
ar
X

iv
:2

10
7.

04
16

9v
1

 [
cs

.A
I]

 9
 J

ul
 2

02
1

Safe Learning of Lifted Action Models∗

Brendan Juba 1 , Hai S. Le1 , Roni Stern2,3

1Washington University in St. Louis, USA
2Palo Alto Research Center, USA

3Ben Gurion University of the Negev, Israel

{bjuba, hsle}@wustl.edu, rstern@parc.com, sternron@post.bgu.ac.il

Abstract

Creating a domain model, even for classical, domain-
independent planning, is a notoriously hard knowledge-
engineering task. A natural approach to solve this problem is
to learn a domain model from observations. However, model
learning approaches frequently do not provide safety guaran-
tees: the learned model may assume actions are applicable
when they are not, and may incorrectly capture actions’ ef-
fects. This may result in generating plans that will fail when
executed. In some domains such failures are not acceptable,
due to the cost of failure or inability to replan online after fail-
ure. In such settings, all learning must be done offline, based
on some observations collected, e.g., by some other agents or
a human. Through this learning, the task is to generate a plan
that is guaranteed to be successful. This is called the model-
free planning problem. Prior work proposed an algorithm for
solving the model-free planning problem in classical plan-
ning. However, they were limited to learning grounded do-
mains, and thus they could not scale. We generalize this prior
work and propose the first safe model-free planning algorithm
for lifted domains. We prove the correctness of our approach,
and provide a statistical analysis showing that the number of
trajectories needed to solve future problems with high proba-
bility is linear in the potential size of the domain model. We
also present experiments on twelve IPC domains showing that
our approach is able to learn the real action model in all cases
with at most two trajectories.

Introduction

In classical domain-independent planning, a domain model
is a model of the environment and how the acting
agent can interact with it. The domain model is
given in a formal planning description language such as
STRIPS (Fikes and Nilsson 1971) or the Planning Domain
Definition Language (PDDL) (McDermott et al. 1998).
Domain-independent planning algorithms (planners) use the
domain model to generate a plan for achieving a given
goal condition from a given initial state. Creating a do-
main model, however, is a notoriously hard knowledge-
engineering task.

∗This Arxiv paper is an extended version of a paper with the
same title that have been accepted to the International Conference
on Principles of Knowledge Representation and Reasoning (KR),
2021.

To overcome this modeling problem, a variety of learning
methods have been proposed. Model-free Reinforcement
Learning (RL) avoids the need for a domain model by learn-
ing directly how to act by performing actions and observ-
ing their outcomes. Other learning approaches aim to learn
a world model from past observations, and use that model
to solve future planning problems (Amir and Chang 2008).
Notably, Asai and Muise (2020) recently demonstrated this
approach can even learn a PDDL model directly from (non-
symbolic) images. However, all these approaches permit
the generation of failing actions, i.e., actions that are ei-
ther not applicable in the current state or do not achieve the
intended effects. In some domains, this is acceptable and
the agent simply incorporates such experiences and updates
its internal model to improve future executions. In other do-
mains, however, failing action must be avoided and only safe
actions are allowed. This occurs when execution failure is
too costly, or the agent cannot replan due to limited compu-
tational capabilities. The problem of finding a safe plan, i.e.,
a plan that will not fail, without possessing a domain model,
is called safe model-free planning (Stern and Juba 2017).
In safe model-free planning, instead of a domain model the
planning agent is given a set of trajectories from plans that
were executed in the past in the same domain (e.g., by a dif-
ferent agent or a human).

Stern and Juba (2017) proposed a sound algorithm for safe
model-free planning, i.e., an algorithm that generates plans
that do not fail, provided that the environment is actually
captured by a (grounded) STRIPS model. However, their
algorithm is not complete, i.e., it may not return a plan for
a solvable planning problem. Nevertheless, they proposed
a PAC-style model of learning to plan, in which complete-
ness may be relaxed to “approximate completeness” with re-
spect to the distribution of problems observed during train-
ing. They thus bounded the probability of encountering
problems their model cannot solve, given a number of tra-
jectories quasi-linear in the number of actions. However,
their positive result is limited to grounded domain models,
that is, domains that are not defined by lifted, i.e., parame-
terized, actions and fluents. The size of a grounded domain
model can be arbitrarily larger than its corresponding lifted
domain model. In particular, a single lifted action can yield a
number of grounded actions that grow polynomially with the
number of objects in the domain, with the number of param-

http://arxiv.org/abs/2107.04169v1

eters of the lifted action as its exponent. In addition, learning
a grounded domain model limits the generalization possi-
ble between different groundings of the same lifted domain.
For example, a grounded action model for a blocksworld do-
main with 8 blocks cannot be used to solve problems for a
blocksworld domain with 9 blocks. This significantly limits
the applicability of Stern and Juba’s algorithm.

In this work, we overcome these limitations by presenting
an algorithm that efficiently solves safe model-free planning
problems for lifted domains. The key component of this ap-
proach is an algorithm that learns a safe action model, which
is a model of the agent’s possible actions that is consistent
with the underlying, unknown, domain model. We call this
algorithm Safe Action Model (SAM) Learning.

Two versions of SAM learning are presented. The first
may be used when each object is only ever bound to one
action parameter at a time in the example trajectories. We
prove that this version is sound, and when the actions and
fluents have bounded arity, we can guarantee that the action
model is sufficient with high probability after observing a
number of trajectories that is linear in the possible size of the
lifted model. Importantly, the number of trajectories needed
depends only on the size of this lifted model, and is inde-
pendent of the number of objects in the domain, in contrast
to Stern and Juba’s algorithm. We also observed efficient
learning experimentally on twelve domains from the In-
ternational Planning Competition (IPC) (McDermott 2000):
SAM learning is able to learn the real action model for all
cases with at most two trajectories. Finally, we discuss a
more general version of SAM learning, for the case where
multiple arguments are bound to the same object in some
trajectories.

Our work also revisits the algorithm of Stern and Juba,
and shows that it can be interpreted as solving a kind of
knowledge-based learning task, similar to inductive logic
programming (Muggleton and De Raedt 1994), using the
STRIPS axioms as background knowledge. We show in par-
ticular that the obtained model is the action model with the
largest possible set of feasible plans (i.e., least constrained)
that can be proven safe with the given trajectories, and in
this sense is the strongest safe action model. We show that
our algorithms for lifted domains also enjoy this property.

Background and Problem Definition

Let O be a set of objects and let T be a set of types. Ev-
ery object o ∈ O is associated with a type t ∈ T denoted
type(o). For example, in the logistics domain from the In-
ternational Planning Competition (IPC) (McDermott 2000)
there are types truck and location and there may be objects
t1 and t2 that represent two different trucks and two objects
l1 and l2 that represent two different locations.

Lifted and Grounded Literals

A lifted fluent F is a pair 〈name, params〉 representing a pos-
sible relation over typed objects, where name is a symbol
and params is a list of types. We denote the name of F
and its parameters by name(F) and params(F) respectively,
and arity(F, t) denotes the number of type-t parameters.

For example, in the logistics domain at(?truck, ?location)
is a lifted fluent that represents some truck (?truck) is at
some location (?location). A binding of a lifted fluent F is
a function b : params(F) → O mapping every parameter
of F to an object in O of the indicated type. A grounded
fluent f is a pair 〈F, b〉 where F is a lifted fluent and b is
a binding for F. To ground a lifted fluent F with a binding
b means to apply the create a relation over the objects in
the image of b that match the relation over the correspond-
ing parameters. We call this relation a grounded fluent or
simply a fluent, and denote it by f . In our logistics ex-
ample, for F = at(?truck, ?location) and b = {?truck :
truck1, ?location : loc1} the corresponding grounded flu-
ent f is at(truck1, loc1). The term literal refers to either a
fluent or its negation. The definitions of binding, lifted, and
grounded fluent transfer naturally to literals. A state of the
world is a set of grounded literals that, for every grounded
fluent, either includes that fluent or its negation.

Lifted and Grounded Actions

A lifted action A ∈ A is a pair 〈name, params〉 where name
is a symbol and params is a list of types, denoted name(A)
and params(A), respectively, and arity(A, t) denotes the
number of type-t parameters. The action model M for a
set of actions A is a pair of functions preM and effM that
map every action in A to its preconditions and effects. To
define the preconditions and effects of a lifted action, we first
define the notion of a parameter-bound literal. A parameter
binding of a lifted literal L and an action A is a function
bL,A : params(L)→ params(A) that maps every parameter
of L to a parameter in A. A parameter-bound literal l for
the lifted action A is a pair of the form 〈L, bL,A〉 where b is
a parameter binding of L and A. preM (A) and effM (A) are
sets of parameter-bound literals for A.

A binding of a lifted action A is defined like a binding
of a lifted fluent, i.e., a function b : params(A) → O. A
grounded action a is a tuple 〈A, bA〉 where A is a lifted
action and bA is a binding of A. The preconditions of a
grounded action a according to the action model M , de-
noted preM (a), is the set of grounded literals created by tak-
ing every parameter-bound literal 〈L, bL,A〉 ∈ preM (A) and
grounding L with the binding bA ◦ bL,A. The effects of a
grounded action a, denoted effM (a), are defined in a similar
manner. The grounded action a can be applied in a state s
iff preM (a) ⊆ s. The outcome of applying a to a state s
according to action model M , denoted aM (s), is a new state
that contains all literals in effM (a) and all the literals in s
such that their negation is not in effM (a). Formally:

aM (s) = {l|l ∈ s ∧ ¬l /∈ effM (a) ∨ l ∈ effM (a)} (1)

We omit M from aM (s) when it is clear from the con-
text. The outcome of applying a sequence of grounded
actions π = (a1, . . . an) to a state s is the state s′ =
an(· · · a1(s) · · ·). A sequence of actions a1, . . . , an can be
applied to a state s if for every i ∈ 1, . . . , n the action ai is
applicable in the state ai−1(· · · a1(s) · · ·).

Definition 1 (Trajectory). A trajectory T =
〈s0, a1, s1, . . . an, sn〉 is an alternating sequence of

states (s0, . . . , sn) and actions (a1, . . . , an) that starts and
ends with a state.

The trajectory created by applying π to a state
s is the sequence

〈

s0, a1, . . . , a|π|, s|π|
〉

such that

s0 = s and for all 0 < i ≤ |π|, si = ai(si−1). In
the literature on learning action models (Wang 1994;
Wang 1995; Walsh and Littman 2008; Stern and Juba 2017;
Arora et al. 2018), it is common to represent a tra-
jectory

〈

s0, a1, . . . , a|π|, s|π|
〉

as a set of triples
{

〈si−1, ai, si〉
}|π|

i=1
. Each triple 〈si−1, ai, si〉 is called

an action triplet, and the states si−1 and si are referred to as
the pre- and post- state of action ai. We denote by T (a) the
set of all action triplets in the trajectories in T that include
the grounded action a. T (A) is defined for all action triplets
that contain actions that are groundings of the lifted action
A.

Domains and Problems

A classical planning domain is defined by a tuple
〈T,F ,A,M〉 where T is a set of types, F is a set of lifted
fluents,A is a set of lifted actions, and M is an action model
for A. A classical planning problem is defined by a tu-
ple 〈D,O, sI , G〉 where D is a classical planning domain;
O is a set of objects; sI is the start state, i.e., the state of
the world before planning; and G is a set of grounded liter-
als that define when the goal has been found. A solution
to a planning problem is a sequence of grounded actions
that can be applied to sI and if applied to sI results in a
state sG that contains all the grounded literals in G. Such
a sequence of grounded actions is called a plan. The tra-
jectory of a plan starts with sI and ends with a goal state
sG (where G ⊆ sG). The safe model-free planning prob-
lem (Stern and Juba 2017) is defined as follows.

Definition 2 (Safe model-free planning). Let Π =
〈〈T,F ,A,M∗〉 , O, sI , G〉 be a classical planning problem
and let T = {T1, . . . , Tm} be a set of trajectories for other
planning problems in the same domain. The input to a safe
model-free planning algorithm is the tuple 〈T,O, sI , G, T 〉
and the desired output is a plan π that is a solution to Π. We
denote this safe model-free planning problem as ΠT .

We refer to the action model M∗ as the real action model.
The trajectories in T share the same domain as Π, and thus
they have been generated by applying actions from A and
following the action model specified in M∗. However, these
trajectories may start in states that are not from sI , may end
in states that do not satisfy G, and may consider a set of ob-
jects that is different from O. Safety is captured in Defini-
tion 2 by requiring that the output plan π is a sound plan for
Π. That is, π is applicable and ends up reaching a state that
satisfies the goal. The main challenge is that the problem-
solver – the agent – needs to find a sound plan to Π but it is
not given the set of fluents, actions, and action model of the
domain (F , A, and M∗, respectively).

In this work, we make the following simplifying assump-
tions. Actions have deterministic effects, the agent has com-
plete observability, and when the agent observes a grounded
action a = 〈A, ba〉, it is able to discern that a is the result

of grounding A with ba. Similarly, if it observes a state with
a grounded fluent f = 〈F, bf 〉, it is able to discern that f is
the result of grounding F with bf . Also, we assume that ac-
tions’ preconditions and effects are conjunctions of literals,
as opposed to more complex logical statements, and we do
not currently consider conditional effects of actions. These
assumptions are reasonable when planning in digital/virtual
environments, such as video games, or environments that
have been instrumented with reliable sensors, such as ware-
houses designed to be navigated by robots (Li et al. 2020).
Later in this paper, we discuss approaches to relax these as-
sumptions and apply our work to a broader range of envi-
ronments.

Conservative Planning in Grounded Domains

Our approach for solving the model-free planning problem
in lifted domains builds on the conservative planning ap-
proach proposed by Stern and Juba (2017) for grounded
domains. Thus, we first describe their approach. This is
done in a slightly different framing, which allows us to
present a new theoretical property regarding the strength of
the learned action model.

Inference Rules for Grounded Domains

In a grounded domain, a state is a set of literals, and so are
the preconditions and effects of all actions. That is, there is
no notion of lifted literals of actions.

First, we define the notion of a consistent action model
following the semantics of classical planning.

Definition 3 (Consistent Action Model). An action model
M is consistent with a set of trajectories T if for every action
triplet 〈s, a, s′〉 ∈ T (a) it holds that:

1. All preconditions are satisfied: ∀l ∈ pre(a)∀s : l ∈ s
2. All effects are satisfied: ∀l ∈ eff(a)∀s′ : l ∈ s′

3. Frame axioms1 hold: ∀(l /∈ eff(a) ∧ l /∈ s)→ l /∈ s′

The contrapositives of the conditions in the above definition
can be interpreted as inference rules as follows.

Observation 1 (Inference rules for grounded domains). For
any action triplet 〈s, a, s′〉 it holds that:

• Rule 1 [not a precondition]. ∀l /∈ s : l /∈ pre(a)
• Rule 2 [not an effect]. ∀l /∈ s′ : l /∈ eff(a)
• Rule 3 [must be an effect]. ∀l ∈ s′ \ s : l ∈ eff(a)

So, Rule 1 states that a literal that is not in a pre-state can-
not be a precondition. Rule 2 states that a literal that is not
in a post-state cannot be an effect. Rule 3 states that a lit-
eral that is in the post-state but not in the pre-state, must be
an effect. Since this is just a restatement of the definition
of a consistent action model, these rules precisely character-
ize the action models that are consistent with a given set of
traces.

In the fully observable deterministic world of classical
planning, every action model that is not consistent with the
given set of trajectories is false, and the set of consistent ac-
tion models must contain the real action model. However,
some of the consistent action models are different from the

1This means literals only change as a result of action effects.

real action model, and plans generated with them may yield
a failure, e.g., trying to apply an action in a state in which
not all preconditions hold.

Definition 4 (Safe Action Model). An action model M ′ is
safe with respect to an action model M iff for every state s
and grounded action a it holds that

preM′(a) ⊆ s→
(

preM (a) ⊆ s ∧ aM′(s) = aM (s)
)

(2)

In words, Definition 4 says that if action model M ′ is safe
w.r.t. M then for every state s and action a, if a is applica-
ble in s according to M ′ then (1) a is also applicable in s
according to M , and (2) applying a to s results in the same
state according to both action models. We say that an action
model is safe if it is a safe action model w.r.t. the real action
model M∗.

Observe that any plan generated by a planner given a safe
action model must also be a sound plan according to M∗.
The conservative planning approach (Stern and Juba 2017)
for safe model-free planning is based on this observation. In
conservative planning, we first learn from the given set of
trajectories an action model M that is safe w.r.t. M∗, and
then apply an off-the-shelf planner to generate plans using
M . To learn such a safe action model, Stern and Juba (2017)
proposed the following algorithm. First, assume every ac-
tion a has all literals as its preconditions and no literals as
its effects. Then, iterate over every action triplet in T (a) and
apply the rules in Observation 1 to remove incorrect precon-
ditions and to add effects. We refer to this algorithm here-
after as the Safe Grounded Action-Model (SGAM) Learning
algorithm, and discuss its theoretical properties.

Theoretical Analysis

Theorem 1 (SGAM Learning is
sound (Stern and Juba 2017)). SGAM learning produces a
safe action model.

The main limitation of using a safe action model Msafe is
that it may be weaker than the real action model (M∗), in
the sense that there may be states in which an action a is
applicable according to M∗, but not applicable according to
Msafe. Consequently, there may be planning problems that
are solvable with M∗ but not with Msafe. This is stated in a
more formal and general below.

Definition 5 (Strength of Action Models). If there exists a
trajectory that is consistent with M ′ but not with M , then we
say that M is weaker than M ′. If no such trajectory exists
then we say that M is at least as strong as M ′.

If M is at least as strong as M ′ then given enough com-
putation time, every planning problem that is solvable with
M ′ is also solvable with M . Alternatively, if M ′ is weaker
than M then there may be planning problems that cannot
be solved using M ′ but can be solved using M ′. Next, we
complement Theorem 1 by showing that the action model re-
turned by SGAM learning is at least as strong as every safe
action model that is consistent with the given trajectories.

Theorem 2 (The Strength of SGAM Learning). Let
MSGAM be the action model created by SGAM learning
given the set of trajectories T . MSGAM is at least as strong
as any action model M ′ that is safe and consistent with T .

Proof. Consider an action model M ′, which is safe and con-
sistent with T . Let a be an action and s be a state such
that a is applicable in s according to M ′, i.e., preM ′(a) ∈
s. Since M ′ is safe w.r.t. M∗, then preM∗(a) ⊆ s and
aM ′(s) = aM∗(s). By construction of MSGAM, if a lit-
eral l is a precondition of a according to MSGAM, then it
has appeared in the pre-state of all action triplets in T (a).
Thus, there exists a consistent action model in which l
is a precondition of a and this action model may be the
real model. Therefore, since M ′ is safe it follows that
preM ′(a) ⊆ preMSGAM

(a), and thus a is applicable in s ac-

cording to MSGAM, i.e., preMSGAM
(a) ∈ s. Since MSGAM is

safe, aMSGAM
(s) = aM∗(s) = a′M (s).Thus, every trajectory

consistent with M ′ will also be consistent with MSGAM.

While the action model returned by SGAM is at least
as strong as any other safe action model, it may still be
weaker than the real action model. Consequently, conserva-
tive planning for model-free planning is bound to be sound
but incomplete—it generates plans that are sound but it may
fail to generate plans for some solvable planning problems.

A statistical analysis showed that under some assump-
tions, the number of trajectories SGAM learning needs
to learn a safe action model that can solve most prob-
lems is quasilinear in the number of actions in the do-
main (Stern and Juba 2017). However, the number of
grounded actions in a lifted domain can be quite large: the
number of grounded actions that are groundings of a single
lifted action grows polynomially with the number of objects
in the domain (exponentially in the number of parameters).
On the other hand, in a lifted domain, the real action model
is assumed to be defined by lifted actions. This enables us
to generalize SGAM learning across multiple groundings of
the same lifted action, eliminating the dependence on the
number of objects in the number of trajectories needed to
learn a useful safe action model. We describe this in the
next section.

Conservative Planning for Lifted Domains

In this section, we describe a conservative planning ap-
proach for safe model-free planning in lifted domains,
which is based on a novel generalization of SGAM learn-
ing to lifted domains. We refer this algorithm as simply
SAM learning. To describe SAM learning, we denote by
bindings(bA, bL) the set of all parameter bindings bL,A that
satisfy the following

bA ◦ bL,A = bL. (3)

Inference Rules for Lifted Domains

The core of our algorithm is the following generalization of
Observation 1, defining what observing an action triplet with
a grounded action 〈A, bA〉 entails for the lifted action A.

Observation 2. For any action triplet 〈s, 〈A, bA〉 , s′〉
• Rule 1 [not a precondition]. ∀ 〈L, bL〉 /∈ s :

∀b ∈ bindings(bA, bL) : 〈L, b〉 /∈ pre(A) (4)

• Rule 2 [not an effect]. ∀ 〈L, bL〉 /∈ s′:

∀b ∈ bindings(bA, bL) : 〈L, b〉 /∈ eff(A) (5)

Algorithm 1: Safe Action-Model (SAM) Learning

Input : ΠT = 〈T,O, sI , G, T 〉
Output: An action model that is safe w.r.t. the action

model that generated T

1 A′ ← all lifted actions observed in T
2 foreach lifted action A ∈ A′ do
3 eff(A)← ∅
4 pre(A)← all parameter-bound literals

5 foreach (s, 〈A, bA〉 , s
′) ∈ T (A) do

6 foreach 〈L, bL,A〉 ∈ pre(A) do
7 if 〈L, bA ◦ bL,A〉 /∈ s then
8 Remove 〈L, bL,A〉 from pre(A)

9 foreach 〈L, bL〉 ∈ s′ \ s do

10 bL,A ←
〈

L, (bA)
−1 ◦ bL

〉)

11 Add 〈L, bL,A〉 to eff(A)

12 return (pre, eff)

• Rule 3 [an effect]. ∀ 〈L, bL〉 ∈ s′ \ s :

∃b ∈ bindings(bA, bL) : 〈L, b〉 ∈ eff(A) (6)

I.e., in ILP terminology, the grounded literal 〈L, bL〉 is
subsumed by some 〈L, b〉 ∈ eff(A).

For much of this paper, we make the following assumption:

Definition 6 (Injective Action Binding). In every grounded
action 〈A, bA〉, the binding bA is an injective function, i.e.,
every parameter of A is mapped to a different object.

Under this assumption, for every pair of bindings bL and
bA there exists a unique bL,A that satisfies Eq. 3. This bind-
ing is obtained by inverting bA, i.e.,

bindings(bA, bL) = {(bA)
−1 ◦ bL}. (7)

where (bA)
−1 maps an object o to the parameter of A that

bA maps to o. That is, each grounded literal and action that
appears in a trajectory is essentially a renaming of the corre-
sponding parameters in the lifted literals and actions by ob-
jects; the grounded literals and actions are OI-subsumed by
the lifted literals and actions (De Raedt 2008, Section 5.5.1).
Equation 7 simplifies the inference rules given in Observa-
tion 2. In particular, the “an effect” rule (Rule 3) becomes

∀ 〈L, bL〉 ∈ s′ \ s :
〈

L, (bA)
−1 ◦ bL

〉

∈ eff(A). (8)

SAM Learning for Lifted Domains

We now present our SAM Learning algorithm for lifted do-
mains in Algorithm 1. For every lifted action A observed
in some trajectory, we initially assume that A has no effects
and all possible parameter-bound literals are its precondi-
tions (line 4 in Algorithm 1).2 Then, for every action triplet
(s, 〈A, bA〉 , s′) with this lifted action, we remove from the
preconditions of A every parameter-bound literal 〈L, bL,A〉
that is not satisfied in the current pre-state (Rule 1 in Ob-
servation 2). Then, for every grounded literal 〈L, bL〉 that

2It is possible to initialize the preconditions of every lifted ac-
tion to the pre-state of one of the action triplets in which it is used.

holds in the post-state s′ and not in s, we add a correspond-
ing effect to A (Rule 3 in Observation 2). Note that Rule 2
in Observation 2 is not needed since we initialize the set of
effects of every action to be an empty set.

Theorem 3. Given a set of trajectories T , SAM learning
(Algorithm 1) runs in time

O
(

∑

A∈A

|T (A)|
∑

F∈F

∏

t∈T

arity(A, t)arity(F,t)
)

Proof. For every action A ∈ A, SAM learning iterates
over all action triplets in T (A) and, in the worst case,
checks every possible parameter-bound literal 〈L, bL,A〉 if
it is not a precondition and if it is an effect. There

are arity(A, t)arity(L,t) ways to bind the parameters
of L of type t to the parameters of A, and hence
∏

t∈T arity(A, t)arity(L,t) parameter-bound literals with A
and L.

Safety Property

We extend the notion of a safe action model to lifted domains
as follows. An action model M in a lifted domain is safe iff
every grounded action defined by M satisfies Eq. 2. This
definition preserves the property that a safe action model is
an action model that enables generating plans that are guar-
anteed to be sound w.r.t.M∗. We show next that SAM Learn-
ing for lifted domains indeed returns a safe action model.

Theorem 4. Given the injective action binding assumption,
SAM Learning (Algorithm 1) creates a safe action model.

Proof. We first show by induction on the iterations of the
loop in lines 2–11 that on every iteration

preM∗(A) ⊆ pre(A) and eff(A) ⊆ effM∗(A) (9)

where M∗ is the correct action model. Prior to the first iter-
ation, the preconditions of all lifted actions A are all pos-
sible parameter-bound literals, so pre(A) must be a sub-
set of preM∗(A). This includes every parameter-bounded
fluent and its negation. Similarly, the effects are set to ∅,
which is surely a subset of effM∗(A). The changes made
to pre(A) and eff(A) in subsequent iterations are encapsu-
lated in lines 8 and 11 in Algorithm 1. Line 8 is a direct
application of Rule 1 (“not a precondition”) from Observa-
tion 2, and thus pre(A) is still a subset of preM∗ . Similarly,
line 11 is an application of Rule 3 (“an effect”) in the same
observation, given that bindings(bA, bL) consists of a single
parameter binding due to the injective binding assumption.
This completes the induction.

Let (pre, eff) be the action model returned by Algorithm 1
(line 12). From the induction above (Eq. 9) it immediately
follows that for every grounded action 〈A, bA〉 and state s,
if pre(〈A, bA〉) ⊆ s then preM∗(〈A, bA〉) ⊆ s. From the
induction above, all the parameter-bound literals in eff(A)
are indeed effects of A. Finally, consider any parameter-
bound literal 〈L, bL,A〉 that is an effect of A but is absent
from eff(A), i.e., every 〈L, bL,A〉 ∈ effM∗(A) \ eff(A). By
construction of eff, this can only occur if this parameter-
bound literal was true in all pre-states of groundings of A in
all the available trajectories. Consequently, 〈L, bL,A〉 must

Action Params Precond. Effects

Move ?tr - truck at(tr, from) at(tr, to),
?from - location not(at(tr, from))
?to - location

Load ?pkg - package at(tr, loc) on(pkg, tr),
?tr - truck at(pkg, loc) not(at(pkg, loc))
?loc - location

Unload ?pkg - package at(tr, loc), not(on(pkg,tr),
?tr - truck on(pkg, tr) at(pkg, loc)
?loc - location

Table 1: The parameters, preconditions, and effects of the actions
according to the real action model of our simple logistics example.

be in pre(A). Therefore, every grounded literal in the post-
state of applying 〈A, bA〉 in s (i.e., 〈A, bA〉M∗ (s)) is either
in eff(〈A, bA〉) or pre(〈A, bA〉).

An Example of SAM Learning

Consider the following simple logistics problem. There are
five objects: one truck object (tr), one package object (pkg),
and three locations objects (A, B, and C). at(?truck, ?loca-
tion) and on(?truck, ?package) are lifted fluents represent-
ing that the truck is in the location and the package is on the
track, respectively. There are three possible actions: Move,
Load, and Unload. Table 1 lists the parameters, precondi-
tions, and effects of these actions in M∗. Now, assume we
are given three trajectories T1, T2, and T3. T1 starts with the
truck and the package at location A, and performs two move
actions: Move(tr, A, B) and Move(tr, B, C). T2 starts in the
same state, but performs Load(pkg, tr, A) and Move(tr, A,
B). T3 starts with the truck at location A and the package at
location B, and performs Move(tr, A, B), Load(pkg, tr, B),
Move(tr, B, C), and Unload(pkg, tr, C). Given only the first
trajectory T1, the action model returned by SAM Learning
already contains the real action model for the lifted Move
action, since the only grounded fluents that can be bound to
the parameters of the grounded action Move(tr, A, B) are
at(tr, A) and not(at(tr, B)) in the pre-state, and at(tr, B) and
not(at(tr, A)) in the post-state. In contrast, SAM Learning
for grounded domains will not know anything about the pre-
conditions and effects of the grounded action Move(tr, B,
C) unless it is also given the trajectory T3. Similarly, given
the second trajectory T2, the action model returned by SAM
Learning contains the real action model for the lifted Load
action, since the only grounded fluents that can be bound to
the parameters of the grounded action Load(pkg, tr, A) are
at(tr, A), at(pkg, A), and not(on(pkg, tr)) in the pre-state and
at(tr, A), not(at(pkg, A)), and on(pkg, tr)) in the post-state.
In fact, given T1, T2, and T3, SAM Learning is able to learn
the real action model for this domain. Note that since there
are 10 grounded actions in this domain (four Move actions
and three Load and Unload actions), SGAM Learning will
require at least 10 action triplets to learn an action model
with all of the actions.

Sample Complexity Analysis

Planning with a safe action model is a sound approach for
safe model-free planning, since every plan it outputs is a

sound plan according to the real action model. However, it is
not complete: a planning problem may be solvable with the
real action model, but not the learned one. As in prior work
on safe model-free planning (Stern and Juba 2017), we can
bound the likelihood of facing such a problem as follows.

Let PD be a probability distribution over solvable plan-
ning problems in a domain D. Let TD be a probability dis-
tribution over pairs 〈P, T 〉 given by drawing a problem P
from P(D), using a sound and complete planner to generate
a plan for P , and setting T to be the trajectory from follow-
ing this plan.3

Theorem 5. Under the injective action binding assumption,
given m ≥ 1

ǫ
(2 ln 3

∑

F∈F
A∈A

∏

t∈T arity(A, t)arity(F,t) +

ln 1
δ
) trajectories sampled from TD, with probability at least

1− δ SAM learning for lifted domains (Algorithm 1) returns
a safe action model MSAM such that a problem drawn from
PD is not solvable with MSAM with probability at most ǫ.

Theorem 5 guarantees that with high probability (≥ 1−δ)
SAM Learning returns an action model that will only fail to
solve a given problem with low probability (≤ ǫ), given a
number of example trajectories linear in the size of the mod-
els. For example, in the real action model of our simple
logistics example with two binary fluents and three ternary
actions, the load and unload actions have a single argument
of each type; only the move action has two arguments of
the same type (location). The only fluents that have location
arguments are the at fluents, which have arity one with re-
spect to locations. Thus, guaranteeing ǫ = δ = 5% requires
only 324 trajectories. The rest of this section is devoted to
establishing Theorem 5.

Definition 7 (Adequate). An action model M is ǫ-adequate
if, with probability at most ǫ, a trajectory T sampled from
TD contains an action triplet 〈s, a, s′〉 where s does not sat-
isfy preM (a).4

Lemma 1. The action model returned by SAM Learning (Al-
gorithm 1) given m trajectories (as specified in Theorem 5)
is ǫ-adequate with probability at least 1− δ.

Proof. Consider any action model MB that may be returned
by SAM Learning but is not ǫ adequate. By definition, the
probability of drawing a trajectory from TD that is inconsis-
tent with MB is at least ǫ. Thus, the probability of drawing
m samples that are consistent with MB is at most

(1− ǫ)m ≤ e−m·ǫ. (10)

MB can only be returned if this occurs. For our choice of
m,

e−m·ǫ ≤ e−(ln 3L+ln 1

δ
) =

δ

3L
(11)

where
L = 2

∑

F∈F
A∈A

∏

t∈T

arity(A, t)arity(F,t)

3The planner need not be deterministic.
4An action model may not contain any information about some

action a. For the purpose of safe planning this is equivalent to an
action model in which the precondition to a can never be satisfied.

Let B be the set of action models that are not ǫ-adequate.
By a union bound over B, the probability that SAM Learn-
ing will return an action model that is not ǫ-adequate is at

most
|B|δ
3L . For each parameter-bound fluent, each precondi-

tion or effect will either contain that fluent, or its negation,
or neither of them. Hence, the number of possible action
models is 3L. Since B is a set of action models, we have
that the size of B is at most 3L. Therefore, the probability
that SAM Learning will return an action model that is not
ǫ-adequate is at most δ.

Finally, we can prove Theorem 5 as follows.

Proof. Let M be an action model returned by SAM Learn-
ing given m samples. Thus, M is a safe action model (The-
orem 4) and it is ǫ adequate (Lemma 1). Consider a problem
P drawn fromP(D), and its corresponding pair 〈P, T 〉 from
T (D). Since M is ǫ-adequate, with probability at least 1−ǫ,
for every action triplet 〈s, a, s′〉 ∈ T a is applicable in s, that
is, preM (a) ⊆ s. Since M is a safe action model, we have
that aM (s) = aM∗(s) = s′. Thus, with probability at least
1 − ǫ the trajectory T is consistent with the learned action
model M , and therefore P can be solved with M

Multiple Action Bindings

When the injective action-binding assumption does not hold,
multiple action parameters are bound to the same object and
thus (bA)

−1 is not defined. As a result, when SAM Learning
infers an effect (Rule 3 in Observation 2) it cannot generalize
it to be a unique effect of the corresponding lifted action, as
done in line 10 in Algorithm 1. This poses a challenge to
learning a safe action model, as the information that can be
inferred from observing action triplets can be complex.

For example, consider a lifted action A(x, y). Suppose x
and y are associated with the same type and o is an object
of that type. Given the action triplet 〈{ }, A(o, o), {L(o)}〉,
the agent can infer that L(o) is an effect of the grounded ac-
tion A(o, o). However, the agent cannot accurately infer the
effect of the lifted action A(x, y): it can be either {L(x)},
{L(y)}, or both. Concretely, if o1 and o2 are two different
objects from the same type as o, the agent cannot determine
if applying A(o1, o2) will result in a state with {L(o1)},
{L(o2)}, or {L(o1), L(o2)}. Consequently, any safe action
model must not enable groundings of A that bind x and y to
different objects, unless L(x) and L(y) both already hold.

Now, assume the agent is also given the action triplet
〈{L(o1)}, A(o1, o2), {L(o1)}〉. The pre- and post-state are
the same, so in Algorithm 1 we cannot learn any new effects
of A from this triplet. However, we can infer that L(o2)
is not an effect of the grounded action in this triplet. Conse-
quently, the parameter-bound literal L(y) cannot be an effect
of the lifted action A. Thus, this second action triplet does
provide useful information: it allow us to infer that the lifted
action A(x, y) has a parameter-bound effect L(x).

In a planning task, we might avoid the above by refor-
mulating the domain to satisfy the injective action binding
assumption. However, in a learning setup, we do not have
control over how the domain is formulated and so the do-
main we are learning may indeed violate the injective ac-

tion binding assumption, preventing the application of SAM
learning. Next, we describe Extended SAM Learning, which
addresses such cases by capturing the form of inference de-
scribed above.

Extended SAM Learning

Extended SAM (E-SAM) learning works in two stages.
First, it creates for every lifted action A a conjunction
and a Conjunctive Normal Form (CNF) formula, denoted
Conjpre(A) and CNFeff(A), that describe a set of constraints
for a safe action model. Then E-SAM learning generates a
safe action model based on these formulas.

Safe Action Model Constraints Conjpre(A) uses atoms of

the form IsPre(〈L, bL,A〉), which specify that 〈L, bL,A〉 is a
precondition L in a safe action model. Similarly, CNFeff(A)
uses atoms of the form IsEff(〈L, bL,A〉), which specify that
〈L, bL,A〉 is an effect of L in a safe action model.

Initially, Conjpre(A) and CNFeff(A) represent that all pos-
sible parameter-bound literals are preconditions and there
are no effects. Then, E-SAM learning iterates over every ac-
tion triplet (s, a, s′) in the given set of trajectories in which
a is a grounding of A. For every such triplet, it applies the
inference rules in Observation 2 as follows.

Every parameter-bound literal 〈L, bL,A〉 such that
〈L, bA ◦ bL,A〉 is not in the pre-state cannot be a pre-
condition (Rule 1). So, we remove IsPre(〈L, bL,A〉) from
Conjpre for such parameter-bound literals. Similarly, every

parameter-bound literal 〈L, bL,A〉 such that 〈L, bA ◦ bL,A〉
is not in the post-state cannot be an effect (Rule 2). So, we
add ¬IsEff(〈L, bL,A〉) to CNFeff for such parameter-bound
literals. Finally, every grounded literal 〈L, bL〉 in s′ \ s
must be an effect. So, we add to CNFeff the disjunction
over all parameter-bound literals 〈L, bA ◦ bL,A〉 that satisfy
〈L, bA ◦ bL,A〉 = 〈L, bL〉 (Rule 3). Once the given trajecto-
ries have been processed by the algorithm, we simplify the
CNF by applying unit propagation and removing subsumed
clauses.

Proxy Actions The main challenge in creating a safe ac-
tion model from the generated formulas is the disjunction in
CNFeff, which represents uncertainty w.r.t to the effects of
action. To address this, we create a safe action model with a
set of proxy actions that ensure every action is only applica-
ble when we know its effects. We achieve this by comput-
ing, for each possible subset of the parameter-bound literals
in the formulas for a given action, most general unifiers for
the literals; in our setting, such unifiers simply identify sub-
sets of the action parameters. Alternatively, if the parameter-
bound literal appears in the precondition, then the literal
does not need to be included in the unifier, and we know
that the corresponding effect will always hold. Hence, since
at least one of the unified parameters occurs in the param-
eter binding of the effect in the true action model, so when
the parameters in the set are all bound to the same object
(or the literal appears in the precondition), we can guarantee
that the corresponding effect literal holds in the post-state.
In more detail, this is done as follows.

If an action has only unit clauses, we have a single action
with the effects indicated by the positive literals. Otherwise,

Algorithm 2: Extended SAM Learning

Input : ΠT = 〈T,O, sI , G, T 〉
Output: (pre, eff) for a safe action model

1 A′ ← all lifted actions observed in T
2 foreach lifted action A ∈ A′ do
3 (Conjpre,CNFeff)← ExtractClauses(A, T (A))

4 CNF1
eff ← all unit clauses in CNFeff

5 SurelyEff← {l | IsEff(l) ∈ CNF1
eff}

6 SurelyPre← {l | IsPre(l) ∈ Conjpre}

/* Create proxy actions for non-unit

effects clauses */

7 CNFeff ← CNFeff \ CNF1
eff

8 foreach S ∈ Powerset(CNFeff) do
9 pre(AS)← SurelyPre; eff(AS)← SurelyEff

10 foreach Ceff ∈ CNFeff \ S do
11 foreach IsEff(l) ∈ Ceff do
12 Add l to pre(AS)

13 MergeObjects
(

S, pre(AS), eff(AS)
)

14 return (pre, eff)

we create a proxy action for all subsets of the parameter-
bound literals in non-subsumed non-unit clauses. (The num-
ber of proxy actions is thus exponential in the size of the for-
mula of non-unit clauses.) In this proxy action, we identify
all of the parameters that appear in the same position of the
literals in the subset with the same fluents. Each proxy ac-
tion has the following set of preconditions and effects: every
unit clause in the CNF and every clause in the correspond-
ing subset specifies an effect of the proxy action. For the
subset of literals not chosen for this proxy action, the proxy
action has the corresponding literals as additional precondi-
tions, in addition to the preconditions of the original SAM
Learning action model. Every plan generated by the action
model created by the resulting action model is translated to
a plan without proxy actions by replacing them with the ac-
tions for which they were created. Algorithm 2 and 3 lists
the complete pseudocode of E-SAM learning.

Theoretical Properties E-SAM Learning creates an ac-
tion model that satisfies the same properties as the action
model created by SAM learning under the injective action
binding assumption, as captured in Theorems 4 and 2.

Theorem 6. The E-SAM Learning action model is safe.

Proof. For each of the proxy actions, for every effect, at
least one of the parameter-bound literals for the identified
parameters is an effect of the true action. Furthermore, the
preconditions ensure that the rest of the uncertain effects are
already present in the pre-state. The post-state of the proxy
action is thus identical to that of the true action when its
precondition is satisfied. Likewise, the proxy actions have
preconditions that are only stronger than the actual precon-
dition. Eq. 2 therefore holds. The rest of the claim now
follows from the argument in Theorem 4.

Recall that a prime implicate is a clause that is entailed

Algorithm 3: ExtractClauses

Input : A, a lifted action
Input : T (A), action triplets that contain A
Output: (Conjpre,CNFeff), representing the

constraints over pre(A) and eff(A)

1 CNFeff ← ∅; Conjpre ← ∅
2 foreach parameter-bound literal 〈L, bL,A〉 do
3 Add IsPre(〈L, bL,A〉) to Conjpre

4 foreach (s, 〈A, bA〉 , s′) ∈ T (A) do
5 foreach IsPre(〈L, bL,A〉 ∈ Conjpre) do

6 if 〈L, bA ◦ bL,A〉 /∈ s then
7 Remove IsPre(〈L, bL,A〉) from Conjpre

8 foreach 〈L, bL〉 ∈ s′ \ s do
9 Ceff ← ⊥

10 foreach bL,A ∈ bindings(bA, bL) do
11 Ceff ← Ceff∨ IsEff(〈L, bL,A〉)

12 Add EffectsClause to CNFeff

13 foreach parameter bound literal 〈L, bL,A〉 do
14 bL ← 〈L, bL,A ◦ bA〉
15 if 〈L, bL〉 /∈ s′ then
16 Add ¬IsEff(〈L, bL,A〉) to CNFeff

17 Minimize(CNFeff)
18 return (Conjpre,CNFeff)

by a formula for which no subclause is also entailed. CNFeff

consists of precisely these prime implicates.

Lemma 2. All prime implicates of CNFeff are derived by
unit propagation.

Proof. Note that the clauses created by Rule 3 contain only
positive literals, and negative literals are only created by
Rule 1 and 2, which create unit clauses. Hence, unit prop-
agation is sufficient to capture all possible resolution infer-
ences from these clauses. By the completeness of resolution
for prime implicates (e.g., (Brachman and Levesque 2004,
Ch. 13, Exercise 1)), all of the prime implicates of CNFeff

can be derived by resolution. In turn, therefore, unit
propagation can also derive all of the prime implicates of
CNFeff.

Theorem 7. Every action model M ′ that is consistent with
T and safe w.r.t. the real action model M∗ is also safe with
respect to the extended SAM Learning action model.

Proof. Let M ′ be an action model that is consistent with T
and safe w.r.t. M∗, and let 〈s, 〈A, b〉 , s′〉 be an action triplet
permitted by M ′. Consider the set S of literals in s′ \ s that
do not correspond to unit clauses in the CNF created by E-
SAM Learning, and the set S̄ of literals that are the ground-
ings under b of the effects in the non-unit clauses created by
E-SAM learning that are not in s′ \ s. Recall, Observation 2
characterizes the set action models consistent with T and
by Lemma 2, no sub-clause of the CNF created by E-SAM

learning is entailed by the rules of Observation 2. There-
fore, for every literal of every non-unit clause of this CNF,
there exists an action model consistent with T in which that
literal is the only satisfied literal of the clause. (Otherwise,
a strictly smaller clause would be entailed.) Therefore, for
each literal l ∈ S, since M ′ is safe w.r.t. M∗, all of the pa-
rameters of A in some clause for this effect must be bound to
the objects necessary to obtain l as the corresponding effect.
Thus, b must be consistent with at least one of the proxy
actions Aproxy . Furthermore, since the literals in S̄ may be
effects of 〈A, b〉, if they are not in s′ \s, they must be in s, so
the preconditions of Aproxy are satisfied as well. Since the
E-SAM Learning action model is safe by Theorem 5, the
post-state of Aproxy is therefore equal to that obtained by
the true action model, which is in turn also equal to s′ since
M ′ is also safe. A is therefore an application of Aproxy, and
we see that the use of A in M ′ is safe with respect to the
set of proxy actions in the action model created by E-SAM
Learning.

Time complexity E-SAM learning can be split into two
parts: a learning part, which extracts clauses about the pre-
conditions and effects of the actions (line 3 in Alg. 2), and a
compilation part that generates a PDDL encoding that can
be used by off-the-shelf PDDL planners. The latter involves
the creation of the proxy actions. The learning part of E-
SAM learning can be implemented to run in polynomial time
in the number of parameter-bound literals and total number
of action triplets, similar to SAM learning. The compila-
tion part, however, may run in exponential time due to the
inability of PDDL to capture the uncertainty over actions’
effects that has been learned (captured by CNFeff). Future
work may investigate avoiding this exponential step by in-
stead compiling the learned knowledge to a domain encod-
ing for a conformant planner (Bonet 2010).

Experiments

Next, we perform an experimental evaluation of SAM
Learning over planning problems from twelve domains from
the IPC (McDermott 2000). Table 2 lists the names of these
domain, the number of lifted fluents and actions, the largest
arity of these lifted fluents and actions, and the largest num-
ber of grounded fluents and actions in our dataset. We have
chosen only domains in the IPC benchmarks in which the in-
jective action binding assumption holds. For such domains,
E-SAM Learning and SAM Learning behave the same.

For each domain, we generated problems using the prob-
lem generator provided in the IPC learning tracks and solved
them using their true action models with the MADAGAS-
CAR planner (Rintanen 2014) to obtain example trajecto-
ries. These trajectories were broken to action triplets and
given to the SAM Learning algorithm one at a time to obtain
a safe action model. We halted this process when the learned
action model was equivalent to the real model, and report the
number of triplets and trajectories given to the algorithm. As
a baseline, we performed this experiment also with FAMA
(Aineto, Celorrio, and Onaindia 2019), which is a modern
algorithm for learning action models from trajectories. Note

max max max max
lifted lifted arity arity ground ground

fluents actions fluents actions fluents actions

Blocks 5 4 2 2 182 182
Depot 6 5 4 2 75 450
Ferry 5 3 2 2 75 75
Floortile 10 7 2 4 40 64
Gripper 4 3 2 3 42 84
Hanoi 3 1 2 3 33 166
Npuzzle 3 1 2 3 80 80
Parking 5 4 2 3 182 2,184
Satellite 8 5 2 4 75 1875
Sokoban 4 2 3 5 288 564
Spanner 6 3 2 4 12 12
Transport 5 3 2 5 870 3600

Table 2: Statistics on the domains in our experiments.

that unlike SAM Learning, FAMA has no safety guarantee.
In addition, SAM learning runs in time linear in the number
of lifted actions, lifted literals, and trajectories, while FAMA
runs an automated planner which has an exponential worst-
case running time (as planning is PSPACE-complete). SAM
learning is only exponential in the maximal number of pa-
rameters of each action and literal. Thus, SAM learning can
easily scale to very large domains.

Table 3 lists the results of our experiments. The “# Ob-
jects” column lists the objects in the problem, and the values
under “Trajectories” and “Triplets” are the number of trajec-
tories and action triplets, respectively, required to learn the
correct model. In all cases, both methods were able to re-
cover the real action model. However, SAM Learning was
able to find such a model using at most as many, and often
significantly fewer triplets and trajectories. For example, for
the Floortile problem with 2 robots and a 5 × 4 floor, SAM
learned the correct model with only 16 action triplets while
FAMA required 52 action triplets. In fact, in all domains ex-
cept Parking, SAM Learning learned the correct model with
a single trajectory. Note that once SAM Learning finds a
correct model it will never change it, since SAM only re-
moves literals that are not satisfied in the pre-state from the
preconditions and adds literals that switch values between
pre and post-states to the effects. Meanwhile, FAMA might
add irrelevant literals or remove correct literals from the pre-
conditons or effects as it processes more action triplets.

The code for SAM learning and our experiments is avail-
able at https://github.com/hsle/sam-learning.

Related Work

A variety of notions of safety have been considered in RL,
for example capturing the ability to reliably return to a
home state (Moldovan and Abbeel 2012) or avoiding un-
desirable states (Turchetta, Berkenkamp, and Krause 2016;
Wachi et al. 2018) while learning about the environment.
But, these approaches to safe exploration require some kind
of strong prior knowledge, either in the form of beliefs about
the transition model or knowledge that the safety levels fol-
low a Gaussian process model. Such assumptions are rea-
sonable in the low-level motion planning tasks where RL
excels, but they do not suit the kind of discrete, high-level

https://github.com/hsle/sam-learning

Trajectories Triplets
Domain # Objects SAM FAMA SAM FAMA

Blocks

7 blocks 1 2 13 22
8 blocks 1 2 16 29
9 blocks 1 2 18 35
10 blocks 1 2 22 40
11 blocks 1 2 25 46
12 blocks 1 2 28 53
13 blocks 1 2 35 60
14 blocks 1 2 42 72

Depot

1 truck, 2 places, 4 hoists, 10 crates 1 1 18 24
1 truck, 2 places, 4 hoists, 15 crates 1 1 26 32
2 trucks, 3 places, 5 hoists, 10 crates 1 1 22 28
2 trucks, 3 places, 5 hoists, 15 crates 1 1 28 36

Ferry

2 locations, 8 cars 1 1 4 7
3 locations, 10 cars 1 1 9 12
4 locations, 12 cars 1 1 12 15
5 locations, 15 cars 1 1 14 17

Floortile

3x3, 2 robots 1 2 13 22
4x3, 2 robots 1 2 13 32
4x4, 2 robots 1 2 16 40
5x4, 2 robots 1 2 16 52

Gripper

2 rooms, 6 balls 1 1 4 8
2 rooms, 10 balls 1 1 5 8
3 rooms, 8 balls 1 1 5 8
3 rooms, 14 balls 1 1 5 9

Hanoi

3 disks 1 1 3 3
4 disks 1 1 3 3
5 disks 1 1 3 3
6 disks 1 1 3 3

Npuzzle
8 tiles 1 1 1 1
15 tiles 1 1 1 1
24 tiles 1 1 1 1

Parking

3 curbs, 4 cars 2 3 13 20
5 curbs, 8 cars 2 4 32 52
7 curbs, 12 cars 2 4 53 87
8 curbs, 14 cars 2 3 72 98

Satellite

2 sats., 4 instrs., 4 modes, 8 dirs. 1 1 20 28
4 sats., 4 instrs., 4 modes, 8 dirs. 1 1 20 28
5 sats., 5 instrs., 5 modes, 10 dirs. 1 1 24 32
5 sats., 5 instrs., 5 modes, 15 dirs. 1 1 26 34

Sokoban

5x5, 2 boxes 1 1 4 6
7x7, 2 boxes 1 1 6 8
8x8, 3 boxes 1 1 5 7
9x9, 3 boxes 1 1 8 10

Spanner

10 spanners, 10 nuts, 2 locations 1 1 14 16
10 spanners, 10 nuts, 4 locations 1 1 16 18
10 spanners, 10 nuts, 6 locations 1 1 18 20
11 spanners, 11 nuts, 2 locations 1 1 15 17
11 spanners, 11 nuts, 4 locations 1 1 17 19
11 spanners, 11 nuts, 6 locations 1 1 19 21
12 spanners, 12 nuts, 2 locations 1 1 16 18
12 spanners, 12 nuts, 4 locations 1 1 18 20
12 spanners, 12 nuts, 6 locations 1 1 20 22

Transport

2 trucks, 5 packages, 10 locations 1 1 16 20
2 trucks, 10 packages, 20 locations 1 1 18 22
4 trucks, 10 packages, 20 locations 1 1 22 26
4 trucks, 15 packages, 30 locations 1 1 24 30

Table 3: Number of trajectories and action triplets needed to learn
the real action model in each domain.

problems typically considered in domain-independent plan-
ning. In addition, in these works safety is soft constraint that
an algorithm aims to maximize, while in our case safety is a
hard constraint.

Our work is part of the growing literature on
learning action models for domain-independent
planning (Arora et al. 2018), which includes algo-
rithms such as ARMS (Yang, Wu, and Jiang 2007),
LOCM (Cresswell, McCluskey, and West 2013),
LOCM2 (Cresswell and Gregory 2011),
AMAN (Zhuo and Kambhampati 2013), and
FAMA (Aineto, Celorrio, and Onaindia 2019). Similar

to SAM learning, ARMS (Yang, Wu, and Jiang 2007) also
defines rules to infer an action model from a given set of
trajectories. Our third rule (“must be an effect”) is some-
what similar to their (I.1) rule. The other ARMS rules are
different, and are designed to explain the observed trajec-
tories in a succinct manner. Thus, the action model created
by ARMS may be either under of over constrained for this
purpose. LOCM (Cresswell, McCluskey, and West 2013)
and LOCM2 (Cresswell, McCluskey, and West 2013) learn
action models by learning and composition state transitions
that are consistent with the observed trajectories. They do
not require as input a set of possible lifted fluents or types,
and learn from data the relation between objects and types,
as well as the relation between actions and types. LOCM2
is a heuristic version of LOCM algorithm for learning action
models. It does not support domains in which the injective
action binding assumption does not hold, or domains
where a deleted literal does not appear as a precondition.
AMAN (Zhuo and Kambhampati 2013) is an action-model
learning algorithm that is specifically designed to handle
noisy observations. It constructs a graphical model and
learns the statistical relationship between actions and possi-
ble state transitions. FAMA (Cresswell and Gregory 2011)
compiles the problem of finding an action model that is
consistent with a set of trajectories to a planning problem.
The solution to this planning problem is a sequence of
“actions” that construct an action model. FAMA is more
general than SAM or ESAM in the sense that it supports
partial observability.

FAMA, as well as LOCM, LOCM2, and AMAN, aim
to create an action model that explains the given trajecto-
ries. This can be viewed as a solving an inductive logic pro-
gramming (Muggleton and De Raedt 1994) task. The action
model they generated is only guaranteed to be consistent
with the given set of observations. Our algorithms (SAM
and ESAM) provide a stronger guarantee: the action model
they create is safe with respect to the real action model
(M∗). A safe action model (Definition 4) is, by definition,
consistent with the given trajectories, but a consistent action
model (Definition 3) may very well be unsafe. For exam-
ple, consider an action model M in which the effects of all
actions are correct (i.e., match the effects in M∗) and all
actions have no preconditions. This action model is clearly
unsafe, and plans generated with it may be not sound. Yet,
such an action model is consistent with any trajectory gen-
erated according to the real action model (M∗). None of
the works listed above provide a safety guarantee, and plans
generated with the action models they generate may be un-
sound.5

5Note that the soundness and completeness of FAMA (Lemmas
1 and 2 there) do not refer to plans generated by the action model
FAMA learns, but to the learning algorithm it self. That is, FAMA
is sound in the sense that the action model it returns is consistent
with the given trajectories, and it is complete in the sense that if
a consistent action model exists then FAMA will find it. Indeed,
FAMA may return an unsafe action model.

Relaxing the Assumptions

Our learning of preconditions is very similar to Valiant’s
elimination algorithm (Valiant 1984) for learning conjunc-
tions in supervised learning. Following his work, we can
easily support preconditions that are k-CNFs (and not just a
simple conjunction) by considering that all sets of possible
clauses of size k as preconditions instead of a simple con-
junction. This will increase the sample complexity bound
in Theorem 5 by raising the first term to the kth power and
similarly increase the running time. Conditional effects can
be similarly supported if we can bound the number of liter-
als in their firing condition by some value k. In this case,
the extension to SAM learning keeps track of all possible
conditions with at most k literals that hold when an action is
applied.

We believe that the algorithm can similarly be extended
to handle independent, random noise, provided that either
(a) all fluents are corrupted with the same probability or (b)
the rate of corruption of each fluent is known. Indeed, this
is an example of independent attribute noise, and extensions
of Valiant’s elimination algorithm to these settings were pro-
posed by Goldman and Sloan (1995) (extending Shackleford
and Volper 1988) and Decatur and Gennaro (1995), respec-
tively. In the presence of such noise, however, the safety
property must be weakened: indeed, since any combination
of fluent settings may be observed, albeit with exponentially
small probability, we can only expect to guarantee that the
action model will be safe with high probability w.r.t. the
noise. Likewise, we believe similar guarantees are possible
in sufficiently benign partial information settings, following
Michael (2010).

If the environment itself is far from deterministic, then
clearly the STRIPS rules we learn would be inappropri-
ate, and a different representation would be necessary. We
note that if the environment is stochastic and there is noise
of unknown rates that differ across fluents, then it seems
to be information-theoretically impossible to learn a safe
model (in our sense) even when an adequate set of deter-
ministic rules exists, cf. the counterexample of Goldman and
Sloan (1995): we cannot distinguish between a fluent that
is just corrupted by observation noise from a fluent that is
merely correlated with it.

Conclusion and Future Work

In this work, we presented the Safe Action Model Learning
algorithm for lifted domains. SAM Learning for lifted do-
mains is guaranteed to return an action model that produces
sound plans, even without knowing the preconditions and
effect of the actions in the domain. A theoretical analysis
shows that the number of trajectories needed to learn an ac-
tion model that will solve a given problem with high proba-
bility is linear in the potential size of the action model. This
approach is suitable for most domains in current planning
benchmarks, where the effects of actions are trivial unless
the action parameters are bound to different objects. We also
discussed how to adapt our algorithm to the case where this
assumption does not hold. In the future, we aim to extend
safe action-model learning to domains with partial observ-

ability and stochasticity.

Acknowledgements

This research is partially funded by NSF awards IIS-
1908287, IIS-1939677, and CCF-1718380, and BSF grant
#2018684 to Roni Stern.

References

Aineto, D.; Celorrio, S.; and Onaindia, E. 2019. Learning
action models with minimal observability. Artificial Intelli-
gence 275.

Amir, E., and Chang, A. 2008. Learning partially observ-
able deterministic action models. J. Artif. Intell. Res. (JAIR)
33:349–402.

Arora, A.; Fiorino, H.; Pellier, D.; Etivier, M.; and Pesty, S.
2018. A review of learning planning action models. Knowl-
edge Engineering Review 33.

Asai, M., and Muise, C. 2020. Learning neural-symbolic de-
scriptive planning models via cube-space priors: The voyage
home (to STRIPS). In the International Joint Conference on
Artificial Intelligence (IJCAI), 2676–2682.

Bonet, B. 2010. Conformant plans and beyond: Principles
and complexity. Artificial Intelligence 174(3):245–269.

Brachman, R. J., and Levesque, H. J. 2004. Knowledge
Representation and Reasoning. Elsevier.

Cresswell, S., and Gregory, P. 2011. Generalised domain
model acquisition from action traces. In International Con-
ference on Automated Planning and Scheduling (ICAPS),
volume 21.

Cresswell, S. N.; McCluskey, T. L.; and West, M. M. 2013.
Acquiring planning domain models using locm. The Knowl-
edge Engineering Review 28(2):195–213.

De Raedt, L. 2008. Logical and Relational Learning.
Springer.

Decatur, S. E., and Gennaro, R. 1995. On learning from
noisy and incomplete examples. In COLT, 353–360.

Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new
approach to the application of theorem proving to problem
solving. Artificial intelligence 2(3-4):189–208.

Goldman, S. A., and Sloan, R. H. 1995. Can PAC learning
algorithms tolerate random attribute noise? Algorithmica
14(1):70–84.

Li, J.; Tinka, A.; Kiesel, S.; Durham, J. W.; Kumar, T. S.;
and Koenig, S. 2020. Lifelong multi-agent path finding in
large-scale warehouses. In AAMAS, 1898–1900.

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.;
Ram, A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998.
PDDL-the planning domain definition language. Technical
report, AIPS ’98 - The Planning Competition Committee.

McDermott, D. 2000. The 1998 AI planning systems com-
petition. AI Magazine 21(2):13.

Michael, L. 2010. Partial observability and learnability. Ar-
tificial Intelligence 174(11):639–669.

Moldovan, T. M., and Abbeel, P. 2012. Safe exploration in
markov decision processes. In Proceedings of the 29th In-
ternational Conference on Machine Learning, 1451–1458.

Muggleton, S., and De Raedt, L. 1994. Inductive logic pro-
gramming: Theory and methods. The Journal of Logic Pro-
gramming 19:629–679.

Rintanen, J. 2014. Madagascar: Scalable planning with
SAT. In the 8th International Planning Competition (IPC),
volume 21.

Shackelford, G., and Volper, D. 1988. Learning k-DNF with
noise in the attributes. In COLT, 97–103.

Stern, R., and Juba, B. 2017. Efficient, safe, and proba-
bly approximately complete learning of action models. In
the International Joint Conference on Artificial Intelligence
(IJCAI), 4405–4411.

Turchetta, M.; Berkenkamp, F.; and Krause, A. 2016. Safe
exploration in finite markov decision processes with gaus-
sian processes. In Advances in Neural Information Process-
ing Systems, 4312–4320.

Valiant, L. G. 1984. A theory of the learnable. Commun.
ACM 27(11):1134–1142.

Wachi, A.; Sui, Y.; Yue, Y.; and Ono, M. 2018. Safe explo-
ration and optimization of constrained mdps using gaussian
processes. In Thirty-Second AAAI Conference on Artificial
Intelligence.

Walsh, T. J., and Littman, M. L. 2008. Efficient learning
of action schemas and web-service descriptions. In AAAI,
volume 8, 714–719.

Wang, X. 1994. Learning planning operators by observa-
tion and practice. In Proceedings of the Second Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems, 335–340.

Wang, X. 1995. Learning by observation and practice: an
incremental approach for planning operator acquisition. In
Proceedings of the Twelfth International Conference on In-
ternational Conference on Machine Learning, 549–557.

Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action
models from plan examples using weighted MAX-SAT. Ar-
tificial Intelligence 171(2-3):107–143.

Zhuo, H. H., and Kambhampati, S. 2013. Action-model
acquisition from noisy plan traces. In International Joint
Conference on Artificial Intelligence (IJCAI).

	Introduction
	Background and Problem Definition
	Lifted and Grounded Literals
	Lifted and Grounded Actions
	Domains and Problems

	Conservative Planning in Grounded Domains
	Inference Rules for Grounded Domains
	Theoretical Analysis

	Conservative Planning for Lifted Domains
	Inference Rules for Lifted Domains
	SAM Learning for Lifted Domains
	Safety Property
	An Example of SAM Learning

	Sample Complexity Analysis
	Multiple Action Bindings
	Extended SAM Learning

	Experiments
	Related Work
	Relaxing the Assumptions
	Conclusion and Future Work

