼∼ψ implies φ ∧ ψ |∼ γ

In the context of three-valued logics, the difference between
(RM) and (wRM) is the following: the antecendent of
(wRM) requires that from φ, neither �ψ nor ¬ψ can be
derived, i.e. if φ then normally ψ is neither false nor unde-
cided. (RM), on the other hand, has a weaker antecedent,
namely that ¬ψ cannot be derived, i.e. normally ψ is not
false if φ is accepted.

Analogously to Proposition 1, nonmonotonic inference
relations induced by total preorders over three-valued in-
terpretation satisfies all the KLM-postulates as well as the
non-Horn postulate (wRM):

Proposition 4. Given a set of atoms At and a total preorder
� over V(At), |∼ K

� satisfies (REF), (CUT), (CM), (RW),
(LLE), (OR) and (wRM).

We show now that there are total preorders for which
(RM) might be violated:

Example 7. Consider a preorder� over V({a, b}) s.t.>u ≺
>>. Then a |∼ K

� � b and a 6 |∼ K
�¬b yet a ∧ b 6 |∼ K

� � b.
Altogether, we can conclude that the basic ideas for ob-

taining nonmonotonic conditional inferences and defeasible
inference relations known from propositional logic can be
taken over to the three-valued setting, but some subtle dif-
ferences (e.g. (wRM) vs (RM)) distinguish the resulting in-
ference relations from their two-valued counterparts.

4.2 Defeasible Conditional Inference for ADFs
In this section we study various ways of obtaining condi-
tional inference relations on the basis of ADFs, and relate
these conditional inference relations to revision and defeasi-
ble inference relations.

We first define static conditional inference relations,
which treat the interpretations selected by some semantics
given an ADF as equally plausible, and any other interpreta-
tion as implausible or even impossible. An ADFD therefore
implies a static conditional φ⇒ ψ (given some semantics
Sem), if there is an interpretation in Sem(D) that validates
φ, and every interpretation in Sem(D) that validates φ also
validates ψ.

Definition 10. Let an ADFD = (At, L, C), some semantics
Sem and some φ, ψ ∈ LK(At) be given. D |∼ st

Semφ⇒ ψ
iff:
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• there is some v ∈ Sem(D) s.t. v(φ) = >, and
• for every v ∈ Sem(D) s.t. v(φ) = >, v(ψ) = >.
Example 8. Consider again D1 from Example 2. We have
e.g. D1 |∼ st

prf> ⇒ c,¬b⇒ a,¬a⇒ b.

Remark 4. In a two-valued propositional setting, static con-
ditionals can be defined as follows: δ |∼ st

φ⇒ ψ iff δ 6` ¬φ
(i.e. Ω(δ) ∩ Ω(φ) 6= ∅) and δ ` φ → ψ (or equivalently:
δ ∧ φ ` ψ).

Static conditional inference relations, however, are rather
weak, since their antecedents are restricted to formulas that
are implied by at least one interpretation selected by Sem.
For example, D1 6 |∼ st

prf¬c ⇒ φ for any φ ∈ LK({a, b, c}),
not even ¬c⇒ >. Therefore, we introduce now dynamic
conditional inference relations, based on revisions of ADFs.
We construct a conditional inference relation for ADFs
based on the Ramsey test, going back to (Ramsey 1931):

If two people are arguing “If p, then q?” and are both in
doubt as to p, they are adding p hypothetically to their
stock of knowledge and arguing on that basis about q;

Based on this idea, we can simply state that the conditional
(ψ|φ) is derivable from the ADFD, or, equivalently (in view
of Fact 4) the conditional (ψ|φ) is valid in view of D, given
a semantics Sem and some revision operator ? iff ψ is deriv-
able in the revised ADF D ? φ under the semantics Sem:
Definition 11. Given an ADF D and a revision operator ?,
D |∼ ?

Sem(ψ|φ) iff D ? φ |∼∩Sem ψ.
We can show that static conditional inference relations

are weaker than dynamic conditional inference relations, ac-
cording to any ADF3

?-operator:
Proposition 5. Let an ADFD, some semantics Sem and an
ADF3

?-revision operator (for the semantics Sem) be given.
Then D |∼ st

Semφ⇒ ψ implies D |∼ ?
Sem(ψ|φ).

We first show that dynamic conditional inference relations
based on revision of ADFs can be seen as a special case
of three-valued conditional inference relations. We do this
by showing that, given a ADF3

?-operator ?, the correspond-
ing total preorder f?(D) gives rise to an inference rela-
tion |∼ K

f?(D) equivalent to the conditionals |∼ ?
Sem-derivable

from D.
Proposition 6. Given an ADF D, some semantics
Sem ∈ {prf, grounded} and an ADF3

?-operator ? satisfy-
ing (ADF3

?1)-(ADF3
?6), D |∼ ?

Sem(ψ|φ) iff φ |∼ K
f?(D)ψ.

From this connection between dynamic conditionals and
three-valued nonmonotonic inference relations, we can
show that dynamic conditionals (or their equivalent formu-
lation as nonmonotonic inference relations) satisfy all the
KLM-postulates and (wRM):
Corollary 1. Let an ADF D, some semantics Sem ∈
{prf, grounded} and a ADF3

?-operator ? for Sem be given.
Then |∼ K

f?(D) satisfies (REF), (CUT), (CM), (RW), (LLE),
(OR) and (wRM).

We illustrate these conditional inference relations with
some conditionals derived from Example 5:

Example 9 (Example 5 continued). Where ? is the operator
based on �prf,d+i

D and D1 is as in Example 5, we see that
e.g. ∼c |∼ Sem

D1,?
¬c and a |∼ Sem

D1,?
¬a ∧ c. Notice that also e.g.

c |∼ Sem
D1,?

Cc (i.e. c |∼ Sem
D1,?
¬a ∨ ¬b) and Cc |∼ Sem

D1,?
c. In fact

for any s ∈ {a, b, c}, s |∼ Sem
D1,?

Cs and Cs |∼ Sem
D1,?

s.

The syntactical structure of an ADF is not always pre-
served by the dynamic conditional inference relation:

Example 10. Let D = ({a}, L, Ca = ¬a) and consider the
preorder u ≺ > ≺ ⊥. It can be easily shown that there
exists an i-modular mapping f s.t. f(D) =≺. However,
a 6 |∼ Sem

D,?¬a and ¬a 6 |∼ Sem
D,? a. A similar, but more involv-

ing example without a self-attacking argument for which a
similar claim holds is: D′ = ({a, b, c}, L, Ca = ¬b, Cb =
¬c, Cc = ¬a).

5 Related Works
To the best of our knowledge, no papers detailing condi-
tional inference from argumentative formalisms on the basis
of the Ramsey test have been published before. we discuss
related works that treat either revision or conditional infer-
ence in argumentative formalisms.

Revision of ADFs is investigated in (Linsbichler and
Woltran 2016a), where revision of ADFs by other ADFs
are defined. Conceptually, our approach is able to capture
the approach by (Linsbichler and Woltran 2016a) since we
allow for revisions of ADFs under three-valued semantics
by any LK, which allows to express revision by a set of in-
terpretations V ′ as revision by the formula

∨
V ′. Techni-

cally, there is some incomparability between our approach
and that of (Linsbichler and Woltran 2016a) caused by the
difference in the type of revision we consider. In particu-
lar, there are differences in the way the issue of realizabil-
ity is handled. We have chosen to handle this issue by en-
suring that any subset of a �D-layer is realizable under a
given semantics, whereas (Linsbichler and Woltran 2016a)
handles this issue by defining revisions of the ADF D by
another ADF as fSem(min�D

Sem(F )), where the function
fSem(V ′) returns V ′ if it is realizable under V ′ and the inter-
pretation vu7 otherwise.

Revisions of abstract argumentation are considered in
many works, including (Cayrol, de St-Cyr, and Lagasquie-
Schiex 2008; Falappa, Kern-Isberner, and Simari 2009;
Coste-Marquis et al. 2014; Baumann and Brewka 2015;
Linsbichler and Woltran 2016b; Delobelle, Konieczny, and
Vesic 2015; Delobelle et al. 2016; Mailly 2015; Linsbich-
ler 2017). In (Diller et al. 2018), revisions of argumentation
frameworks by both propositional formulas and other argu-
mentation frameworks (represented as sets of extensions ac-
cording to some semantics) are defined indirectly by spec-
ifying the set of extensions (according to some semantics).
Thus, conceptually, we provide generalisations of both these
kinds of revisions, as we allow for revisions by any formula
in the language LK, which allows to represent sets of ex-
tensions. With regards to the differences between revision

7Recall that vu(s) = u for every s ∈ At.
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of abstract argumentation frameworks and abstract dialecti-
cal frameworks, we conjecture that we can characterise revi-
sions of abstract argumentation frameworks as revisions of
ADFs. (Coste-Marquis et al. 2014) allow for revision of sets
of argumentation frameworks by propositional formulas, re-
sulting in a set of argumentation frameworks. The postu-
lates governing such revisions are adaptions of the AGM-
postulates similar to both ours and those of (Diller et al.
2018), even though both (Diller et al. 2018) and we con-
sider revisions of single abstract argumentation resp. dialec-
tical frameworks. Restricting attention to single frameworks
has as an effect that realizability is an essential concern,
which (Coste-Marquis et al. 2014) avoid. Furthermore, we
are more general in the sense we study revision of ADFs,
which can capture argumentation frameworks, by formulas
in LK, which includes propositional formulas as a special
case.

A number of works have studied the conditional inferen-
tial behaviour of formal argumentation formalisms. In struc-
tured argumentation, there are a number of works that study
KLM-like properties of argumentative inference relations
(Borg, Straßer, and Arieli 2020; Heyninck and Arieli 2018;
Heyninck and Straßer 2020; Čyras and Toni 2015; Cyras and
Toni 2016; Li, Oren, and Parsons 2017). These work differ
both in host formalism (various formalisms for structured
argumentation versus ADFs) and the way conditional infer-
ence is defined. Whereas we define conditional inference
using the Ramsey-test, these works consider a conditional
(ψ|φ) to be justified if, after addition of φ to the knowledge
base (sometimes as a strict premise, sometimes as a defea-
sible premise), ψ is derivable according to the chosen argu-
mentative inference relation. These works do not agree on
how exactly φ is added, i.e. in some works it is added as a
defeasible premise whereas in other works it is added as a
strict premise.

In (Rienstra 2014, Chapter 3) a type of entailment for ab-
stract argumentation frameworks is defined which has simi-
larities to the work done in our paper. Entailments are based
on interventions of argumentation frameworks, inspired by
interventions in Bayesian networks. Interventions of argu-
mentation frameworks allow to enforce a labelling status of
an argument by adding new arguments that attack the argu-
ment whose labelling status is to be intervened. Given an
argumentation framework F , an entailment relation based
on such interventions is then defined by stating that Ψ |∼ F

σ φ
iff after the intervention Ψ, φ is true according to all σ-
labellings of the argumentation framework that is the result
of the intervention Ψ on F . (Rienstra 2014) studies sev-
eral properties of such inference relations, include the KLM-
properties, for which it is shown that for restricted classes
of interventions, some semantics satisfy cautious monotony,
cut and rational monotony. Another approach is that of con-
ditional acceptance functions (Booth et al. 2012), where,
given an argumentation framework, the usual labelling se-
mantics are changed as to account for abductive or counter-
factual reasoning. In (Booth et al. 2013) conditional infer-
ence relations for abstract argumentation frameworks are de-
fined on the basis of a propositional language built up from

atoms ins, outs and us for every argument s, which en-
code argument labels. Nonmonotonic inference relations are
then defined semantically by a total preorder over models
for this language by preferring models that model labellings
that “satisfy better” the constraints of a selected semantics
(given the argumentation framework under consideration).
Our work takes a different approach to the definition of con-
ditional inference relation by using the Ramsey-test, and is
more general since ADFs subsume abstract argumentation.

6 Conclusion
In this paper we defined dynamic conditional inference rela-
tions for ADFs based on the Ramsey test, and developed a
new approach to revision of an ADF by formulas to achieve
this. We have shown that such conditional inference re-
lations satisfy all the usual rationality postulates for con-
ditional inferences and extend static conditionals but also
give rise to subtle differences with the propositional case,
as witnessed e.g. by the (wRM)-postulate. What comes out
clearly from this work is that revision, or more generally be-
lief change, is the platform that allowed us to bridge the gap
between argumentative reasoning and conditional inference.
As such, we hope that this work will serve as an inspiration
for further investigations into the combination and cross-
fertilization between argumentative and nonmonotonic con-
ditional reasoning. Indeed, rather than a definitive state-
ment on dynamic conditional inference for ADFs, we see
this paper as an anchor point for further research on revi-
sion, nonmonotonic inference and dynamic conditional ar-
gumentative reasoning. When generalizing these intercon-
nected concepts, there are many choices to be made, such
as which “monotonic base logic” to use (in our case: K),
which postulates for revision to use (e.g. the approach of
(Katsuno and Mendelzon 1991) vs alternative types of revi-
sion (Fermé and Hansson 2018)), how exactly to adapt the
postulates for revision and the corresponding faithful map-
pings (e.g. equivalence vs strong equivalence). Even though
the choices we made are well-motivated, they are clearly not
the only viable ones. It remains to be seen whether the in-
terconnections between revision, inference and conditionals
generalize to such a setting.

In future work, we plan to study the impact of changes
in the choices made in this paper as outlined above, as well
as look at more specific revision operators (Kern-Isberner
2001). Furthermore, we plan to look deeper into the seman-
tical nature of revisions defined in this work. Indeed, a re-
vised ADF is only defined in terms of its models (according
to a chosen semantics). What is not specified is how we can
obtain the revised ADF in terms of changes (be it revisions
or otherwise) of the original ADF, and in particular its con-
ditions. We plan to investigate how this semantical perspec-
tive can be supplemented with a characterisation of revision
of ADFs in terms of change of the acceptance conditions of
the revised ADF. For such investigations, iterated revision
(Kern-Isberner 2004; Darwiche and Pearl 1997) might prove
relevant, due to its well-established connections with condi-
tional change. Finally, we will investigate the complexity of
the revision operators from Example 5.
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