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3Institució Catalana de Recerca i Estudis Avançats (ICREA)
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Abstract

Recently Bonet and Geffner have shown that first-order rep-
resentations for planning domains can be learned from the
structure of the state space without any prior knowledge
about the action schemas or domain predicates. For this, the
learning problem is formulated as the search for a simplest
first-order domain description D that along with information
about instances Ii (number of objects and initial state) deter-
mine state space graphs G(Pi) that match the observed state
graphs Gi where Pi = 〈D, Ii〉. The search is cast and solved
approximately by means of a SAT solver that is called over
a large family of propositional theories that differ just in the
parameters encoding the possible number of action schemas
and domain predicates, their arities, and the number of ob-
jects. In this work, we push the limits of these learners by
moving to an answer set programming (ASP) encoding using
the CLINGO system. The new encodings are more transpar-
ent and concise, extending the range of possible models while
facilitating their exploration. We show that the domains intro-
duced by Bonet and Geffner can be solved more efficiently in
the new approach, often optimally, and furthermore, that the
approach can be easily extended to handle partial informa-
tion about the state graphs as well as noise that prevents some
states from being distinguished.

1 Introduction
One of the main research challenges in AI is how to bring
together learning and reasoning, and in particular, learn-
ing approaches that can deal with non-symbolic inputs and
reasoning approaches that require first-order symbolic in-
puts (Lake et al. 2017; Marcus 2018; Pearl 2018; Darwiche
2018). On one hand, pure data-based approaches like deep
learning produce black boxes that are hard to understand and
which do not generalize well; on the other, model-based ap-
proaches, in particular those that require first-order represen-
tations, require models which are normally crafted by hand.

A concrete challenge for making the best of both data-
based learners and model-based reasoners is to learn from
data the type of representations that are required by solvers
(Geffner 2018). In this work we are particularly interested
in learning the first-order symbolic representations that are
used in classical planning in languages such as PDDL (Mc-
Dermott 2000; Haslum et al. 2019). These languages have
evolved throughout years of research and exhibit a number
of benefits concerning both generalization and reusability.

Planning problems in PDDL-like languages are expressed
in two parts: a domain D that expresses the action schemas
and their preconditions and effects in terms of a fixed set of
domain predicates, and instance information I that details
the objects (names) and the ground atoms that are true in
the initial situation and the goal. The domain D and the in-
stance information I , together, define a complete planning
instance P = 〈D, I〉. There is, however, an infinite collec-
tion of planning instances that can be defined over the same
domain, and the action schemas and predicates provide a
language for capturing what is common in all of them. Thus,
if one manages to learn the domain predicates and schemas
from some instances, one learns a representation that applies
to all other domain instances as well.

Two approaches have been recently proposed for learn-
ing first-order planning representations from non-symbolic
data. In one case, the input data corresponds to one or more
state graphs Gi assumed to originate from hidden planning
instances Pi = 〈D, Ii〉 that need to be uncovered. In these
input graphs, the nodes correspond to different states, and
the edges correspond to the possible state transitions. The
states are black boxes and nothing is assumed to be known
about their structure except that states associated with differ-
ent nodes must be different (Bonet and Geffner 2020). In the
second case, the input involves state trajectories associated
with an instance with each state represented by an image.
Propositional and first-order action representations are then
obtained through the use of a class of (variational) autoen-
coders (Kingma and Welling 2014), where the input images
must be recovered in the output of a deep neural network by
going through a categorical representation (Asai 2019). The
two approaches appeal to different principles for uncover-
ing the representations: in the first case, the learned rep-
resentations must recover the input graphs; in the second,
the images associated with the states. The approach based
on graph recovery yields crisp symbolic representations that
match the intended models well; the second approach based
on image recovery yields symbolic representations that are
less crisp but which are grounded on the images, and make
less assumptions about the inputs than the graph recovery
approach that requires the set of trajectories (graphs) to be
complete and noise-free.

In this work, we explore variations and extensions of the
approach proposed by Bonet and Geffner that make it more
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scalable and more robust. In their work, the search for the
simplest PDDL models Pi = 〈D, Ii〉 that account for the
input graphsGi is formulated and solved, approximately, by
means of a SAT solver that is called over a large family of
propositional theories differing in the parameters encoding
the possible number of action schemas and domain predi-
cates, their arities, and the number of objects. We move from
a low-level SAT encoding to a high-level answer set pro-
gramming (ASP) encoding (Brewka, Eiter, and Truszczyński
2011; Lifschitz 2019) using the CLINGO system (Gebser et
al. 2012; Gebser et al. 2019). The new encoding is more
transparent and more concise, and extends the range of pos-
sible models while facilitating their exploration. We show
that the domains introduced by Bonet and Geffner can be
solved more efficiently in the new approach, in many cases
optimally, and furthermore that simple extensions suffice
to overcome some of the limitations, like the assumption
that the input graphs are complete and noise-free. Indeed,
the new encodings can handle naturally partial information
about the state graphs, as well as noise that prevents some
states from being distinguished from other states.

The paper is organized as follows. We first review related
work and the learning formulation advanced by Bonet and
Geffner. Then we solve this formulation via ASP, consider
a number of extensions and optimizations, and present the
experimental results and the extensions for dealing with in-
complete and noisy samples of the input graphs.

2 Related Work
The paper builds on prior work by Bonet and Geffner (2020)
and is related to the work by Asai (2019), both focused on
the problem of learning first-order symbolic representations
of planning domains from non-symbolic data. The language
of these representations is a subset of PDDL which is suit-
able for transferring knowledge learned from some plan-
ning instances to others. Another form of knowledge that
can be transferred among instances of the same domain is
given by general policies or plans (Srivastava, Immerman,
and Zilberstein 2008; Bonet, Palacios, and Geffner 2009;
Hu and De Giacomo 2011; Belle and Levesque 2016). A
general policy provides a full-detailed strategy for solv-
ing a collection of problems. Approaches for learning
such general plans from some instances have been devel-
oped as well (Khardon 1999; Martı́n and Geffner 2004;
Fern, Yoon, and Givan 2003; Bonet, Francès, and Geffner
2019; Francès, Bonet, and Geffner 2021), some of them
relying on deep learning techniques (Toyer et al. 2018;
Bueno et al. 2019; Issakkimuthu, Fern, and Tadepalli 2018;
Bajpai, Garg, and Mausam 2018). Since these approaches
require a first-order representation of the planning domains,
learning these representations provides a necessary step for
learning the general policies.

Deep reinforcement learning (DRL) methods (Mnih et
al. 2015) have been used to learn general policies over
high-dimensional perceptual spaces without using or pro-
ducing symbolic knowledge (Groshev et al. 2018; Chevalier-
Boisvert et al. 2019; François-Lavet et al. 2019). Yet by
not constructing first-order representations involving objects

and relations, their ability to generalize appears to be lim-
ited. Recent work in deep symbolic relational reinforce-
ment learning (Garnelo and Shanahan 2019; Shanahan et al.
2020) attempts to account for objects and relations through
the use of suitable neural architectures, but the gap be-
tween the low-level techniques used and the high-level rep-
resentations required is large. More recently, model-based
DRL approaches have been shown to learn informative la-
tent representations and have achieved considerable suc-
cess in specific settings and video-games, but their abili-
ties for generalization in the presence of new objects has not
been explored (Hafner et al. 2019; Schrittwieser et al. 2020;
Hafner et al. 2020).

Finally, there is a large body of work on learning
first-order planning representations given partial knowledge
about instances and domains (Diuk, Cohen, and Littman
2008; Yang, Wu, and Jiang 2007; Arora et al. 2018; Aineto et
al. 2019; Cresswell, McCluskey, and West 2013); e.g., learn-
ing the domain’s action schemas given the predicates, sam-
pled state trajectories, and the structure of the states. These
works however do not address the learning of the predicates.

3 Formulation of the Learning Problem
We follow the mathematical formulation proposed by Bonet
and Geffner, and introduce then extensions and variations:

• Given a labeled graph G= 〈V,E, L〉, where the nodes
n correspond to the different (black box) states, and the
edges (n, n′) in E with label l ∈ L, correspond to state
transitions produced by an action with label l,

• find a “simplest” planning instance P = 〈D, I〉 such that
the state graph G(P ) defined by P and G are isomorphic.

Multiple input graphs G1, . . . , Gk are handled in a sim-
ilar way by finding the simplest common domain D and
instances Pi= 〈D, Ii〉 whose state graphs G(Pi) match the
given graphs Gi. The formulation assumes that the input
graphs Gi are complete in the sense that they do not miss
any edge, that they are noise-free in the sense that no edges
in them are wrong, and that different nodes stand for differ-
ent states (different sets of true literals). The input graphsGi
are actually labeled graphs with action labels used to add in-
formation about the actions in the input. These action labels
do not convey information about the structure of the action
schemas, nor about their arities or the predicates involved in
their preconditions and effects. Figure 1, from Bonet and
Geffner, shows the input graphs considered in their paper
corresponding to instances of the Towers of Hanoi, Gripper,
Blocksworld, and Grid. The graphs displayed are the sole
inputs to their representation learning scheme and ours.

3.1 Formalization: Learning and Verification
A (classical) planning instance is a pair P = 〈D, I〉whereD
is a first-order planning domain and I represents the instance
information. The planning domainD contains a set of predi-
cate symbols and a set of action schemas with preconditions
and effects given by atoms p(x1, . . . , xk) or their negations,
where p is a domain predicate and each xi is a variable rep-
resenting one of the arguments of the action schema. The
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(a) Towers of Hanoi (1 label) (b) Gripper (3 labels) (c) Blocksworld (3 labels) (d) 4×3 Grid (4 labels)

Figure 1: Input data for learning representations in 4 planning domains from Bonet and Geffner (2020). Graphs contain the edge labels.

instance information is a tuple I = 〈O, Init,Goal〉 whereO
is a (finite) set of object names ci, and Init andGoal are sets
of ground atoms p(c1, . . . , ck) or their negations. The actual
name of the constants in O is irrelevant and can be replaced
by numbers in the interval [1, N ] whereN = |O|. Similarly,
goals are included in I to keep the notation consistent with
planning practice, but they play no role in the formulation.

A planning problem P = 〈D, I〉 defines a labeled graph
G(P )= 〈V,E,L〉 where the nodes n in V correspond to the
states s(n) over P , and there is an edge (n, n′) in E with
label a, (n, a, n′), if the state transitions (s(n), s(n′)) is en-
abled by a ground instance of the schema a in P . The states
s(n) are maximally consistent sets of ground literals over P
that comply with: Init corresponds to state s(n0) for some
node n0, states s(n) and s(n′) are different if n 6= n′, and
(s(n), s(n′)) is enabled by a ground action iff the precon-
ditions of the action are true in s(n), the effects are true in
s(n′), and literals whose complements are not made true by
the action have the same value in s(n) and s(n′).
Definition 1 (Bonet and Geffner, 2020). The learning prob-
lem is to find the simplest instances Pi= 〈D, Ii〉 that ac-
count for a set of input labeled graphs Gi, i = 1, . . . , k.

Here an instance P accounts for a labeled graph G when
there is a 1-1 and onto function h between the reachable
nodes inG(P ) and those inG, and a 1-1 and onto function g
between the action labels in G(P ) and those in G, such that
(n, a, n′) is a labeled edge in G(P ) iff (h(n), g(a), h(n′))
is a labeled edge in G. In words, P accounts for a graph G
when the graph G(P ) and G match in this way.

This is a learning problem and not a synthesis problem;
namely, the representations Pi = 〈D, Ii〉 are not deducible
from the input graphs; they are inferred under suitable regu-
larity (simplicity) assumptions, and the learned domains D
are expected to generalize to other instances.

Given a suitable definition of “simplest”, the learning
problem becomes a combinatorial optimization problem, as
the space of possible domain representations D is made fi-
nite once a bound on the number of action schemas, predi-
cates, arguments (arities), and objects is defined. Testing the
generalization of the learned domain in other instances is
another combinatorial problem:
Definition 2. The verification problem is to test whether
there are instances P ′i = 〈D, I ′i〉 over learned domainD that
account for a set of testing labeled graphsG′i, i = 1, . . . , k′.

The verification problem is a subproblem of the learning
problem where the domain D is not learned but fixed, and
just the instance information needs to be inferred.

4 Basic ASP Encoding
Bonet and Geffner (2020) address the learning and verifi-
cation problems above as SAT problems using a vector of
hyperparameters α to represents the exact number of action
schemas and the arity of each one of them, the number of
predicate symbols and the arity of each one of them, and so
on. Since the true value of these parameters is not known,
they generate a propositional theory Tα(G) for each possible
vector of hyperparameters α within certain bounds, where
G is the input graph (a single input graph is shown to be
enough for learning the representations). This number of
propositional theories can be very high.

Our move from SAT to ASP is aimed at getting more
compact and transparent encodings that are easier to un-
derstand and explore, and that for this reason, can also de-
liver superior performance. We present the resulting en-
codings in two parts, first a basic ASP encoding that is
easier to follow and understand, and then the required op-
timizations. In these encodings, the learning problems
considered by Bonet and Geffner are solved by a handful
of calls to the ASP solver CLINGO (Gebser et al. 2012;
Gebser et al. 2019), as opposed to the thousands of calls
required in the SAT encodings. Moreover, once a preference
ordering on solutions is defined, some of these problems are
shown to be solved optimally, meaning that there is no sim-
pler representation compatible with the input data.

4.1 Program
The ASP code ASP(G) for learning a first-order instance
P = 〈D, I〉 from a single input graph G is shown in Fig-
ure 2. The code can be easily generalized to learn the in-
stances Pi= 〈D, Ii〉 from multiple input graphs Gi. The
graph G is assumed to be encoded using the atoms node(S)
and tlabel(T,L) where S and T=(S1,S2) denote nodes and
transitions in the graph G, and L denotes the corresponding
action label. The resulting lifted action schemas are encoded
via the prec/3 and eff/3 atoms (the integer at the end de-
notes the arity of the predicate), while the factored states of
the nodes S, via the val/2 and val/3 atoms, the first for
static atoms and the second for dynamic ones. The main
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constraints are at the bottom of the program in Fig. 2: tran-
sitions (S1,S2) are assigned exactly to one ground action
through the atoms next(A,OO,S1,S2) where OO are the ob-
jects that instantiate the arguments of the action schema A.
As a result, the value of the ground atoms in the states S1 and
S2 has to be compatible with this ground action. In addition,
the ground action A(OO) has to be applicable in S1, and if
it is applicable in a node S1', then there has to be a node
S2' such that next(A,OO,S1',S2') is true. Also, the sets
of literals true in a node (the states associated to nodes) have
to be different for different nodes. The static predicates and
atoms refer to those that control the grounding; i.e., they ap-
pear in the precondition of action schemas but do not appear
in the effects, so their value do not depend on the state.

The first part of the program (lines 1–11) sets up the
bounds on the domain parameters: max number of predi-
cates (5) and static predicates (2), and max numbers of ef-
fects and preconditions per action schema (6). In addition,
the arity of actions is bounded by 3, and the arity of predi-
cates by 2. The number of action schemas is set to the num-
ber of action labels, and the number of objects is fixed to
the constant num objects that is passed to the solver. In our
experiments, the solver is instantiated with values 1, . . . , 10
for this parameter; i.e., for each input graph, the solver is
called up to 10 times.

The second part (lines 13–31) sets up the action schemas
and their lifted preconditions and effects, while the third part
(lines 33–48) encodes the grounding: for a given number of
objects, it generates the possible object tuples OO that can
instantiate the arguments of action schemas and predicates.
Pairs (A,OO) and (P,OO) denote ground actions and ground
atoms. Atoms map(VV,OO1,OO2) tell that the variable list
VV instantiates to OO2 for the ground instantiation OO1 of the
action arguments. Truth values V of ground atoms (P,OO) in
the state S are encoded with atoms val((P,OO),S,V), with
the state S omitted for static predicates.

The last part (lines 50–59) encodes the main constraints:
1) if the ground action (A,OO) is assigned to edge (S1,S2),
it must be applicable in S1, the values of the ground liter-
als in S1 and S2 must be consistent with the action effects,
and the action labels must coincide, 2) if the ground action
(A,OO) is applicable in a node, it must be associated with a
unique outgoing edge, and 3) the sets of true ground literals
for different nodes must be different. This fragment of the
program ASP(G) makes an assumption which is most often
but not always true; namely, that if two ground instances of
an action schema are applicable in a state, their application
leads to different states.1 Provided with this assumption, the
correctness of the encoding can be expressed as:

Theorem 3. Let G be an input graph encoded with the
node/2 and tlabel/2 atoms. Then M is an answer set
of the program ASP(G) iff there is a planning instance
P = 〈D, I〉 that accounts for G and is compatible with the
given bounds; D and I can be read off from M .

1An schema with arguments x and y, effects p(x) and p(y),
and no preconditions, for example, would violate this assumption.
Thanks to Andres Occhipinti for pointing this out.

5 Extensions and Optimization
The code shown in Fig. 2 captures a correct encoding of the
learning problem but it is not optimized for performance.
We discuss next some variations and extensions. The code
for these extensions is shown in Fig. 3.

Optimization. The program ASP(G) for a given graph G
usually has many models. Following Occam’s razor, the
models that are simpler are more likely to result in action
schemas that generalize to larger instances and hence to pass
the verification test. Models are thus ranked using four nu-
merical criteria ordered lexicographically from most impor-
tant to less important as follows: A) sum Na of the action
schemas arities, B) sum Np of the arities of non-static pred-
icates, C) sum Ns of the arities of static predicates, D) max-
imum number Ng of true ground atoms per state.

If V (M) = (Na, Np, Ns, Ng) is the resulting numerical
cost vector for model M , and V (M ′) = (N ′a, N

′
p, N

′
s, N

′
g)

is the vector for model M ′, M is preferred to M ′ if V (M)
is lexicographically smaller than V (M ′). A model M is
optimal or simplest if there is no modelM ′ preferred toM .
This exact optimization criterion is given to CLINGO along
with the code (lines 1–5 in Fig. 3). For a given time window,
CLINGO may terminate earlier with an optimal solution, or
run out of time, returning the best solution found that far.

Invariants. One way to speed up SAT and ASP solvers is
by adding implicit constraints. State invariants express for-
mulas that are true in all (reachable) states, and they are im-
plied by the truth valuation of the initial state and the struc-
ture of the action schemas. One particular type of invariants
is given by sets of atoms R such that exactly-1 of the atoms
in R is true in every state. An invariant of this form, for ex-
ample in Blocksworld without an arm, is given by the sets of
atoms {on(x, y) : y}∪ {ontable(x)} for any block x, where
y ranges over all blocks. The variable x is the free variable
of the invariant schema, while other variables like y range
over their possible instantiations.

We extend the basic ASP encoding so that exactly-1 in-
variant schemas can be constructed and enforced automat-
ically during the search. This is achieved by introducing
atoms schema(N,P,I) where N is an index over a max num-
ber of lifted invariants, P is a predicate, and I is the index
of the argument of P that represents the free variable if P is
binary (for unary predicates there is no choice). The solver
is free to choose the atoms schema(N,P,I) that are true,
and the resulting constraints are enforced as invariants; i.e.,
they must be true in all states. Furthermore, to force some
invariants to be true, every dynamic binary predicate is con-
strained to be part of some invariant. This is a common situ-
ation where dynamic binary predicates like p(x, y) are used
to encode multivalued state variables. Lines 12–31 in Fig. 3
implement the construction and enforcement of invariants.

Other extensions. The actual code of the program ASP(G)
incorporates other extensions like constraints for symme-
try breaking, special rules for handling cycles of size two
in the input graph, and transformations for treating all ac-
tion schemas (resp. predicates) as if they are all of the same
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1 % Constants
2 #const max_predicates=5.
3 #const max_static_predicates=2.
4 #const max_effects=6. % for each action
5 #const max_precs=6. % for each action
6

7 % Actions, predicates, static predicates and objects
8 action(L) :- tlabel(T,L). { a_arity(A,1..3) } = 1 :- action(A).
9 pred(1..max_predicates). { p_arity(P,1..2) } = 1 :- pred(P).

10 p_static(max_predicates-max_static_predicates+1..max_predicates).
11 object(1..num_objects).
12

13 % Tuples of variables for lifted effects and preconditions
14 argtuple((V1, ),1) :- V1=1..3. argtuple((V1,V2),2) :- V1=1..3, V2=1..3.
15

16 % Generate lifted preconditions and effects (at least 1) of action schemas
17 { prec(A,(P,T),0..1) : p_arity(P,AR), argtuple(T,AR) } max_precs :- action(A).
18 1 { eff(A,(P,T),0..1) : p_arity(P,AR), argtuple(T,AR), not p_static(P) } max_effects :- action(A).
19

20 % Check that variables mentioned in precs and effects are action arguments
21 :- eff(A,(_,(V, )),_), a_arity(A,ARITY), ARITY < V.
22 :- eff(A,(_,(V,_)),_), a_arity(A,ARITY), ARITY < V.
23 :- eff(A,(_,(_,V)),_), a_arity(A,ARITY), ARITY < V.
24 :- prec(A,(_,(V, )),_), a_arity(A,ARITY), ARITY < V.
25 :- prec(A,(_,(V,_)),_), a_arity(A,ARITY), ARITY < V.
26 :- prec(A,(_,(_,V)),_), a_arity(A,ARITY), ARITY < V.
27

28 % Tuples of objects for grounding the action schemas and atoms
29 objtuple((O1, ),1) :- object(O1).
30 objtuple((O1,O2 ),2) :- object(O1), object(O2).
31 objtuple((O1,O2,O3),3) :- object(O1), object(O2), object(O3).
32

33 % Possible values of ground atoms in the states associated to nodes
34 { val((P,OO), 0..1) } = 1 :- p_arity(P,ARITY), p_static(P), objtuple(OO,ARITY).
35 { val((P,OO),S,0..1) } = 1 :- p_arity(P,ARITY), not p_static(P), objtuple(OO,ARITY), node(S).
36

37 % Map selects grounding of lifted atoms in schema from grounding of action arguments
38 map( (1,), (O1,), (O1,)) :- objtuple((O1,),1).
39 ...
40 map((3,3),(O1,O2,O3),(O3,O3)) :- objtuple((O1,O2,O3),3).
41

42 % Check preconditions: ground action A(OO1) is applicable in node S
43 appl(A,OO1,S) :- action(A), a_arity(A,ARITY), objtuple(OO1,ARITY), node(S),
44 val((P,OO2), V) : prec(A,(P,T),V), map(T,OO1,OO2), p_static(P);
45 val((P,OO2),S,V) : prec(A,(P,T),V), map(T,OO1,OO2), not p_static(P).
46

47 % If ground action A(OO) applicable in S1, assigned to some edge (S1,S2) with same label
48 { next(A,OO,S1,S2) : tlabel((S1,S2),A) } = 1 :- appl(A,OO,S1).
49

50 % Every edge is assigned to a ground action with the same label
51 :- tlabel((S1,S2),A), { next(A,OO,S1,S2) } 6= 1.
52

53 % Effects and inertia
54 :- eff(A,(P,T),V), next(A,OO1,S1,S2), map(T,OO1,OO2), val((P,OO2),S2,1-V).
55 :- tlabel((S1,S2),_), val(K,S1,V), val(K,S2,1-V), not caused(S1,S2,K).
56 caused(S1,S2,(P,OO2)) :- eff(A,(P,T),V), next(A,OO1,S1,S2), map(T,OO1,OO2).
57

58 % Different nodes are different states
59 :- node(S1), node(S2), S1 < S2, val((P,T),S2,V) : val((P,T),S1,V).

Figure 2: Base code of ASP program ASP(G) for learning a first-order planning instance P = 〈D, I〉 from a single input graph G. The graph
G is assumed to be encoded with atoms node(S) and tlabel(T,L) where T=(S1,S2) stands for the transitions in the graph and L for the
corresponding action label. See text for explanations.
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Domain #labels #obj #nodes #edges

blocks1-2 (arm, 2 blocks) 4 2 5 8
blocks1-3 (arm, 3 blocks) 4 3 22 42
blocks1-4 (arm, 4 blocks) 4 4 125 272
blocks1-5 (arm, 5 blocks) 4 5 866 2,090

blocks2-2 (2 blocks) 3 2 3 4
blocks2-3 (3 blocks) 3 3 13 30
blocks2-4 (4 blocks) 3 4 73 240
blocks2-5 (5 blocks) 3 5 501 2,140

grid-v0-3x4 4 4 12 34
grid-v0-4x4 4 4 16 48
grid-v0-5x6 4 6 30 98

grid-v1-3x4 2 4 12 34
grid-v1-4x4 2 4 16 48
grid-v1-5x6 2 6 30 98

gripper-2 (2rooms + 2balls) 3 4 28 76
gripper-3 (2rooms + 3balls) 3 5 88 280
gripper-4 (2rooms + 4balls) 3 6 256 896

hanoi-3x3 (3disks + 3pegs) 1 6 27 78
hanoi-3x4 (3disks + 4pegs) 1 7 81 240
hanoi-4x3 (4disks + 3pegs) 1 7 74 336

Table 1: Data for the graphs G(P ) of the instances P used for
learning the domains and for their verification: numbers of action
labels, nodes, and edges. Number of objects in P shown as well.

(max) arity (to reduce grounding size). 2

6 Experimental Results
We test the performance of the program ASP(G) with all the
extensions above. The program accepts a single graphG and
outputs a model (solution) from which a first-order planning
instance P = 〈D, I〉 that matches G can be read off.

We consider five domains: two versions of Blocksworld
(with and without an arm), Towers of Hanoi, Gripper
and Grid; all from Bonet and Geffner (2020), except
Blocksworld with an arm. The experiments were performed
on Amazon EC2’s c5n.12xlarge nodes with a limit of
16Gb of memory, 2 hours for learning, and 1 hour for veri-
fication. Recall that verification is a combinatorial problem
similar to the learning problem but with the learned model
known and fixed (Section 3.1). The data about the instances
used is shown in Table 1. For each instance P in the table,
the graph G(P ) is used to learn a first-order model, and the
learned model (if any) is then verified on the other instances
P ′ of the same domain that are listed in the table. The solver
CLINGO was run with 8 threads.

Table 2 shows the results of the ASP-based learner on
these instances. As mentioned above, the solver is called
multiple times with different number of objects, from 1 up to
10, and the models with the smallest number of objects that
passed the verification are reported for each domain (except
for Grid where models with a smaller number of objects than
expected also generalized, and for Blocks where in some
instances no solution that generalized was found). Bounds

2The code and the relevant data are available at https://github.
com/bonetblai/learner-strips/tree/master/asp.

Time to find model

Domain #obj #mod First Best Ver Opt

blocks1-3 3 8 35.08 93.85 7 3
blocks1-4 4 0 — — — —
blocks2-3 3 15 3.86 10.84 7 3
blocks2-4 4 26 550.1 2,564.2 3 3
grid-v0-3x4 2 13 2.9 13.9 3 3
grid-v0-3x4 3 14 5.5 23.1 3 3
grid-v0-3x4 4 20 3.2 24.1 3 3
grid-v1-3x4 3 13 1.0 105.2 3 3
grid-v1-3x4 4 12 1.2 12.4 3 3
gripper-2 4 37 356.3 7,200.0 3 7
gripper-3 4 1 6,540.2 7,200.0 3 7
hanoi-3x3 6 6 664.9 7,200.1 3 7

Table 2: Results of ASP(G) on the instances in Table 1. Columns
show the instance used for learning, the number of objects found,
and times for the first and best solutions found, and whether the
best solution verified and was proved to be optimal (simplest). The
column “#mod” shows the number of models found in the way to
the best model. Times are in seconds.

on the number of action schemas, predicates and their ari-
ties are those expressed in the code shown in Figure 2. The
columns “Ver” and “Opt” in the table refer to whether the
model found verified (generalized to the other instances in
Table 1), and whether it was proved to be optimal (i.e., sim-
plest according to the optimization criterion). The table also
reports the time to find a model for each instance (time to
first model), and the time to find the best model within the
time window (2h). A time of 7,200 seconds indicates that
the best model was not proved to be optimal in the time win-
dow. The table also displays the number of models found
by the solver in the optimization process, each model being
better than the previous one.

The key observation that can be drawn from Table 2 is
that models that generalize to the other instances of the same
domain are found in all of the domains, except in Blocks-
1 (Blocks with an arm). Moreover, some models that are
shown to be optimal do not generalize (Blocks-1-3, Blocks-
2-3), while models that are not proved to be optimal, do
(Gripper, Hanoi). The reason for the former is that the in-
stances used for learning are too small, which leads to action
schemas that do not generalize to larger instances. The rea-
son for the latter is that strict optimality is not a condition for
generalization. In the case of the Blocks-1 domain, larger in-
stances like Blocks-1-4 timed out. Regarding the size of the
ground programs, they feature between 30K to 70K rules
and constraints in Grid and Gripper-2, and between 1M to
2M in Blocks, Gripper-3 and Hanoi. Similarly, the number
of variables ranges between 50K to 165K in the former, and
between 300K to 800K in the latter.

The improvements in relation to the results reported by
Bonet and Geffner (2020) using a SAT approach are signif-
icant. As it was mentioned before, for each input G, they
need to call the SAT solver over the theory Tα(G) for each
possible vector of hyperparameters α, which means a num-
ber of calls that range from 6,390 (Hanoi, 1 label) to 19,050
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1 % Optimization
2 #minimize { 1+N@4, A : a_arity(A, N) }.
3 #minimize { 1+N@3, P : p_arity(P, N), not p_static(P) }.
4 #minimize { N@2, P : p_arity(P, N), p_static(P) }.
5 #minimize { N@1, N : state_bound(N) }.
6

7 % Bound number of true atoms per state
8 #const max_true_atoms_per_state=10.
9 { state_bound(1..max_true_atoms_per_state) } = 1.

10 { val((P,OO),S,1) : pred(P), not p_static(P), objtuple(OO,2) } N :- node(S), state_bound(N).
11

12 % Choose number and type of invariants
13 #const num_invariants=1.
14 inv(1..num_invariants).
15

16 % Schemas for invariants
17 { schema(N,P,1) } :- inv(N), pred(P), p_arity(P,1).
18 1 { schema(N,P,2..3) : pred(P), p_arity(P,2), not p_static(P) } :- inv(N), bin_preds.
19 inv_non_empty(N) :- inv(N), pred(P), schema(N,P,1..3).
20 bin_preds :- pred(P), p_arity(P,2), not p_static(P).
21

22 % Each non-static binary predicate must appear in some invariant
23 inv_used_pred(P) :- pred(P), p_arity(P,2), not p_static(P), inv(N), schema(N,P,2..3).
24 :- pred(P), p_arity(P,2), not p_static(P), not inv_used_pred(P).
25

26 % Enforce invariants at states
27 { val((P, (O,O)), 1) : schema(N,P,1), p_static(P); % { P(O) } (static)
28 val((P, (O,O)),S,1) : schema(N,P,1), not p_static(P); % { P(O) }
29 val((P,(O,O2)),S,1) : object(O2), schema(N,P,2), not p_static(P); % { P(O,O2) : O2 }
30 val((P,(O2,O)),S,1) : object(O2), schema(N,P,3), not p_static(P) % { P(O2,O) : O2 }
31 } = 1 :- inv(N), inv_non_empty(N), object(O), node(S).

Figure 3: Fragments of ASP code for different extensions of the basic ASP code.

(Blocksworld and Gripper, 3 labels) and 37,800 (Grid, 4 la-
bels), which are not done exhaustively. In the ASP approach,
ASP(G) is called a maximum number of times that is given
by a bound on the number of objects, and in many cases,
the models found are shown to be optimal. Among the ex-
tensions of the base code that have the greatest impact on
performance, there are two: learning invariants while forc-
ing dynamic predicates to appear in an invariant, and calling
the solver separately for each number of objects as opposed
to letting the solver search for this value.

6.1 Examples of Learned Representations
As in the work of Bonet and Geffner (2020), the learned rep-
resentations are often more succinct than the hand-crafted
representations, usually using the same predicate to repre-
sent different relations. For example, in Hanoi-3x3, the ob-
tained model has the single action schema:

hanoi-3x3
MOVE(d,to,from):
Static: NEQ(d,to), NEQ(d,from), NEQ(to,from), -BIGGER(d,to)
Pre: -p(to,d), -p(from,from), p(d,d), p(to,to), p(from,d)
Eff: -p(to,to), -p(from,d), p(to,d), p(from,from)

The predicate p(x1, x2) denotes on(x2, x1) if x1 6=x2, and
clear(x1) otherwise. The solver synthesizes the exactly-1
invariant scheme {p(o, x) : x} for each object o which says
that each disc must be clear or have another disc above it.

For Gripper-3, the solver learns the schemas:

gripper-3
MOVE(x,to,from)
Static: NEQ(x,from), NEQ(to,from), -B1(x,to), -B2(x,x), B1(from,x)
Pre: -Nat(from), Nat(x), Nat(to)
Eff: -Nat(to), Nat(from)

DROP(g,b,r)
Static: NEQ(g,r), -B2(r,b), B1(g,g)
Pre: -Nat(r), -at-hold(r,b), Nfree(g), at-hold(g,b)
Eff: -Nfree(g), -at-hold(g,b), at-hold(r,b)

PICK(g,r,b)
Static: NEQ(g,r), -B2(r,b), B1(g,g)
Pre: -Nat(r), -Nfree(g), -at-hold(g,b), at-hold(r,b)
Eff: -at-hold(r,b), Nfree(g), at-hold(g,b)

Here, at-hold(x, ball) represents at(x, ball) if x is a
room, and hold(x, ball) if x is a gripper. The binary static
predicateB1(x1, x2) encodes that x1 is a gripper if x1 = x2,
or that x1 and x2 are rooms otherwise, and B2(x1, x2) en-
codes pairs of objects (x1, x2) that are not a room and a ball.

The schemas learned for Blocks-2 are:
blocks2-4

NEWTOWER(x1,x2)
Static: NEQ(x1,x2)
Pre: -clear(x1), -p(x1,x1), clear(x2), p(x2,x1)
Eff: -clear(x2), -p(x2,x1), p(x1,x1)

STACK(x1,x2)
Static: NEQ(x1,x2)
Pre: -clear(x1), -clear(x2), -p(x2,x1), p(x1,x1)
Eff: -p(x1,x1), clear(x2), p(x2,x1)

MOVE(x1,x2,x3)
Static: NEQ(x1,x2), NEQ(x1,x3), NEQ(x2,x3)
Pre: -clear(x1), -clear(x3), -p(x3,x1), clear(x2), p(x2,x1)
Eff: -clear(x2), -p(x2,x1), clear(x3), p(x3,x1)

In these schemas, the predicate p(x1, x2) represents
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on(x2, x1) or ontable(x1) whether x1 6= x2 or not. The
solver finds the invariant {p(x, o) : o} that says that a block
is either on top of another, or on the table.

7 Partial and Noisy Inputs
A key assumption about the proposed learning paradigm,
borrowed from Bonet and Geffner (2020), is that the input
graph is complete (no missing nodes or edges) and noise
free (different nodes stand for different states). We show
next how to relax these assumptions.

7.1 Partial Graphs
The robustness to incomplete information is analyzed by
feeding the learner with a partial graphG′ of a true but hid-
den complete graph G. The partial graph G′ contains some
of the nodes n fromG, some of the edges among these nodes
from G, and counts of the number of outgoing edges (n, n′)
in G that are not necessarily in G′, along with their labels.

The learning task with a partial graph G′ is set to the
following: find a planning problem P = 〈D, I〉 and a map-
ping from the nodes n in G′ to unique states s(n) over P ,
and a mapping from the edges (n, n′) in G′ to ground ac-
tions a(n, n′) such that 1) action a(n, n′) is applicable in
the state s(n), 2) the state s(n′) is the result of applying ac-
tion a(n, n′) in the state s(n), and 3) the set of actions in P
applicable in each state s(n) match the outgoing edge counts
for n (i.e., there are k outgoing edges from n with label L iff
there are k applicable actions in s(n) with the same label).
If the partial graph G′ is the complete graph G, the learning
task is equivalent to the learning task defined in Section 3.1.

In the experiments, we consider partial graphs G′ = Gp
obtained by performing a random walk in G until p per cent
of the edges in G have been traversed. The sampled graphs
Gp represent information that an agent can acquire in a real
environment where different states can be distinguished.

The partial graphs Gp are represented in the programs
as the complete graphs G; i.e., using the atoms node(S)

and tlabel((S1,S2),L) for the nodes and the labeled
edges in Gp, respectively. In addition, the representation
of Gp is extended with the atoms tlabel((S1,S2),L) and
unvisited(S1,S2) for every edge (S1,S2) such that node
S1 is visited but the edge (S1,S2) is not. Since, as we will
see, the program will make not use of the identity of the
node S2 in these edges, the atoms tlabel((S1,S2),L) for
unvisited edges provides just a way for encoding the outgo-
ing node counts. Indeed, the atoms tlabel((S1,S2),L)

are used to activate the rules in lines 47–51 of the base
code in Fig. 2 and guarantee that the outgoing edges of S1
have a corresponding ground action applicable, while the
unvisited(S1,S2) atoms are used to block the rules in
lines 53–56 that relate the literals in the states associated
with the nodes S1 and S2. Every solution for the complete
graphG is a solution of the partial graphGp but not the other
way around, as Gp may admit other models.

Experimental results about the performance of the learner
over sampled partial graphs Gp are shown in Table 3. For
each planning instance P considered that produced a model
that generalizes, we sample 10 partial graphs Gp from G =

G(P ), for each value of p in {20, 40, 60, 80}. The table
shows the percentage p of edges sampled, the number of ob-
jects found, the number n of the 10 runs where a model was
found, and the number of runs where the best model verified
(v) and was shown to be optimal (opt). Since the most com-
mon reason that partial graphs Gp with a small number of
sampled edges p lead to action schemas that do not general-
ize is that they are too simple, we also report the cost vector
V (M) for the best and worst models found in the 10 runs.
In these vectors (Section 5.1), the three first entries are the
sum of action arities, the sum of dynamic predicate arities,
and the sum of static predicate arities. It can be seen that in
most domains, the models become more complex (costly) as
the number of sampled edges p is increased. The exception
is Blocks-2 where the ten models found verify for almost all
values of p, and they all have the same cost vectors. The
models that generalize in Blocks-2 are found for p = 20
(20% of the edges sampled). In most domains, good gener-
alization results are obtained for p = 60.

7.2 Noisy Edges and States
We also tested robustness by labeling certain edges (n, n′) in
the input graph as noisy, with the result that the states s(n′)
represented by the nodes n′ in such edges are ambiguous
and cannot be assumed to be different than the other states.
We can think of the nodes as represented by images, for ex-
ample, such that it’s not clear if a given image is the same as
an image already seen or not. It is up to the solver to resolve
these ambiguities. As before, the number of edges (n, n′)
in the input graph that are considered noisy is determined
by a sampling parameter q, that ranges between 1 and 100,
such that q represents the percentage of edges that are not
noisy, so that 100 − q is the percentage of noisy edges. In
the experiments, the graph is assumed to be complete, but
the formulation can combine noisy edges and partial graphs.

The graph Gq that is fed to the solver is the result of
extending a partial or complete graph G with ambiguous
nodes that represent the states reached after traversing a
noisy edge. More in detail, the labeled edges ((n, n′), l)
that are noisy are replaced by new labeled edges ((n, n∗), l)
where n∗ is a new ambiguous node unique to the pair (n, n′).
To account for the uncertainty associated to them, we allow
their corresponding states to be the same as those of other
(ambiguous or non-ambiguous) nodes. Next, for every la-
beled edge ((n′, n′′), l′) in the resulting graph, we add the
new labeled edge ((n∗, n′′), l′). This allows the ambiguous
node n∗ to access the nodes that are reachable from n′, some
of which may be also ambiguous. The number of nodes in
Gq can thus be larger than the number of nodes in G, with
the excess nodes being multiple copies of the noisy nodes.

The ASP encoding of this extension introduces the facts
ambiguous(n) for every ambiguous node n in Gq , and ex-
tends the constraint in line 59 in Fig. 2 with the literals
not ambiguous(S1) and not ambiguous(S2) to allow am-
biguous nodes to represent the same states as other nodes.
As with partial graphs, the solutions of the noisy graph Gq
are a superset of the solutions of the noise-free graph G.

Table 4 shows results on complete graphs for different
percentages q of noise-free edges. From the table, we ob-
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Domain #obj p n v opt minV (M) maxV (M)

blocks2-4 4 20 10 10 3 (7, 2+3, 0) (7, 2+3, 0)
blocks2-4 4 40 10 10 2 (7, 2+3, 0) (7, 2+3, 0)
blocks2-4 4 60 10 9 1 (7, 2+3, 0) (7, 2+3, 0)
blocks2-4 4 80 10 10 0 (7, 2+3, 0) (7, 3+3, 0)
blocks2-4 4 100 10 10 0 (7, 2+3, 0) (7, 3+3, 0)

grid-v0-3x4 4 20 10 0 10 (6, 2+2, 2) (8, 1+1, 4)
grid-v0-3x4 4 40 10 6 10 (7, 2+2, 2) (8, 2+2, 2)
grid-v0-3x4 4 60 10 10 10 (8, 2+2, 2) (8, 2+2, 2)
grid-v0-3x4 4 80 10 10 10 (8, 2+2, 2) (8, 2+2, 2)
grid-v0-3x4 4 100 10 10 10 (8, 2+2, 2) (8, 2+2, 2)

grid-v1-3x4 4 20 10 2 10 (4, 1+1, 2) (4, 2+2, 2)
grid-v1-3x4 4 40 10 5 10 (4, 2+2, 2) (4, 2+2, 2)
grid-v1-3x4 4 60 10 9 10 (4, 2+2, 2) (4, 2+2, 2)
grid-v1-3x4 4 80 10 5 10 (4, 2+2, 2) (4, 2+2, 2)
grid-v1-3x4 4 100 10 9 10 (4, 2+2, 2) (4, 2+2, 2)

gripper-2 4 20 10 0 9 (5, 3+3, 2) (7, 2+2, 2)
gripper-2 4 40 10 1 0 (6, 3+4, 3) (8, 3+3, 3)
gripper-2 4 60 10 4 0 (8, 1+2, 1) (9, 3+5, 4)
gripper-2 4 80 10 8 0 (8, 2+3, 2) (8, 3+5, 4)
gripper-2 4 100 10 6 0 (8, 3+4, 1) (9, 3+5, 3)

gripper-3 4 20 2 1 0 (8, 2+3, 4) (9, 3+5, 4)
gripper-3 4 40 1 1 0 (9, 3+5, 4) (9, 3+5, 4)
gripper-3 4 60 1 0 0 (9, 3+4, 3) (9, 3+4, 3)
gripper-3 4 80 3 2 0 (8, 3+5, 3) (9, 3+5, 3)
gripper-3 4 100 1 1 0 (9, 3+5, 3) (9, 3+5, 3)

hanoi-3x3 6 20 10 0 5 (2, 1+1, 2) (3, 1+1, 2)
hanoi-3x3 6 40 10 6 0 (3, 1+2, 2) (3, 1+2, 2)
hanoi-3x3 6 60 10 10 0 (3, 1+2, 2) (3, 1+2, 2)
hanoi-3x3 6 80 10 10 0 (3, 1+2, 2) (3, 2+3, 2)
hanoi-3x3 6 100 9 9 0 (3, 1+2, 2) (3, 2+3, 2)

Table 3: Learning from partial graphs Gp where p is the percent-
age of sample edges from G(P ) and P is the instance shown on
the left. Each experiment is run 10 times, and min and max cost
vectors V (M) of best models found are shown (Section 5). Re-
sults over complete graphs vary over the 10 runs because of the
nondeterminism involved in calling CLINGO with multiple threads.
Column n shows how many solutions were found in the 10 runs, v
how many of them verify (generalize to larger instances), and opt
how many were proved optimal. For reference, the cost vectors of
the intended models for these domains are (7, 2+3, 0) for Blocks-
2, (8,2+2,4) for Grid-v0, (4, 2+2, 4) for Grid-v1, (8, 2+3, 4) for
Gripper, and (3, 1+2, 2) for Hanoi.

serve that in regular and simple models like grid-v0 and
grid-v1, the approach is able to learn models that general-
ize even when there are many noisy edges. For more com-
plex domains, as the parameter q decreases the models that
verify tend to decrease. The ambiguity resulting from the
“noise” is not always detrimental to performance, however.
In Gripper-2, for example, for q = 40, 9 out of the 10 runs
yield models that generalize, while for q = 100, only 6 of
them do. In Gripper-3, with q = 80, 4 out of the 10 runs
yield models that generalize, while for q = 100, only 1 does.

8 Conclusion
We have explored variations and extensions of the approach
to representation learning for planning proposed by Bonet
and Geffner (2020) that showed how crisp and meaning-
ful symbolic representations can be learned from flat state
spaces associated with small instances, in a way that the re-

Domain #obj q n v opt minV (M) maxV (M)

blocks2-4 4 20 2 2 0 (7, 3+5, 2) (7, 3+5, 2)
blocks2-4 4 40 6 6 0 (7, 3+5, 0) (7, 3+5, 0)
blocks2-4 4 60 9 6 0 (7, 3+4, 0) (7, 3+4, 0)
blocks2-4 4 80 9 9 0 (7, 2+3, 0) (7, 2+3, 0)
blocks2-4 4 100 10 10 0 (7, 2+3, 0) (7, 2+3, 0)

grid-v0-3x4 4 20 10 10 10 (8, 2+2, 2) (8, 2+2, 2)
grid-v0-3x4 4 40 10 10 10 (8, 2+2, 2) (8, 2+2, 2)
grid-v0-3x4 4 60 10 10 10 (8, 2+2, 2) (8, 2+2, 2)
grid-v0-3x4 4 80 10 10 10 (8, 2+2, 2) (8, 2+2, 2)
grid-v0-3x4 4 100 10 10 10 (8, 2+2, 2) (8, 2+2, 2)

grid-v1-3x4 4 20 10 6 10 (4, 2+2, 2) (4, 2+2, 2)
grid-v1-3x4 4 40 10 7 10 (4, 2+2, 2) (4, 2+2, 2)
grid-v1-3x4 4 60 10 5 10 (4, 2+2, 2) (4, 2+2, 2)
grid-v1-3x4 4 80 10 6 10 (4, 2+2, 2) (4, 2+2, 2)
grid-v1-3x4 4 100 10 9 10 (4, 2+2, 2) (4, 2+2, 2)

gripper-2 4 20 10 5 0 (8, 3+4, 1) (8, 3+4, 1)
gripper-2 4 40 10 9 0 (8, 2+3, 4) (8, 2+3, 4)
gripper-2 4 60 10 7 0 (8, 2+3, 1) (8, 2+3, 1)
gripper-2 4 80 10 5 0 (8, 2+3, 1) (8, 2+3, 1)
gripper-2 4 100 10 6 0 (8, 3+4, 1) (8, 3+4, 1)

gripper-3 4 20 0 0 0 *** ***
gripper-3 4 40 0 0 0 *** ***
gripper-3 4 60 0 0 0 *** ***
gripper-3 4 80 4 4 0 (8, 3+4, 3) (8, 3+4, 3)
gripper-3 4 100 1 1 0 (9, 3+5, 3) (9, 3+5, 3)

hanoi-3x3 6 20 0 0 0 *** ***
hanoi-3x3 6 40 1 1 0 (3, 1+2, 2) (3, 1+2, 2)
hanoi-3x3 6 60 6 6 0 (3, 1+2, 2) (3, 1+2, 2)
hanoi-3x3 6 80 4 4 0 (3, 1+2, 2) (3, 1+2, 2)
hanoi-3x3 6 100 9 9 0 (3, 1+2, 2) (3, 1+2, 2)

Table 4: Learning with noisy edges and states. Results shown on
complete graphs with a percentage q of edges that are not noisy
over 10 runs, along with minimum and maximum cost vectors
V (M) of best models found. The column n shows how many so-
lutions were found in these 10 runs, v how many of them verify,
and opt how many were proved optimal. Asterisks indicate that no
model was found in the 10 runs.

sulting first-order domains (action schemas and predicates)
generalize to larger instances. The new ASP implementa-
tion has been shown to be more scalable and robust, as it
opens new possibilities for modeling and solving the learn-
ing problem, and a higher level of abstraction to explore
them. The performance improvements are significant, as
the consideration of thousands of propositional SAT theories
encoding all possible values of the hyperparameters, have
been replaced by a simple meta-search on the number of ob-
jects, as all other decisions are left to the solver, which in
many cases manages to find solutions and prove them opti-
mal (simplest). In the new, high level ASP encoding, it has
also been simple to relax some of the assumptions made in
previous work, namely that the input graphs are complete
and noise-free. It remains as an interesting challenge to im-
prove the experimental results even further so that the re-
sulting methods can be applied to learn representations, for
example, from arbitrary IPC planning domains.
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