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Abstract

An active system (AS) is a discrete-event system (DES) with
asynchronous behavior, which is represented by a network
of components that are modeled as communicating automata.
When being operated, an AS performs a trajectory within its
behavior space, while generating a sequence of observations,
namely a temporal observation. The model of the AS and a
temporal observation are the two key ingredients of the diag-
nosis task, which aims to find out possible faulty behavior via
abductive reasoning. Among other knowledge, such reason-
ing requires knowing what is observable and what is not. This
essential distinction constitutes the observability of the AS. In
the literature, the observability of a DES boils down to qual-
ifying each state transition either as observable or unobserv-
able, which contrasts with the way humans observe reality,
typically by mapping a collection of observations to a single,
abstract perception. Moreover, the occurrence of single state
transitions is not necessarily what we can observe or what we
want to observe for diagnosis purposes. This paper presents
an extended notion of observability, where each observation
is associated with a behavioral scenario rather than a single
state transition, where a scenario is defined as a regular lan-
guage on state transitions. To speed up the online diagno-
sis engine, specific diagnosis-oriented knowledge is compiled
offline. Eventually, the diagnosis technique based on abstract
observability is extended to cope with temporal uncertainty.

1 Introduction
Automated diagnosis of physical systems is still a topic of
considerable research in Artificial Intelligence. A popu-
lar approach is model-based diagnosis (Hamscher, Console,
and de Kleer 1992), which exploits the model of a system
in order to find the causes of its abnormal behavior, based
on some observations. Model-based diagnosis can be ei-
ther consistency-based (Reiter 1987), initially conceived for
static systems (like combinational circuits), or abduction-
based (McIlraith 1998), like in this paper. Diagnosing a dy-
namical system (Struss 1997) may be facilitated by model-
ing it as a discrete-event system (DES). Typically, a DES
(Cassandras and Lafortune 2008) can be either a Petri net
(Jiroveanu, Boel, and Bordbar 2008; Cabasino, Giua, and
Seatzu 2010; Basile 2014; Cong et al. 2018) or a net of
communicating automata, one automaton for each compo-
nent (Baroni et al. 1999; Debouk, Lafortune, and Teneket-
zis 2000; Pencolé and Cordier 2005; Grastien, Cordier, and

Largouët 2005; Kan John and Grastien 2008; Kwong and
Yonge-Mallo 2011; Grastien, Haslum, and Thiébaux 2012;
Lamperti, Zanella, and Zhao 2018b), like in this paper.

Following the seminal work by Sampath et al. (1995;
1996), each state transition is qualified as either normal or
faulty, even if, in principle, the component model may in-
corporate the normal behavior only, as proposed by Pencolé
et al. (2018). For a DES, the input of the diagnosis task is a
sequence of observations generated when the DES is being
operated, called a temporal observation. The output is a set
of candidates, where each candidate is a set of faults, each
fault being associated with a (faulty) state transition. For
several years, both notions of abnormality (defining what is
normal and what is faulty) and observability (defining what
is observable and what is not) have been tightly coupled
to the description of the model of the DES. These notions
started being separated from the DES modeling by Lam-
perti and Zanella (2006). Abnormality in DESs was further
generalized to a pattern that can represent specific combina-
tions of faults (Jéron et al. 2006; Lamperti and Zanella 2011;
Lamperti and Zhao 2014).

The generalization of abnormality somewhat spurred the
generalization of the notion of DES observability presented
in this paper. After all, the simplistic notion of observabil-
ity provided in the literature, where observations are asso-
ciated with state transitions, contrasts with the way humans
observe reality, typically by mapping a collection of obser-
vations to a single, abstract perception. In the new perspec-
tive adopted in this paper, each observation is associated
with a behavioral scenario rather than a single state tran-
sition, where a scenario is defined as a regular language on
state transitions. In a sense, observations become abstract,
as they represent fragments of the DES behavior rather than
single state transitions.

Generalized observability allows for the modeling of sev-
eral real-world scenarios that are all considered by the ob-
server. The observer can figure out the occurrence of (possi-
bly complex and overlapping) evolutions of the DES within
each single scenario as well as across the scenarios, the same
way as a human being can perceive several phenomena at the
same time. Abstract observability, besides resembling hu-
man perception, supports the representation of observations
when sensors are adopted. Let us assume that some state
transitions of a component can be detected by sensors if we
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consider the component in isolation. If we assemble sev-
eral components in a composite system, maybe we cannot
place all the above sensors, while we can place a sensor that
detects a chain of transitions involving several components.
Moreover, the individual state transitions that are meaning-
ful from a behavioral point of view are not necessarily the
units that we want to observe for diagnosis purposes.

This paper focuses on the diagnosis of a class of asyn-
chronous DESs, called active systems (ASs), already pre-
sented in the literature (Lamperti, Zanella, and Zhao 2018b),
when these are endowed with an abstract observability,
which is a new notion. The proposal is to process the given
AS model and the abstract observation scenarios offline, that
is, once and for all, so as to obtain compiled knowledge, in-
cluding the watchers and the diagnosis reference manual of
the AS, to be exploited online for the efficient generation
of the candidates. The knowledge compilation stage is in-
dependent of the specific temporal observation, whereas the
online stage, consisting in a call to a diagnosis engine, takes
as input the given temporal observation.

Eventually, the technique proposed in this paper to diag-
nose ASs endowed with abstract observability is extended to
cope with uncertain observations, which are characterized
by a partial temporal order of the observed events instead
of the usual total order. In fact, in a real world context, the
total order of the observations is possibly unknown for sev-
eral reasons, such as the distribution of the communication
channels that convey the observations from the AS to the ob-
server and the synchronization errors of the clocks relevant
to these channels. Uncertain observations are not new (Lam-
perti and Zanella 2002), however here they are considered in
the novel abstract perspective.

2 System Characterization
An AS is a network of components connected by links,
where each component is endowed with input/output pins.
A link connects an output pin of a component with an input
pin of another component. Each component is modeled as
a communicating automaton (Brand and Zafiropulo 1983),
where a transition is triggered by an event either occurring
in the external world or being ready at an input pin. The
occurrence of a transition consumes the triggering event and
possibly generates new events on some output pins, thereby
providing triggering events to other components. A transi-
tion can be triggered only if all the links, in which the events
are generated, are empty. This results in a reaction of the AS,
where a series of component transitions move the AS from
its initial state to a final state, where all events are consumed.

Example 1 (Active System). Outlined on the left of Fig. 1
is an AS, called Z , which includes a transducer z, a breaker
b, and a link from z to b. The communicating automata
modeling z and b are outlined above and below Z , respec-
tively, both of them including two states. The transducer
is designed to detect a low-voltage external event (possibly
indicating a short circuit), and to command the breaker to
open by emitting an op event (transition z1). However, the
transducer may misbehave by not commanding the breaker
to open (z3). When the short circuit is vanished, the trans-

Figure 1: Active system Z (left), where transitions z3 and b3 are
faulty, and relevant behavior space Bsp(Z) (right).

ducer commands the breaker to close again by emitting a cl
event (z2). When in state 0 (closed), the breaker is designed
to open when an op event is ready at its input pin, in other
words, when the event is within the link (transition b1). Con-
versely, when a cl event is ready, the breaker closes (b2).
When the breaker is required to close while being closed
(state 0), it consumes the event cl without changing its state
(b4). Still, like the transducer, the breaker may exhibit ab-
normal behavior by not opening when required (b3).

The behavior of an AS is constrained by its topology and
the models of its components. These constraints confine the
behavior of the AS within a deterministic finite-automaton
(DFA), called behavior space.
Definition 1 (Behavior Space). Let X be an AS. The be-
havior space of X is a DFA

Bsp(X ) = (Σ, X, τ, x0, Xf) (1)

where Σ is the alphabet, comprising the set of component
transitions, X is the set of states (S,E), where S is a tuple
of component states and E is a tuple of (possibly empty)
events that are ready at the input pins of components, x0 =
(S0, E0) is the initial state, where all events inE0 are empty,
Xf ⊆ X is the set of final states (Sf , Ef) such that all events
in Ef are empty, τ : X × Σ 7→ X is the transition function,
where τ(x, t) = x′ iff t is triggerable at state x and x′ is the
state reached by the consumption of the input event and the
generation of the output events relevant to t.
Definition 2 (Trajectory). A sequence T = [t1, . . . , tq] of
component transitions in the language of a behavior space
Bsp(X ) is a trajectory of X . A prefix of T is a semi-
trajectory of X . Let T be a set of component transitions
in X . The restriction of T on T is T[T] = [t | t ∈ T, t ∈ T].1

Example 2 (Behavior Space). Shown on the right of Fig. 1
is the behavior space Bsp(Z) of Z (cf. Example 1), with
each state being identified by a triple (z̄, b̄, ē), where z̄ is a
state of the transducer z, b̄ is a state of the breaker b, and
ē is an event ready in the link (ε denotes the empty event,
in other words, an empty link). States are renamed 0 · · · 7,

1Based on Definition 2, a trajectory T is a string in the regular
language of Bsp(X ), namely T ∈ Bsp(X ), which therefore ends
in a final (accepting) state.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

443



where 0 is the initial state, while the final states are 0, 2, and
3. A trajectory of Z is T = [z3, z2, z3, b4, z2, z3, b4], ending
in state 2. Note how Bsp(Z) involves abnormal transitions
also, namely z3 and b3.

Although irrelevant to our simple example, an AS is as-
sumed to be described as a network of communicating au-
tomata because the specification of the (whole) behavior
space is in general impractical for real systems owing to the
exponential explosion of the system states.

3 Diagnosis Setting
In order to perform the diagnosis task, the specification of an
AS needs to be extended with information indicating which
behavior is normal and which is abnormal. In our approach,
abnormality is associated with faulty transitions.2

Definition 3 (Abnormality). Let T be the domain of com-
ponent transitions of an AS X , and let F be a domain of
symbols called faults. The abnormality of X is a set of asso-
ciations between component transitions and faults, namely
Abn(X ) ⊆ T×F. If (t, f) ∈ Abn(X ), then t is faulty, else
t is normal.

Based on the description of the abnormality of an AS, a
diagnosis can be associated with each trajectory.
Definition 4 (Diagnosis). Let T = [t1, . . . , tq] be a trajec-
tory of an AS X . The diagnosis δ of T is the set of faults
associated with the faulty transitions in T , namely

δ(T ) = {f | t ∈ T, (t, f) ∈ Abn(X )}. (2)
Since a diagnosis is a set (rather than a multiset or a se-

quence), possible repetitions of the same fault are ignored.
Ignoring the repetition of the same fault (set-oriented ap-
proach to diagnosis) prevents a diagnosis from embedding
temporal information on faults (Bertoglio et al. 2020a).
Example 3 (Abnormality). For the AS Z introduced in Ex-
ample 1, we define Abn(Z) = {(z3, z), (b3,b)}. In general,
however, several faults may be relevant to the same compo-
nent, as several transitions may be faulty for the same com-
ponent. Let T = [z3, z2, z3, b4, z2, z3, b4] (cf. Example 2).
We have δ(T ) = {z}. Still, a diagnosis may involve several
faults, as for T ′ = [z1, b3, z2, z3, b4], where δ(T ′) = {b, z}.
In particular, a diagnosis may be empty, for instance, for
T ′′ = [z1, b1, z2, b2], we have δ(T ′′) = ∅.

To complete the information on the AS, for diagnosis pur-
poses we need to specify the mode in which the behavior of
the AS is observable. To this end, each observation is as-
sociated with a regular language that is defined by a regular
expression on a set of component transitions.
Definition 5 (Observability). Let T be the domain of com-
ponent transitions of an AS X , let L be a set of regular lan-
guages on subsets of T, and let O be a domain of symbols
called observations. The observability of X is a relation

Obs(X ) ⊆ 2T × L×O. (3)
where each observation in O may appear only once.
2The distinction between faults and faulty transitions is

grounded on the fact that, depending on which sort of informa-
tion the diagnosis is expected to incorporate, in Abn(X ) different
faulty transitions may be associated with the same fault.

Each element in Obs(X ) is a triple (T,L, o), where T is
a set of component transitions, L is a regular language on
T defined by a regular expression, and o is an observation.
Each triple represents a behavioral scenario that can be per-
ceived by the observer.
Example 4 (Observability). For the AS Z in Example 1,
we define Obs(Z) = {(T,Lz, z), (T,Lb, b), (T,La, a)},
where T = {z1, z2, z3, b1, b2, b3, b4}, Lz = (z1 | z2), Lb =
(b1 | b2 | b4), and La = (z2 b4 | b4 z2).3 As such, each nor-
mal transition is observable via the same observation (z for
the sensor and b for the breaker), while a is emitted when
the transitions z2 and b4 occur sequentially (in either order).
We say that a is an abstract observation, since it is emitted
in correspondence of a specific combination of transitions.

Given a triple (T,L, o) ∈ Obs(X ) and a trajectory T of
X , the observation o occurs when the projection of T on
T includes a subsequence that is a string in L. Since sev-
eral observations may occur at the same time, in theory, T
would manifest itself as a sequence of sets of observations.
However, we assume that observations in the same set are
perceived as sequences, where the temporal ordering of each
sequence is unpredictable.4 In other words, a trajectory T of
X is perceived by the observer as a temporal sequence of
observations, called a temporal observation of X .
Definition 6 (Observation Space). The space of a set O of
observations is the set of sequences of observations5

O∗ = {O | O = [ o | o ∈ O ]}. (4)

Let O = [O1, . . . , On] be a sequence of sets of observa-
tions. The space of O is the set of sequences of observations

O∗ =

{
O | O =

n⊔
i=1

[o | o ∈ O∗i ]

}
. (5)

where ‘t’ denotes the concatenation of sequences.
Example 5 (Observation Space). For O = [{a, b}, ∅,
{c, d}], O∗ = {[a, b, c, d], [b, a, c, d], [a, b, d, c], [b, a, d, c]}.
Definition 7 (Temporal Observation). Let T = [t1, . . . , tq]
be a trajectory in Bsp(X ). The signature of T is the se-
quence of sets of observations

Sgn(T ) = [Oi | i ∈ [1 .. q], Oi = { o | j ∈ [1 .. i],

T ′ = [tj , . . . , ti], (T,L, o) ∈ Obs(X ), T ′[T] ∈ L} ].
(6)

The space of Sgn(T ) is denoted Sgn∗(T ). A sequence
O ∈ Sgn∗(T ) is a temporal observation of X , where T is
said to conform with O.

3A regular expression is defined inductively over an alphabet
Σ as follows. The empty symbol ε and every a ∈ Σ is a regular
expression. If x and y are regular expressions, then the followings
are regular expressions: (x) (parentheses may be used), x | y (al-
ternative), xy (concatenation), x? (optionality), x∗ (repetition zero
or more times), and x+ (repetition one or more times).

4Formally, observations in the same set occurs simultaneously,
but, since in reality simultaneity is difficult to detect, we make the
practical assumption that they are perceived one at a time, without
any constraint on their reciprocal ordering.

5Intuitively, O∗ comprises all the ‘permutations’ of O.
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As such, each Oi in the signature Sgn(T ) is the set of
observations that are generated at the occurrence of the i-th
component transition in T .
Example 6 (Temporal Observation). Let T = [z3, z2, z3,
b4, z2, z3, b4] be a trajectory of Z (cf. Example 2). We have
the signature Sgn(T ) = [∅, {z}, ∅, {b}, {a, z}, {b}] and the
space Sgn∗(T ) = {[z, b, a, z, b], [z, b, z, a, b]}, where both
sequences in Sgn∗(T ) are temporal observations of Z .
Definition 8 (Candidate Set). Let O be a temporal obser-
vation of X . The candidate set of O is defined as

∆(O) = { δ(T ) | T ∈ Bsp(X ),O ∈ Sgn∗(T )} . (7)

Intuitively, if T is a trajectory in Bsp(X ) and O is a se-
quence in Sgn∗(T ), then O may have been generated by T
and, hence, T may be the actual trajectory of X . Hence,
based on O, δ(T ) is a possible diagnosis of X . A diagnosis
problem amounts to determining the (whole) candidate set
of a temporal observation of an AS being operated online.
Example 7 (Candidate Set). LetO = [z, b, z, a, b] be a tem-
poral observation of Z (cf. Example 6). Based on the be-
havior space Bsp(Z) in Fig. 1 and Obs(Z) in Example 4,
the only trajectory T ∈ Bsp(Z) such that O ∈ Sgn∗(T )
is T = [z3, z2, z3, b4, z2, z3, b4]. Based on Example 3,
δ(T ) = {z}; hence, ∆(O) = {{z}}: the candidate set is a
singleton. In general, several trajectories may fulfill eqn. (7)
and, thus, several candidates may be included in ∆(O).

4 Compiled Knowledge
In order to speed up the online diagnosis engine, it is con-
venient to compile specific knowledge offline based on the
properties of the AS, including its observability and abnor-
mality. In particular, the notion of observability of an AS
(Definition 5) requires the diagnosis engine to match tra-
jectories of X with regular languages specified by regular
expressions. Based on eqn. (7), a candidate in ∆(O) is
the diagnosis of a trajectory T such that O ∈ Sgn∗(T ).
Based on Definition 7, O ∈ Sgn∗(T ) means that we need
to understand when observations occur based on the se-
quence of component transitions in T . Specifically, for each
(T,L, o) ∈ Obs(X ), at any point of a prefix Ti of T , namely
Ti = [t1, . . . , ti], we need to check if the projection on T of
a suffix of Ti is a string in L. If so, the observation o should
be in a proper position in O (otherwise T does not conform
withO). The critical point is therefore to keep tracking pos-
sible strings in L based on sequences of component transi-
tions in T . Since L is regular, it can be recognized by a finite
automaton. However, a classical recognizer of the language
is not sufficient for this task, as strings of the same language
may overlap in T . To cope with possibly overlapping strings
in the languages associated with observations, the notion of
a watcher is introduced.
Definition 9 (Watcher). Let X be an AS, let T be the set
of component transitions in X , and let (T,L, o) ∈ Obs(X ).
Let Ro = (T, R, τr, r0, Rf) be a finite automaton recog-
nizing L. Let Rεo be the nondeterministic finite automaton
(NFA) obtained from Ro by inserting an ε-transition from
each non-initial state to the initial state r0. The watcherWo

of o is a DFA obtained by the determinization ofRεo.

Figure 2: From left to right: Ra,Rε
a, and watcherWa.

Example 8 (Watcher). With reference to Obs(Z) (cf. Ex-
ample 4), consider the language La = (z2 b4 | b4 z2), which
is associated with the abstract observation a. Shown in Fig. 2
are the recognizer Ra, the NFA Rεa, and the watcher Wa.6
Note how the ε-transitions in Rεa allow for a continuous
matching of (possibly overlapping) strings, which is in gen-
eral not possible using a simple recognizer. To clarify, as-
sume the following trajectory in Bsp(Z):

T = [ z3, z2, z3,

T ′

b4, z2b4, , b4
T ′′

, z1, b1 ]. (8)

T includes two overlapping subtrajectories in La, namely
T ′ = [ b4, z2 ] and T ′′ = [ z2, b4 ], where the last transition
z2 of T ′ is the first transition of T ′′. Hence, the observation
a is emitted twice in T , namely at the last transition of T ′
and T ′′, respectively. Assume further to trace the emission
of a based on the recognizer Ra. When the final state 4
is reached, a is emitted. At this point, since no transition
exits the final state 4, the recognizer starts again from the
initial state 0 in order to keep matching.7 It first changes
state to 2 in correspondence of b4, and with z1 (mismatch) it
returns to 0. The result is that, owing to the overlapping of
the subtrajectories T ′ and T ′′, the second emission of a goes
undetected. By contrast, consider matching T based on the
watcherWa. After the detection of a at the final state 4, the
next transition b4 moves to 3, the other final state, thereby
also detecting the emission of the second occurrence of a.

Given an AS X , an essential knowledge structure to be
generated offline is the teleological space of X , denoted
Tsp(X ). As the name suggests, a teleological space is con-
ceived for a specific purpose, namely diagnosis, thereby in-
volving information on observations and faults, based on the
observability Obs(X ) and the abnormality Abn(X ), respec-
tively. Roughly, Tsp(X ) is a DFA whose language equals
the language of the behavior space Bsp(X ). Each state x�
of Tsp(X ) incorporates, beyond a state of Bsp(X ), a diag-
nosis δ̄ and a tuple w of states of the watchers of the (ab-
stract) observations. Notably, each state wi ∈ w tracks the
recognition of the observation oi based on the watcherWoi .

6Based on the classical SUBSET CONSTRUCTION determiniza-
tion algorithm (Hopcroft, Motwani, and Ullman 2006), each state
of the DFA is identified by a subset of the states of the NFA.

7A recognizer simply checks whether a given string is within
a regular language: when the transition function is no longer ap-
plicable, it fails to match the rest of the string. What is relevant,
however, is not that the recognizer would restart from the initial
state, but that it cannot recognize overlapping strings.
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A transition entering a state (x, δ, w) is marked with a pair
(t, O), where t is a component transition, as in Bsp(X ), and
O is the (possibly empty) set of observations associated with
the final states in w. Notably, a trajectory in Tsp(X ) ending
in a state (x̄, δ̄, w̄) is a sequence of pairs (t, O), where the
projection on t equals a trajectory in T ∈ Bsp(X ) such that
δ(T ) = δ̄ (cf. Proposition 1).
Definition 10 (Teleological Space). Let X be an AS, where
Bsp(X ) = (Σ, X, τ, x0, Xf), let T be the domain of com-
ponent transitions in X , let Obs(X ) = {(T1,L1, o1), . . .,
(Tk,Lk, ok)}, let O be the domain of observations, let F be
the domain of faults, letWi = (Ti,Wi, τi, w0i,Wf i) be the
watcher of oi, i ∈ [1 .. k], and let W = (W1 × · · · ×Wk).
The teleological space of X is a DFA

Tsp(X ) = (Σ�, X�, τ�, x�0, X
�
f ) (9)

where Σ� ⊆ T× 2O is the alphabet, X� ⊆ X × 2F×W
is the set of states, x�0 = (x0, ∅, w0) is the initial state, with
w0 = (w01, . . . , w0k), X�f ⊆ X� is the set of final states,
with (x, δ, w) ∈ X�f iff x ∈ Xf , and τ� : X� × Σ� 7→ X�

is the transition function, such that τ�((x, δ, w), (t, O)) =
(x′, δ′, w′), w = (w1, . . . , wk), w′ = (w′1, . . . , w

′
k), iff

(x′, δ′, w′) is connected with a final state, τ(x, t) = x′, and:

δ′ =

{
δ ∪ {f} if (t, f) ∈ Abn(X )
δ otherwise (10)

∀i ∈ [1 .. k], the new state w′i of the watcherWi is

w′i =


w̄i if t ∈ Ti and w̄i = τi(wi, t)

w0i if t ∈ Ti and τi(wi, t) is undefined
wi if t /∈ Ti

(11)

O = {o′i | i ∈ [1 .. k], τi(wi, t) = w′i, w
′
i ∈Wf i} . (12)

Similarly to the behavior space, a string in the regular
language of Tsp(X ) is a trajectory in Tsp(X ).

Example 9 (Teleological Space). Shown in Fig. 3 is
Tsp(Z), which comprises 32 states, renamed 0 .. 31, where
0 is the initial state and the double circles denote the final
states. Each state z� is identified by a triple: a state in
Bsp(Z), a diagnosis δ, and a state wa of the watcher Wa

(cf. Fig. 2). Note that, according to Definition 10 and Ex-
ample 4, the third field of z� should be a tuple (wz, wb, wa),
where wz ∈ Wz and wb ∈ Wb. The reason for wz and
wb being missing is that both languages Lz and Lb include
strings that are composed of one transition only, for instance,
Lz = {[z1], [z2]}. Thus, the observation can be detected
directly based on the component transition only. In other
words, when the observation o is not abstract (that is, when o
is associated with single component transitions), the watcher
Wo becomes unnecessary, as it is forWz andWb. Each tran-
sition in Tsp(Z) is marked with a pair (t, O), where t is a
component transition and O is the (possibly empty) set of
observations emitted at the occurrence of t. For instance,
we have 〈0, (z1, {z}), 1〉, where {z} is represented as z in
Fig. 3, since, according to Obs(Z), the transition z1 of the
transducer generates the observation z. Likewise, we have

Figure 3: Teleological space Tsp(Z) (cf. Bsp(Z) in Fig. 1).

〈12, (z2, {a, z}), 16〉, where the set {a, z} is represented as
the string az in Fig. 3, since the transition z2 of the trans-
ducer generates the observation z and the state 4 is final in
Wa. To simplify the figure, O is missing when it is empty,
as in 〈0, (z3, ∅), 2〉. Also, according to eqn. (10), the set of
faults δ is extended when the transition t is faulty. For in-
stance, based on Abn(Z), in the transition 〈11, (z3, ∅), 15〉,
where 11 = (0, {b}, 3), we have δ = {b} being extended
by z, yielding δ′ = {b, z} in the state 15.

The projection of the language of the teleological space on
the component transitions equals the language of the behav-
ior space. Moreover, the diagnosis marking the final state of
a trajectory in the teleological space equals the diagnosis of
the corresponding trajectory in the behavior space. In other
words, the teleological space extends each trajectory in the
behavior space with the relevant diagnosis (Proposition 1).
Proposition 1. Let Tsp(X ) = (Σ�, X�, τ�, x�0, X

�
f ).

{ [t | (t, O) ∈ T �, T � ∈ Tsp(X )]} = {T | T ∈ Bsp(X )} . (13)

Also, if T � = [(t1, O1), . . . , (tq, Oq)] is a trajectory in
Tsp(X ), ending in (x, δ̄, w), then [O1, . . . , Oq] equals the
signature of T = [t1, . . . , tq] ∈ Bsp(X ), where δ(T ) = δ̄.

Proof (sketch). If T � = [(t1, O1), . . . , (tq, Oq)] is a
trajectory in Tsp(X ), then, based on the definition of the
transition function τ� in Definition 10, τ(x, t) = x′, in
other words, T ∈ Bsp(X ), where T = [t1, . . . , tq]. If
T = [t1, . . . , tq] ∈ Bsp(X ), then, based on the definition
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Figure 4: Diagnosis reference manualM of Z (cf. Table 1).

of τ�, τ(x, t) = x′ (without any constraints from the defini-
tion of δ′ and w′). Hence, T � = [(t1, O1), . . . , (tq, Oq)] ∈
Tsp(X ). This proves eqn. (13). Also, let T � =
[(t1, O1), . . . , (tq, Oq)] be a trajectory in Tsp(X ) ending
in (x, δ̄, w). Based on eqn. (10), δ′ is extended by col-
lecting the faults associated with the faulty transitions in
T = [t1, . . . , tq]. Hence, based on eqn. (2), δ̄ = δ(T ). �

Example 10 (Proposition 1). With reference to Bsp(Z)
displayed in Fig. 1, consider the trajectory T = [z3, z2,
z3, b4, z2, z3, b4] in Example 2. There is a trajec-
tory T � = [(z3, ∅), (z2, {z}), (z3, ∅), (b4, {b}), (z2, {a, z}),
(z3, ∅), (b4, {b})] in Tsp(Z), ending in the state 12 =
(2, {z}, 2), whose projection on component transitions
equals T . Besides, {z} = δ(T ) (cf. Example 3).

The teleological space Tsp(X ) is only an intermediate
representation of the actual knowledge structure aimed at
supporting the diagnosis engine being operated online. The
ultimate goal is to construct a DFA whose language is the
set of signatures (cf. Definition 7) of the trajectories of X ,
with empty sets being missing. This is a sort of diagnos-
tic manual, against which any given temporal observation
O can be easily matched online by the diagnosis engine in
order to determine the set of candidates. Specifically, each
state is marked with a set of diagnoses, in such a way that
the final states reached by matching O allow for the exact
computation of the candidate set ∆(O).
Definition 11 (Diagnosis Reference Manual). Let
Tsp(X ) = (Σ�, X�, τ�, x�0, X

�
f ) be a teleological space.

The nondeterministic reference manual of X is an NFAMε

obtained from Tsp(X ) by replacing the pair (t, O) marking
each transition in Tsp(X ) with a new symbol σ, namely

σ =

{
O if O 6= ∅
ε otherwise. (14)

The diagnosis reference manual of X is a DFAM obtained
by determinization ofMε. A string in the language ofM is

State µ States of Tsp(Z) within µ ∆(µ)

0 {0,2} {∅, {z}}
1 {6, 9} ∅
2 {1,4, 5, 8} {{b}}
3 {3,12} {∅, {z}}
4 {2,20} {{z}}
5 {7, 10} ∅
6 {8, 16} ∅
7 {5, 8,15, 23} {{b, z}}
8 {13} {{b, z}}
9 {11,15} {{b}, {b, z}}
10 {12} {{z}}
11 {12,25} {{z}}
12 {10, 19} ∅
13 {10, 17} ∅
14 {4, 10, 14, 19} {{b}}
15 {9, 27} ∅
16 {15,21} {{b, z}}
17 {13,18} {{b}, {b, z}}
18 {2,30} {{z}}
19 {10,15, 19, 24} {{b, z}}
20 {22, 29} ∅
21 {13,26} {{b, z}}
22 {15,32} {{b}, {b, z}}
23 {28, 29} ∅
24 {15,31} {{b, z}}

Table 1: Details of the states in the diagnosis reference manualM
outlined in Fig. 4, where bold numbers denote final states.

a trajectory inM. The diagnosis set of a state µ ofM is a
set of diagnoses

∆(µ) = {δ | x� ∈ (µ ∩X�f ), x� = (x, δ, w)} . (15)
Based on eqn. (15), ∆(µ) 6= ∅ iff µ includes a final state.

Example 11 (Diagnosis Reference Manual). With reference
to Tsp(Z) displayed in Fig. 3, the nondeterministic refer-
ence manual of Z , namelyMε, is obtained by substituting
the pairs (t, O) marking the transitions of Tsp(Z) in accor-
dance with eqn. (14), where transitions are, consequently,
possibly marked with the empty symbol ε (this is whyMε

is nondeterministic). The reference manual M of Z , ob-
tained by determinization ofMε, is outlined in Fig. 4, with
state details being listed in Table 1, where bold numbers de-
note final states. In fact, according to the SUBSET CON-
STRUCTION determinization algorithm, each state µ in M
is identified by a subset of the Tsp(Z) states in Mε. For
instance, the state 3 in M is identified by the set {3,12},
where both states 3 = (3, ∅, 0) and 12 = (2, {z}, 2) are
final in Tsp(Z). Hence, based on eqn. (15), we have
∆(3) = {∅, {z}}. Note that ∆(5) = ∅ since the state
5 = {7, 10} does not include any final state in Tsp(Z).

Notably, the language of the diagnosis reference manual
is the set of the signatures of the trajectories in the behavior
space, with the additional information of the relevant diag-
noses being stored in the final states (Proposition 2).
Proposition 2. Let Tsp(X ) be the teleological space of X
and let M be the diagnosis reference manual of X . Let
T � = [(t1, O1), . . . , (tq, Oq)] be a trajectory in Tsp(X ) and
let T = [t1, . . . , tq]. There is [O | (t, O) ∈ T �, O 6= ∅] ∈
M ending in a final state µ such that δ(T ) ∈ ∆(µ). Con-
versely, let Ō = [Ō1, . . . , Ōm] ∈ M ending in a final state
µ. There is a trajectory T � = [(t1, O1), . . ., (tq, Oq)] ∈
Tsp(X ) such that Ō = [O | (t, O) ∈ T �, O 6= ∅] and
δ(T ) ∈ ∆(µ), where T = [t1, . . . , tq].
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Proof (sketch). Assume T � = [(t1, O1), . . . , (tq, Oq)] is
a trajectory in Tsp(X ), with T = [t1, . . . , tq]. According
to the SUBSET CONSTRUCTION determinization algorithm
generating M based on Mε in Definition 11, the string
Ō = [O | (t, O) ∈ T �, O 6= ∅] is in the language of M,
ending in a final state µ, such that the final state (x, δ̄, w)
of T � is included in µ. Based on Proposition 1, δ(T ) = δ̄.
Hence, based on eqn. (15), δ(T ) ∈ ∆(µ). Now, assume
Ō = [Ō1, . . . , Ōm] is a trajectory in M ending in a final
state µ. Based on the determinization of Me in Defini-
tion 11, there is a trajectory T � = [(t1, O1), . . . , (tq, Oq)]
in Tsp(X ), ending in a final state (x, δ̄, w), such that
Ō = [O | (t, O) ∈ T �, O 6= ∅]. Based on Proposition 1,
δ(T ) = δ̄, where T = [t1, . . . , tq]. �

Example 12 (Proposition 2). With reference to Tsp(Z) in
Fig. 3 and the corresponding diagnosis reference manual
M outlined in Fig. 4 and detailed in Table 1, let T � =
[(z3, ∅), (z2, {z}), (b4, {a, b}), (z1, {z}), (b3, ∅)] be a trajec-
tory in Tsp(Z) ending in state 15 = (2, {b, z}, 0), where
T = [z3, z2, b4, z1, b3], and δ(T ) = {b, z}. As claimed in
Proposition 2, there is a trajectory [O | (t, O) ∈ T �, O 6= ∅]
inM, namely [{z}, {a, b}, {z}], ending in the state µ = 7,
where ∆(7) = {{b, z}}, such that δ(T ) ∈ ∆(7). Con-
versely, let Ō = [{z}, {b}] be a trajectory inM, ending in
the final state 3, where ∆(3) = {∅, {z}}. There is a trajec-
tory T � = [(z3, ∅), (z2, {z}), (z3, ∅), (b4, {b})] in Tsp(Z)
where Ō = [O | (t, O) ∈ T �, O 6= ∅], T = [z3, z2, z3, b4],
δ(T ) = {z}, and δ(T ) ∈ ∆(3).

5 Diagnosis Engine
The process of knowledge compilation presented in Sec-
tion 4 is performed offline; as such, it is independent of the
particular diagnosis problem associated with a temporal ob-
servation O. Solving a diagnosis problem, that is, determin-
ing the candidate set of O, is a task that is performed online
by a diagnosis engine, which is independent of the specific
AS. The diagnosis engine takes as input a temporal observa-
tion O of X , along with the diagnosis reference manualM
of X , and generates the candidate set ∆(O). In so doing,
the diagnosis engine does not perform any model-based rea-
soning since all it needs is incorporated inM, the ultimate
result of knowledge compilation. Roughly, the diagnosis en-
gine performs the simple task of matchingO againstM and,
once determined the accepting (final) states ofM, generates
the diagnosis set ∆(O) by collecting in one basket the diag-
noses marking these states. To this end, it generates online a
data structure called abduction ofO, which tracksO onM.
Definition 12 (Abduction). Let M = (Σ,M, τ, µ0,Mf)
be the diagnosis reference manual of X , and let O =
[o1, . . . , on] be a temporal observation of X . The abduction
of O is a DFA

Abd(O) = (Σ, A, τa, a0, Af) (16)

where A ⊆ M × [0 .. n] is the set of states, a0 = (µ0, 0) is
the initial state, Af = {a | a ∈ A, a = (µ, n), µ ∈ Mf} is
the set of final states, and τa : A × Σ 7→ A is the transition
function, with τa((µ,=), O) = (µ′,=′) iff τ(µ,O) = µ′,
=′ = = + |O|, =′ ≤ n, and O =

{
o=+1, . . . , o=+|O|

}
,

Figure 5: Generation of Abd(O) for Z , where O = [z, b, z, a, b].

where |O| denotes the cardinality of the set O. A string in
the language of Abd(O) is a trajectory in Abd(O).

Example 13 (Abduction). LetO = [z, b, z, a, b] be a tempo-
ral observation ofZ (cf. Example 7). Based on the diagnosis
reference manualM ofZ (cf. Fig. 4 and Table 1), the gener-
ation of the abduction Abd(O) is displayed in Fig. 5. In ac-
cordance with Definition 12, each state is composed of a pair
(µ,=), where µ is a state ofM and= is an integer number in
the range [0 .. 5], with 5 being the number of observations in
O. Note how the diagnosis engine may generate some spu-
rious states which are not connected with any final state, like
the state (1, 3). These states, along with relevant transitions,
are spurious. The initial state is (0, 0), where µ = 0 is the
initial state ofM and = = 0 indicates that no observations
have yet been matched. Since the first observation ofO is z,
based on the transition function ofM, the state reached by
matching z is 2, thereby leading to the creation of the abduc-
tion transition 〈(0, 0), {z}, (2, 1)〉. Since the next (second)
observation inO is b, the only transition inM that conforms
with b is 〈2, {b}, 3〉, which leads to the creation of the tran-
sition 〈(2, 1), {b}, (3, 2)〉 in the abduction. Since the next
(third) observation is z, two transitions in M are applica-
ble, namely 〈3, {z}, 1〉 and 〈3, {a, z}, 6〉, where the former
consumes one observation, whereas the latter consumes two
observations, namely a and z. Consequently, two transitions
are created in the abduction, namely 〈(3, 2), {z}, (1, 3)〉 and
〈(3, 2), {a, z}, (6, 4)〉, where in state (6, 4) the index= is in-
creased by two units (the cardinality of {a, z}). In the state
(1, 3), the next (fourth) observation is a. However, the only
transition exiting the state 1 in M is marked with {b}, a
mismatch. This is why (1, 3) is marked as spurious, along
with its entering transition. Instead, in state (6, 4), the next
(fifth) observation is b, which is matched by the transition
〈6, {b}, 10〉 in M, thereby allowing for the creation of the
transition 〈(6, 4), {b}, (10, 5)〉 in Abd(O). Note how (10, 5)
is final because 10 is final inM and 5 is the number of ob-
servations in O. Eventually, no transition can exit (10, 5)
in the abduction, as no further observation can be matched
in O. Hence, the construction of Abd(O) terminates, with
(10, 5) being the only final state.

The language of an abduction Abd(O) is the set of the
trajectories Ō in the diagnosis reference manual such thatO
is ‘compatible’ with Ō, namely O ∈ Ō∗ (Proposition 3).
Proposition 3. LetM be the diagnosis reference manual of
X , letO = [o1, . . . , on] be a temporal observation ofX , and
let Ō be a trajectory in M, ending in a final state µ, such
that O ∈ Ō∗.8 We have that Ō is a trajectory in Abd(O)
ending in a final state (µ, n). Also, let Ō be a trajectory in
Abd(O) ending in a final state (µ, n). We have that Ō is a
trajectory inM ending in state µ, where O ∈ Ō∗.

8For the definition of Ō∗, see eqn. (5) in Definition 6.
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Proof (sketch). Assume that Ō is a trajectory in M,
ending in a final state µ, where O ∈ Ō∗. By induction
on Ō, starting from the initial state (µ0, 0) of Abd(O) and
based on Definition 6 and τa in Definition 12, the prop-
erty O ∈ Ō assures the fulfillment of the key condition
O = {O=+1, . . . ,O=+|O|} at each inductive step relevant
to the transition 〈(µ,=), O, (µ′,=′)〉 in τa. Hence, Ō is a
trajectory in Abd(O). Assume now that Ō is a trajectory
in Abd(O), ending in a final state (µ, n). Based on Defini-
tion 12, by induction on Ō and starting from the initial state
(µ0, 0), at each induction step, the condition O = {O=+1,
. . . ,O=+|O|}, for each transition 〈(µ,=), O, (µ′,=′)〉 in τa,
assures that O ∈ Ō∗. Besides, the condition τ(µ,O) = O′

assures that Ō is a trajectory inM also. �

Example 14 (Proposition 3). Consider the diagnosis refer-
ence manualM of Z (cf. Fig. 4 and Table 1) and Abd(O)
in Fig. 5, where O = [z, b, z, a, b] (cf. Example 13). Let
O = [{z}, {b}, {a, z}, {b}] be a trajectory inM ending in
the final state 10, where O ∈ Ō∗ (cf. Definition 6). As
claimed in Proposition 3, Ō is a trajectory in Abd(O) end-
ing in a final state (10, 5). The converse is also true.

A candidate set ∆(O) can be generated by collecting the
diagnosis sets of the states of the diagnosis reference manual
incorporated in the final states of Abd(O) (Theorem 1).
Theorem 1. LetM be the diagnosis reference manual of X
and let O = [o1, . . . , on] be a temporal observation of X .
The candidate set of O can be computed based on the final
states Af of the abduction Abd(O), specifically

∆(O) =
⋃

(µ,n)∈Af

∆(µ). (17)

Proof (sketch). Let ∆a denote
⋃

(µ,n)∈Af
∆(µ) in

eqn. (17). If δ̄ ∈ ∆(O), then, based on eqn. (7), there is
a trajectory T ∈ Bsp(X ), T = [t1, . . . , tq], such that O ∈
Sgn∗(T ) and δ̄ = δ(T ). Based on Proposition 1, there is
a trajectory T � = [(t1, O1), . . . , (tq, Oq)] in Tsp(X ), end-
ing in a final state (x, δ̄, w), where Sgn(T ) = [O1, . . . , Oq]
and O ∈ Sgn∗(T ). Based on Proposition 2, there is a tra-
jectory Ō = [O | (t, O) ∈ T �, O 6= ∅] in the diagnosis
reference manual M of X , ending in a final state µ, such
that (x, δ̄, w) ∈ µ and O ∈ Sgn∗(T ). Based on Proposi-
tion 3, there is a trajectory Ō in Abd(O), ending in a final
state (µ, n). Hence, based on eqn. (15), δ̄ ∈ ∆a.

If δ̄ ∈ ∆a, then, based on eqn. (17), there is a trajec-
tory Ō in Abd(O), ending in a final state (µ, n), where
O ∈ Ō∗ and δ̄ ∈ ∆(µ). Based on Proposition 3, there
is a trajectory Ō in M, ending in µ, where O ∈ Ō∗
and δ̄ ∈ ∆(µ). Based on Proposition 2, there is a tra-
jectory T � = [(t1, o1), . . . , (tq, oq)] in Tsp(X ), where
Ō = [O | (t, O) ∈ T �, O 6= ∅], [O1, . . . , Oq] = Sgn(T ),
T = [t1, . . . , tq], and δ(T ) = δ̄. Based on Proposition 1,
T ∈ Bsp(X ),O ∈ Sgn∗(T ), and δ(T ) = δ̄. Hence, accord-
ing to eqn. (7), δ̄ ∈ ∆(O). �

Example 15 (Theorem 1). Let O = [z, b, z, a, b] be a tem-
poral observation ofZ , where Abd(O) is displayed in Fig. 5.
Considering eqn. (17), the only final state in Abd(O) is

(10, 5), where 10 is a final state in M. Since ∆(10) =
{{z}} (cf. Table 1), according to Theorem 1, the candidate
set is ∆(O) = {{z}}, which is in fact the same singleton de-
termined in Example 7 based on Definition 8. Instead, with
O = [z, b], it is easy to find out that Abd(O) includes the
only final state (3, 2) Hence, ∆(O) = ∆(3) = {∅, {z}}: ei-
ther no faults occur or the transducer is faulty. Finally, with
O = [z, z, b, a, z, b], the final states of Abd(O) are (8, 6) and
(17, 6). Hence, ∆(O) = ∆(8) ∪∆(17) = {{b}, {b, z}}.

6 Coping with Temporal Uncertainty
In Section 3 we have assumed that the signature of a tra-
jectory T = [t1, . . . , tq], namely Sgn(T ) = [O1, . . . , Oq],
manifests itself to the external observer as a temporal obser-
vation O = [o1, . . . , on], where n = Σqi=1|Oi|, namely n is
the sum of the cardinalities of the sets Oi. Specifically, each
Oi ∈ Sgn(T ), i ∈ [1 .. q], is mapped to a sequence Ōi, so
that O is generated by the concatenation

⊔q
i=1 Ōi of such

sequences. Hence, O is one of (in general) several temporal
observations derivable from Sgn(T ), namelyO ∈ Sgn∗(T ).
In diagnosis of ASs with simple (non abstract) observations,
a temporal observation O is the projection of a trajectory
T on the observations associated with the observable tran-
sitions. Hence, for each T there is just one temporal obser-
vation O. However, owing to the distribution of the system
and/or noise in the communication channels,Omay become
uncertain (Lamperti and Zanella 2002). A particular form of
uncertainty is temporal uncertainty, where the total temporal
ordering of observations in O is relaxed to partial ordering.
The result is a graph where nodes represent observations and
arcs represent partial temporal precedence between nodes.
In this section, the diagnosis technique based on abstract ob-
servability is extended to cope with temporal uncertainty.

Definition 13 (Observation Graph). Let O = [o1, . . . , on]
be a temporal observation ofX . The graph ofO is a directed
acyclic graph (DAG) G = (Ω,A), where Ω is the set of
nodes and A the set of arcs, defined as follows. For each
oi ∈ O, i ∈ [1 .. n], there is a node ωi ∈ Ω that is marked
with oi. For each oi ∈ O, i ∈ [1 .. (n− 1)], there is an arc
(ωi, ωi+1) in A. If there is a path in G from a node ω to a
node ω′, then ω precedes ω′, denoted ω ≺ ω′.9

Example 16 (Observation Graph). Let O = [z, b, z, a, b]
be a temporal observation of Z . The graph (Ω,N ) of O is
shown on the left of Fig. 7, where Ω = {1, . . . , 5}.
Definition 14 (Uncertain Observation). Let G = (Ω,A)
be the graph of a temporal observation O = [o1, . . . , on]
of X . Let G be transformed by applying a list of zero or
more temporal relaxations, each of them being defined by
three steps: (1) an arc (ω, ω′) is removed; (2) for each arc
(ω′, ω2), if ω ⊀ ω2, then an arc (ω, ω2) is inserted; (3) for
each arc (ω1, ω), if ω1 ⊀ ω′, then an arc (ω1, ω

′) is in-
serted. The resulting graph U is an uncertain observation
of X derived from O. Let Q = [ω1, . . . , ωn] be a sequence

9Since the arcs in G express total temporal ordering, ω ≺ ω′

boils down to having ω before ω′ in the linear graph. The defini-
tion of temporal precedence becomes significant when the graph
involves partial temporal ordering (cf. Definition 14).
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Figure 6: Temporal relaxation (cf. Definition 14).

including all the states in Ω where, for each i, j ∈ [1 .. n],
if ωi ≺ ωj in U , then i < j, called a topological sort of Ω
based on A. A sequence O = [o′1, . . . , o

′
n], where each o′i

is the observation marking ωi in Q, i ∈ [1 .. n], is a tempo-
ral observation embedded in U . The (finite) set of temporal
observations embedded in U is denoted U∗.

Actions (1) and (2) in Definition 14 are meant to preserve
the other temporal precedences after the removal of the arc
(ω, ω′), so that only one precedence at a time is removed.
To clarify, consider the observation graph displayed on the
left of Fig. 6. The removal of the arc (ω, ω′) leads to the new
graph shown on the right. Based on step (2) in Definition 14,
for the arc (ω′, ω2), since ω ⊀ ω2, a new arc (ω, ω2) is
inserted; by contrast, for (ω′, ω′2), since ω ≺ ω′2, no new arc
is inserted. Likewise, based on step (3), for the arc (ω1, ω),
since ω1 ⊀ ω′, a new arc (ω1, ω

′) is inserted; by contrast,
for (ω′1, ω), since ω′1 ≺ ω′, no new arc is inserted.
Example 17 (Uncertain Observation). Consider the obser-
vation graph on the left of Fig. 7 (cf. Example 16). Five tem-
poral relaxations are applied, which remove in cascade the
arcs (3, 4), (3, 5), (2, 4), (2, 5), and (1, 4), thereby leading
to the uncertain observation U shown on the right of Fig. 7.

Among the temporal observations embedded in an uncer-
tain observation U derived from a temporal observationO is
O itself. Intuitively, O is still in U , but in the company of
other temporal observations (Proposition 4).
Proposition 4. If U is an uncertain observation derived
from a temporal observation O, then O ∈ U∗.

Proof (sketch). By induction on the sequence of tempo-
ral relaxations performed on G. (Basis) O ∈ G∗, where G
is the graph of O. (Induction) Let U = (Ω,A) be the DAG
obtained by applying zero or more temporal relaxations on
G, whereO ∈ U∗ is obtained from a topological sort Q of Ω
based onA. Let U ′ = (Ω,A′) be obtained by one relaxation
on U . Since a temporal relaxation only removes a tempo-
ral precedence, without adding new precedences, Q is still a
topological sort of Ω based on A′. Hence, O ∈ U ′∗. �

The notion of candidate set defined in Definition 8 can be
extended to an uncertain observation.
Definition 15 (Candidate Set under Uncertainty). Let U
be an uncertain observation of X derived from a temporal
observation O. The candidate set of U is

∆(U) = {δ(T ) | T ∈ Bsp(X ),Sgn∗(T ) ∩ U∗ 6= ∅} . (18)

Compared with Definition 8, eqn. (18) substitutes the con-
dition Sgn∗(T ) ∩ U∗ 6= ∅ for O ∈ Sgn∗(T ) in eqn. (7), as

Figure 7: From a temporal observation O = [z, b, z, a, b] to an
uncertain observation U .

a consequence of the temporal relaxations moving O to U .
Still, based on Proposition 4, we have O ∈ U∗. Hence, if
δ(T ) ∈ ∆(O) in eqn. (7), then δ(T ) ∈ ∆(U) in eqn. (18).
The problem is now to compute ∆(U), which translates to
the problem of extending the notion of abduction of a tem-
poral observation O introduced in Definition 12, namely
Abd(O), to an uncertain observation, namely Abd(U). To
this end, we need to envisage a technique that allows for the
indexing of U . In fact, the index of O = [o1, . . . , on] is a
natural number = ∈ [0 .. n], the second field of an abduction
state (µ,=). Consequently, in order to perform the indexing
of U , we also need to change the nature of the index =.

Definition 16 (Indexing). Let U = (Ω,A) be an uncertain
observation, where O is the set of observations marking the
nodes in Ω. LetN = (O, S, s0, τ, sf) be an NFA where S ⊆
2Ω is the set of states, s0 = ∅ is the initial state, sf = Ω is
the (unique) final state, and τ : S×O 7→ 2S is the transition
function, where s′ ∈ τ(s, o′) iff s′ = s ∪ {ω′}, ω′ is a node
marked with o′, and ∀(ω, ω′) ∈ A, ω ∈ s. The indexing of
U is a DFA Idx (U) obtained by determinization of N .

Example 18 (Indexing). Take the uncertain observation U
in Fig. 7. Shown on the left of Fig. 8 is the NFAN involved
in Definition 16, where the states are renamed 0 .. 10, with
10 being the final state. Next to it is Idx (U), obtained by
determinization ofN , where the states are renamed=0 ..=9,
with =9 incidentally being the unique final state.

The temporal observations embedded in an uncertain ob-
servation U equals the language of Idx (U) (Proposition 5).

Proposition 5. The language of Idx (U) equals U∗.
Proof (sketch). Since Idx (U) is generated by deter-

minization of N , the proof boils down to showing that the
language of N equals U∗. This can be proven by induc-
tion on the transition function of N starting from the initial
state s0. In fact, since each state of N is identified by a set
of nodes of U , the creation of a new transition 〈s, o′, s′〉 is
such that s′ is an extension of s by a node ω′ marked by o′
provided that, for each arc (ω, ω′) in U , ω belongs to s. In
other words, this condition allows for the generation of any
temporal observation in U (soundness). Based on similar
considerations, completeness is also true. �

The states of Idx (U) are what we need for tracking U in
the abductive reasoning aimed at computing ∆(U).

Definition 17 (Abduction under Uncertainty). LetM =
(Σ,M, τ, µ0,Mf) be the diagnosis reference manual of
X , and let U be an uncertain observation of X , where

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

450



Figure 8: NFAN derived from U (left) and Idx (U) (right).

Idx (U) = (O, I, τi,=0, If). The abduction of U is a DFA
Abd(U) = (Σ, A, τa, a0, Af), where A ⊆ M × I is the
set of states, a0 = (µ0,=0) is the initial state, Af =
{a | a ∈ A, a = (µ,=f), µ ∈ Mf ,=f ∈ If} is the set of
final states, and τa : A × Σ 7→ A is the transition func-
tion, with τa((µ,=), O) = (µ′,=′), O = {o1, . . . , ok}, iff
τ(µ,O) = µ′ and there is a sequence [o′1, . . . , o

′
k], where

{o′1, . . . , o′k} = O, such that τi(=, o′1) = =1, τi(=1, o
′
2) =

=2, . . ., and τi(=k−1, o
′
k) = =′.

Example 19 (Abduction under Uncertainty). Consider the
reference manualM of Z outlined in Fig. 4 and the uncer-
tain observation U displayed on the right of Fig. 7. Based
on the indexing Idx (U) in Fig. 8, shown in Fig. 9 is the gen-
eration of the abduction Abd(U), where the dashed (gray)
part is spurious. Compared with the abduction Abd(O) in
Fig. 5, whereO = [z, b, z, a, b], which is consistent with the
trajectory [{z}, {b}, {a, z}, {b}] inM, it is no surprise that
Abd(U) includes an extra trajectory [{z}, {a, b}, {z}, {b}],
which is consistent with O′ = [z, b, a, z, b], O′ ∈ Idx (U),
O′ 6= O, leading to the final state (11,=9). This is due to
the temporal relaxations embedded in U , which preserve O
while adding new embedded temporal observations.

Theorem 1, which allows for the generation of the candi-
date set Cand(O) based on the abduction Abd(O), can be
naturally extended to uncertain observations (Theorem 2).

Theorem 2. LetM be the diagnosis reference manual of X
and let U be an uncertain observation of X . The candidate
set of U can be computed based on the final states Af of the
abduction Abd(U), namely

∆(U) =
⋃

(µ,=)∈Af

∆(µ). (19)

Proof (sketch). The proof is a variant of the proof of
Theorem 1. Let ∆a =

⋃
(µ,=)∈Af

∆(µ). Roughly, if δ̄ ∈
∆(U), then there is T ∈ Bsp(X ), where Sgn∗(T )∩U∗ 6= ∅.
Let O ∈ Sgn∗(T ) ∩ U∗ and let (µ,=f ) be the final state in
Abd(U) reached by matching O. We have δ̄ ∈ ∆(µ). If
δ̄ ∈ ∆a, then there is a state (µ,=f ) in Abd(U), reached by
matching a temporal observation O ∈ U∗, such that there is
T ∈ Bsp(X ) where O ∈ Sgn∗(T ). Hence, δ̄ ∈ ∆(U).

Figure 9: Abduction Abd(U) forZ , based on the reference manual
outlined in Fig. 4 and the indexing Idx (U) shown in Fig. 8 (right).

Example 20 (Theorem 2). Considering Abd(U) in Fig. 9,
with final states (10,=9) and (11,=9), we have ∆(11) =
∆(10) = {{z}}. Hence, ∆(U) = {{z}}. Compared
with Abd(O) in Fig. 5, incidentally, the extra trajectory
[{z}, {a, b}, {z}, {b}] in Abd(U) yields no extra candidates.

7 Conclusion

Although being key to diagnosing DESs, observability has
received little attention in the literature. This is why a no-
tion of abstract observability has been proposed in the cur-
rent paper, along with a diagnosis technique for a class
of DESs to which this notion can be applied. Several
application domains can be envisaged for the task of di-
agnosis with abstract observability, including networks of
smart sensors and Internet of Things. Notably, online di-
agnosis with abstract observations benefit from compiled
knowledge. To this end, we have adopted the most com-
plete knowledge compilation approach, as total knowledge
compilation brings to an efficient online matching of any
given temporal observation against the diagnosis reference
manual. However, total knowledge compilation requires
heavy (possibly impractical) offline processing, as scalabil-
ity is invariably an issue. This is why alternative online
techniques that exploit lighter knowledge compilation are
to be investigated in the future, including a minimal one,
which is meant to generate the watchers only, and a partial
one, which produces upfront a limited ‘core reference man-
ual’, to be extended later, if needed, taking inspiration from
Bertoglio et al. (2019; 2020b). Further research paths in-
clude defining diagnosability of DESs (Sampath et al. 1995;
Jiang et al. 2001; Su, Zanella, and Grastien 2016) with ab-
stract observations and with abstract uncertain observations,
integrating abstract observability with abstract abnormality
(Lamperti and Zanella 2011; Lamperti and Zhao 2014), and
adapting abstract observability to complex ASs (Lamperti
and Quarenghi 2016; Lamperti, Zanella, and Zhao 2018a)
and deep DESs (Lamperti, Zanella, and Zhao 2020).
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