
Making DL-Lite Planning Practical

Stefan Borgwardt1 , Jörg Hoffmann2 , Alisa Kovtunova1 , Marcel Steinmetz2
1Institute of Theoretical Computer Science, Technische Universität Dresden, Germany

2Saarland University, Saarland Informatics Campus, Germany
{stefan.borgwardt,alisa.kovtunova}@tu-dresden.de, {hoffmann,steinmetz}@cs.uni-saarland.de

Abstract
Planning in the presence of background ontologies is a topic
of long-standing interest in AI. It combines the problems of
(1) belief update complexity and (2) state-space combina-
torics. DL-Lite offers an attractive solution to (1), with belief
updates possible at the ABox level. Indeed, it has been shown
that DL-Lite planning can be compiled into the commonly
used planning language PDDL. Yet that compilation was pre-
viously found to be infeasible for off-the-shelf planning sys-
tems. Here we analyze the reasons for this problem and find
that the bottleneck lies in the planner pre-processes, in par-
ticular in the naı̈ve DNF transformations used to compile the
PDDL input into the planners’ internal representations. Con-
sequently, we design a PDDL pre-compiler realizing a poly-
nomial DNF transformation. We leverage a particular PDDL
language feature (“derived predicates”) to avoid the need for
excessive control structure. Our pre-compiler turns out to be
quite effective: the previous bottleneck disappears, and ex-
periments on a broad range of benchmarks demonstrate the
first practical technology for DL-Lite planning.

1 Introduction
AI planning is a well-investigated framework for describ-
ing the evolution of system states through the application of
actions (Ghallab, Nau, and Traverso 2004). Action precon-
ditions are first-order logic formulas, which are evaluated
over states, i. e. finite sets of facts. Action effects either add
or remove facts from the current state. Formulas are eval-
uated using a closed-domain, closed-world semantics, i. e.
the domain is fixed a priori and facts that are not contained
in a state are assumed to be false. Knowledge representation
formalisms are a natural way to introduce global constraints
on permissible states. However, they usually interpret first-
order formulas over arbitrary models with arbitrary domains,
instead of just one model with a fixed domain.

Early work on open-world, open-domain formalisms for
constraining possible states quickly noticed the so-called
ramification problem (Ginsberg and Smith 1988), i. e. an ac-
tion that makes a fact true also has to take care of satisfying
the state axioms, possibly requiring to add or remove other
facts, which may also involve new objects. One approach to
deal with this problem is to not view states as finite interpre-
tations, but as sets of formulas interpreted in an open-world
fashion. In this way, implicit knowledge about the world
added by the state axioms does not have to be made explicit

in the states themselves. This means that action precondi-
tions are also evaluated under open-world semantics, while
action effects do not directly modify a single interpretation,
but instead operate on a set of formulas.

DL-Lite Explicit-Input Knowledge and Action Bases (eK-
ABs) (Calvanese et al. 2016) combine classical planning
with state axioms formulated in the description logic DL-
Lite (Calvanese et al. 2005), while allowing the creation
of an (a priori) unbounded number of new objects and in-
terpreting action preconditions under open-world seman-
tics. A translation of eKABs into classical PDDL planning
problems was proposed, which in theory allows the use of
off-the-shelf planning systems. However, an initial evalua-
tion (Calvanese et al. 2016; Stawowy 2016) using the Fast
Downward (FD) planning platform (Helmert 2006) showed
poor performance on a simple hand-crafted domain, with the
planner being unable to solve even trivial problem instances.
With FD building the core of most state-of-the-art classical
planners, the scalability remains an issue until today.

Here we analyze the root of this problem. The reason
turns out to be not FD-specific, but reveals a fundamen-
tal issue in many classical planners, including Fast Forward
(FF) (Hoffmann and Nebel 2001). The bottleneck lies in the
DNF transformations used to compile the PDDL input into
the planners’ internal representations. These naı̈ve trans-
formations are applied in-situ without introducing auxiliary
predicates, causing a worst-case exponential blow-up on
non-DNF input. Here we consider PDDL pre-compilations
that enable polynomial DNF transformations. However, in
a straightforward approach (Nebel 2000), the introduction
of auxiliary predicates and actions comes with substantial
overhead for truth-value evaluation of sub-formulas, forcing
the planner to re-evaluate the relevant formulas in between
the applications of regular actions. We show that this over-
head can be avoided by employing PDDL derived predicates
(Hoffmann and Edelkamp 2005; Thiebaux, Hoffmann, and
Nebel 2005), which specify a rule-based update of auxiliary
predicates that is applied at every planning state.

We contribute a broad set of DL-Lite planning bench-
marks, comprising the previous eKAB tasks (Calvanese et
al. 2016; Stawowy 2016), some new eKAB domains, as well
as benchmarks adapted from prior work formulating seman-
tic web service composition as planning with propositional
background ontologies (Hoffmann et al. 2008). Our pre-

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

641



compiler turns out to be quite effective: the bottleneck disap-
pears, and our experiments demonstrate the first practically
viable technology for DL-Lite planning.

2 Background
As our optimizations work on the level of classical planning,
we introduce the main relevant notions here, and then shortly
illustrate eKABs and the original translation.

Planning Languages. We consider the “level 1” frag-
ment of PDDL 2.1 (Fox and Long 2003), excluding nu-
meric fluents and temporal actions, but including ADL ex-
pressions (Pednault 1989). A PDDL task is a tuple Π =
〈P ,A,O, I, G〉 consisting of finite sets of predicate sym-
bols P , action schemas A, objects O, the initial state I , and
the goal G. A fact is a ground first-order atom formulated
using P and O. I is a set of facts that are true initially,
and all facts not contained in I are assumed to be false ini-
tially. The goal G is a closed first-order formula over P
and O. An action schema a ∈ A is a triple 〈−→xa, prea, effa〉
with parameters (variables) −→xa, the precondition prea, and
a set of effects effa. prea is a first-order formula over P
and O whose free variables are restricted to −→xa. Each ef-
fect e ∈ effa is a tuple 〈−→ye , conde, adde, dele〉 where −→ye is
a tuple of variables, conde is the effect condition, a first-
order formula over P and O whose free variables are in−→xa ∪ −→ye , the add list adde is a set of positive first-order
literals with free variables only in −→xa ∪ −→ye , and the delete
list dele is a set of such negative literals. For example, an
action A = 〈x,Emp(x), 〈∅,>, {SoDev(x)}, ∅〉〉 promotes
any employee to a software developer. The instantiation of
the parameters of an action schema awith objects−→o fromO
yields a ground action a(−→xa/−→o ), or a if −→o is not important.

A state s is an interpretation of P over the closed-world
universeO, represented by convention as the set of facts that
are true. Formulas are evaluated on states according to stan-
dard first-order semantics, where quantifiers range over the
objects O. A ground action a is applicable in s if s |= prea.
The result of this application is the state sJaK with p ∈ sJaK
iff (1) there exists an effect e ∈ effa with instantiation −→oy
such that s |= conde(−→ye/−→oy) and p ∈ adde(−→ye/−→oy), or (2) p ∈ s
and it holds for all effects e ∈ effa and instantiations −→oy that
s 6|= conde(−→ye/−→oy) or ¬p 6∈ dele(−→ye/−→oy). The application of
a sequence of ground actions is defined accordingly. A se-
quence of ground actions π = a1, . . . , an is a plan of Π if π
is applicable in I and IJπK |= G.

Our pre-compiler furthermore makes use of the PDDL 2.2
(Hoffmann and Edelkamp 2005) language feature derived
predicates (a.k.a. axioms). The task Π then additionally de-
fines a set Pder of derived predicates disjoint from P , and a
set Rder of rules r of the form Pr(~x) ← bodyr(~x) where
bodyr is a formula with free variables ~x and Pr ∈ Pder. The
semantics is straightforward: in every state, all derived facts
(groundings of Pder) are first set to false, then the rules Rder
are applied up to the (unique) fixed point.

DL-Lite eKABs. A TBox of the light-weight description
logic DL-Lite (Calvanese et al. 2005; Poggi et al. 2008) is a

finite set of axioms expressing state constraints over unary
and binary predicates. For example, Emp v ∃worksFor
says that every employee needs to work in some department,
and ElEng v ¬SoDev expresses that electronic engineers
cannot be software developers at the same time.

A DL-Lite eKAB 〈P ,A,O, T , I, G〉1 (Calvanese et al.
2016) extends a PDDL 2.1 task by a DL-Lite TBox T , a pos-
sibly infinite set of objects O, the fact that states (including
the initial state) are viewed under the open-world assump-
tion, and a modified syntax for actions A and the goal G.
Action preconditions, effect preconditions, and the goal are
now specified as extended conjunctive queries (ECQs) (Cal-
vanese et al. 2007), which are a kind of first-oder formu-
las whose atoms are conjunctive queries (CQs), i. e. exis-
tentially quantified conjunctions of atoms. The conjunctive
queries are evaluated using the open-world semantics of DL-
Lite, but their results (i. e. certain answers) are then inter-
preted under an epistemic semantics to allow a combination
of open- and closed-world conditions. For example, con-
sider the TBox {Emp v ∃worksFor}, state {Emp(a)}, and
the conditions φ1(x) = ¬[∃y.worksFor(x, y)] and φ2(x) =
¬∃y.[worksFor(x, y)], where the conjunctive queries are in-
dicated by square brackets. Then φ1 does not apply to ob-
ject a, because all employees are known to work for some
department (even if the specific department is unknown),
but φ2(a) is true since no particular y is known for which
worksFor(a, y) holds.

Another major difference to PDDL is the fact that ac-
tions are only applicable if they do not yield an inconsistent
state s, i. e. such that T ∪ s has no models. For example, the
promoting action A would cause an inconsistency when ap-
plied to object b in state {ElEng(b)} considering the TBox
T = {ElEng v Emp, ElEng v ¬SoDev}.

The DL-Lite eKAB to PDDL Compilation. In (Calvanese
et al. 2016), a translation from state-bounded DL-Lite eK-
ABs to equivalent PDDL tasks is presented. Its main in-
gredients are (i) a bound on the number of objects in each
state (Calvanese et al. 2013; Calvanese et al. 2016), (ii) a
translation of ECQs into first-oder formulas under closed-
world semantics (Poggi et al. 2008; Calvanese et al. 2007;
Calvanese et al. 2016), and (iii) an additional predicate and
action that checks consistency of a state.

Since PDDL does not support TBoxes, the translation (ii)
effectively compiles the TBox into ECQs, thereby simu-
lating open-world query answering by a closed-world for-
mula. Essentially, every CQ becomes a disjunction of CQs
that enumerates all possible combinations of atom impli-
cants; for example in A the precondition Emp(x) becomes
Emp(x) ∨ ElEng(x) to simulate the fact that electronic en-
gineers are considered to be employees (ElEng v Emp).

Step (iii) uses a formula that describes every possible in-
consistent state. The set of all axioms involving negation,
e. g. ElEng v ¬SoDev, is first reformulated into a disjunc-
tion of CQs of the form ElEng(x) ∧ SoDev(x), which de-
scribe basic inconsistent situations. By applying the trans-
lation (ii) to these CQs, the resulting formula includes all

1The syntax is slightly adapted for compatibility with PDDL.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

642



possible ways in which inconsistencies can be generated.

3 Pre-Compiling the eKAB PDDL
We next explain the main practicality bottleneck of eKAB
planning with state-of-the-art planning systems, and then
describe our fix adding an additional pre-compilation step
which transforms the eKAB-generated PDDL to a simpler
form of PDDL more tailored towards these systems.

The Problem: Planner Pre-Processors. Observe that, de-
pending on the size and complexity of the ontology, the for-
mulas generated from the TBox can become quite compli-
cated. First, the generated disjunctions of CQs in (ii) can
become exponentially larger than the original CQs, because
different atoms can be entailed in different ways. The for-
mula generated in (iii) can also be quadratically larger than
the TBox since it needs to cover all possible interactions be-
tween positive and negative axioms. This is not necessarily
a problem per se, yet the structure of these formulas is prob-
lematic for state-of-the-art planners like FD and FF, which
handle only a rather small fragment of formulas effectively.

The core reason for this is the gap between the PDDL in-
put and the internal representation used for planning, which
is fully grounded and restricts all conditions (pre, cond, G)
to conjunctions of atoms. A pre-processor takes care of the
transformation from PDDL to this representation, enumer-
ating ground facts and actions and applying a number of
syntactic transformations (Gazen and Knoblock 1997). This
pre-processor is very similar in both FF and FD. In partic-
ular, all formulas are first grounded and then transformed
to DNF, where the DNF transformation is done naı̈vely, i. e.
in-situ without introducing auxiliary predicates. For exam-
ple, for the objects a, b and TBox T from before, action
A is transformed into 4 ground actions with preconditions
Emp(a), Emp(b), ElEng(a), and ElEng(b). This increases
for each parameter and condition, e. g. if the action further
requires computer skills and the TBox additionally specifies
that a CS degree guarantees computer skills, the internal rep-
resentation already contains 8 ground actions. Now, while
the translation of an individual CQ in eKAB may be a DNF
formula, such formulas can be arbitrarily nested inside other
logical constructors, and during grounding (which replaces
universal/existential quantifiers with enumerative conjunc-
tion/disjunction) the formulas grow even larger. Indeed, our
experiments clearly confirm that this has been the main bot-
tleneck in planning on eKAB models.

Pre-Compilation 1: Non-Naı̈ve DNF Transformation. An
obvious answer to this problem is to use a non-naı̈ve DNF
transformation instead, introducing auxiliary predicates to
represent sub-formulas. Indeed, it has long been known that
propositional (i. e. ground) formulas can be compiled away
at the cost of an increase in plan length (Nebel 2000). We
are not aware of any implementation of this approach, but we
experiment with it here. The compilation requires to intro-
duce two auxiliary predicates for every ground sub-formula
φ: Pφ represents the truth value of φ in the current state;
and P ′φ is designed to be true iff φ has already been evalu-
ated. Actions are introduced to evaluate φ provided P ′ψ is

true for all sub-formulas ψ of φ; all regular action precon-
ditions include P ′φ for the precondition and all effect condi-
tions (this last bit is a small innovation here, going beyond
the above-cited compilation which does not handle condi-
tional effects); the effects of all regular actions set all P ′φ
facts to false, thus forcing the planner to re-evaluate the rel-
evant formulas in the next step.

Pre-Compilation 2: Getting Rid of the Overhead. Be-
yond this known result, we leverage derived predicates to
compile formulas away without an increase in plan length.
This is actually quite simple, and in principle (see below)
works also at the original (non-grounded) PDDL level. For
each complex sub-formula φ(~x) occurring anywhere in the
planning task, we introduce a new predicate Pφ(~x) along
with the derivation rule r = Pφ(~x) ← φ(~x), and we re-
place φ with Pφ everywhere except in the body of the new
rule r. This results in a set of rules that is equivalent to
a non-recursive, and therefore stratified, Datalog program
with negation (Abiteboul, Hull, and Vianu 1995).

Implementation of our Pre-Compilations. However,
PDDL 2.2 does not actually allow stratified Datalog with
negation. For this and other pragmatic reasons, we decided
to rely partly on the pre-processor of FF. Namely, we let
that pre-process ground the eKAB-derived PDDL task, let
it transform all formulas to negation normal form, and let it
translate negative literals ¬p to new atoms not−p. At that
point, we take over and overwrite FF’s original (naı̈ve) DNF
transformation. When using derived predicates, this results
in negation-free rules compliant with PDDL 2.2. We then
let FF continue with the remainder of its pre-process, and
output the resulting representation into a PDDL file, which
can then be given to any off-the-shelf planner.

4 Experiments
To evaluate the impact of the derived-predicate based pre-
compiler (denoted DP), we compare with Nebel’s (2000)
pre-compilation (denoted Ne) and the unprocessed original
PDDL files (denoted O). As basis for this comparison, we
use FF and FD 20.06 (the newest version as of July 2021).
With the consideration of FD, our results well reflect the
performance of most classical planners existing today. The
main bottleneck in our experiments being the PDDL pro-
cessing, we also included FF as its processing techniques are
still state-of-the-art, yet differ fundamentally from those of
FD. We ran the commonly used baseline configurations (FF
with standard parameters, and FD with parameters closely
resembling FF). All experiments were run on a computer
with an Intel Core i5-4590 CPU@3.30GHz processor, and
run time and memory cutoffs of 600 seconds and 8 GBs.

Benchmarks. We contribute a benchmark collection for
DL-Lite planning, consisting of 125 instances from a vari-
ety of sources. A detailed description can be found in the
supplementary material. We include two scalable eKAB
benchmark domains, Robot and TaskAssign, used in prior
work (Calvanese et al. 2016; Stawowy 2016). We extend

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

643



(a) # solved (b) # PDDL processed (c) PDDL processing time (d) pre-comp. time
FF FD FF FD FF FD

Domain # O Ne DP O Ne DP O Ne DP O Ne DP O Ne DP O Ne DP Ne DP
Robot 20 20 1 20 4 1 20 20 20 20 4 20 20 15.03 20.20 10.09 0.08 0.08
TaskAssign 20 1 1 15 3 1 20 1 10 15 3 10 20 0.81 27.17 0.12 34.13 36.34
Cats 20 14 14 20 14 11 20 14 20 20 14 20 20 34.41 0.03 0.00 68.34 39.76 0.14 0.07 0.07
Elevator 20 12 0 20 20 0 20 12 20 20 20 20 20 60.20 0.01 0.00 0.35 20.51 0.29 0.14 0.13
TPSA 15 7 5 5 14 4 5 7 5 5 14 4 5 0.00 14.05 0.05 1.42 352.93 1.83 24.60 24.53
VTA 15 15 6 15 15 4 13 15 6 15 15 4 13 0.00 10.12 0.34 1.32 351.18 304.23 2.63 0.13
VTA-Roles 15 5 4 5 15 0 5 6 4 5 15 0 5 2.92 25.26 0.29 49.88 49.15
Assembly 30 0 0 24 30 0 30 9 10 24 30 4 30 0.00 6.58 0.03 0.22 383.73 0.55 2.31 1.31
GridPlacement 20 5 1 17 6 2 20 5 20 20 6 20 20 41.35 0.23 0.01 49.80 29.06 7.01 0.03 0.02
Miconic 30 9 3 13 9 2 9 11 27 19 14 18 30 56.61 75.71 0.33 0.32 0.05∑

205 88 35 154 130 25 162 100 142 163 135 120 183 27.47 6.32 0.09 28.23 92.95 18.61 6.28 6.18

Table 1: Per-domain aggregated statistics. Best results are highlighted in bold. (a) Number of instances solved within resource limits. (b)
Number of instances that passed the planners’ PDDL processing step. (c) Average PDDL processing time (seconds) on instances successfully
processed by all configurations, considering FF and FD individually. Instances are ignored if the processing time was less than 1 second in
all configurations. (d) Average time (seconds) for the pre-compilations.

these with additional larger instances. We adapt the VTA
(virtual travel agency) and TPSA (VOIP request) bench-
marks from semantic web-service composition (Hoffmann
et al. 2008) to the eKAB framework, also adding a third do-
main VTA-Roles where we included a more interesting on-
tology. Finally we created two new eKAB domains, Cats
and Elevator, inspired by standard planning benchmarks.
In addition we run experiments on PDDL benchmark do-
mains, outside the eKAB context, as our pre-compilation
techniques may be useful on any planning domain with com-
plex action pre- and effect conditions. We used Assem-
bly and Miconic with minor modifications, and we created
a showcase domain, GridPlacement, specifically designed
to contain challenging DNF transformations. The bench-
marks2 and pre-compilers3 are available online.

Discussion. Table 1 gives a summary of the results. As
indicated by the comparison of the O columns in (a) and (b),
PDDL processing indeed constitutes the bottleneck in this
benchmark collection. In almost every instance that was not
solved, the planners have been terminated already during the
construction of their internal planning task representation.

Table 1 (b) and (c) show that the DP pre-compilation can
successfully reduce the overhead of both planners’ PDDL
input handling in nearly every domain. The only excep-
tion is in web-service composition, were the pre-compilation
turned out detrimental, especially for FD. Besides an ab-
sence of complex conditions, in the web-service domains
the actions assign predicates to previously unbound objects
in the world. Therefore, by increasing the number of objects,
the grounding and translation sizes grow drastically.

The PDDL processing advantages carry over to overall
performance. FF and FD solve a significantly larger fraction
of the DP pre-compiled instances than unprocessed ones.

2https://gitlab.perspicuous-computing.science/m.steinmetz/
pddl-dllite-benchmarks.git

3https://gitlab.perspicuous-computing.science/a.kovtunova/
moreflags2.git

In contrast, both planners could not exploit the previ-
ous pre-compilation approach, Ne, effectively. There are
two reasons. First of all, the encoding of the formula
evaluations resulted in a considerable blow-up of the input
files. This overhead affects both planners’ PDDL process-
ing, and partly explains the difference between the Ne and
DP columns in Table 1 (b) and (c). Comparing both plan-
ners, FF deals with the Ne results much more efficiently.
While FF can process substantially more instances after the
Ne pre-compilation than before, FD actually processes less.
For one, it should be noted that, due to the particular com-
piler implementation, the structure of the generated PDDL
files already correlate with FF’s internal task representa-
tion to some extent. Moreover, FD’s internal planning task
representation differs fundamentally from that of FF. How-
ever, deriving this representation requires additional analysis
steps that scale with the number of actions (yet not with de-
rived predicates, which are treated separately). The compar-
atively large number of auxiliary actions introduced by the
compilation significantly impedes FD’s performance even in
the smallest instances, which is reflected in the large average
run times reported in Table 1 (c). The second and even more
critical issue of the Ne pre-compiler is the obfuscation of the
planning task’s original structure. As alluded by Table 1 (a),
both planners’ searches run into serious troubles. The num-
ber of instances that could be solved by FF and FD after the
pre-compilation drops substantially in every domain.

5 Conclusion
We demonstrated that planning with DL-Lite eKABs can
be made feasible through pre-compilations producing PDDL
more digestible for state-of-the-art planners. While planning
with DL state axioms has been of long-standing interest, this
is the first practical integration we are aware of.

This positive result paves the way for future research ex-
panding this integration. Possible directions include the de-
sign of planning tools tailored to eKABs, as well as eK-
ABs over more expressive ontology languages leveraging
e.g. PDDL derived predicates.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

644

https://gitlab.perspicuous-computing.science/m.steinmetz/pddl-dllite-benchmarks.git
https://gitlab.perspicuous-computing.science/m.steinmetz/pddl-dllite-benchmarks.git
https://gitlab.perspicuous-computing.science/a.kovtunova/moreflags2.git
https://gitlab.perspicuous-computing.science/a.kovtunova/moreflags2.git


Acknowledgments
This work is supported by DFG grant 389792660, TRR 248
(https://perspicuous-computing.science).

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison-Wesley.
Calvanese, D.; Giacomo, G. D.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2005. Dl-Lite: Tractable description log-
ics for ontologies. In Veloso, M. M., and Kambhampati,
S., eds., Proceedings, The Twentieth National Conference
on Artificial Intelligence and the Seventeenth Innovative Ap-
plications of Artificial Intelligence Conference, 602–607.
AAAI Press / The MIT Press.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. EQL-Lite: Effective first-order query
processing in description logics. In Veloso, M. M., ed.,
Proc. of the 20th Int. Joint Conf. on Artificial Intelligence
(IJCAI’07), 274–279.
Calvanese, D.; De Giacomo, G.; Montali, M.; and Patrizi,
F. 2013. Verification and synthesis in description logic
based dynamic systems. In Faber, W., and Lembo, D., eds.,
Proc. of the 7th Int. Conf. on Web Reasoning and Rule Sys-
tems (RR’13), Lecture Notes in Computer Science, 50–64.
Springer.
Calvanese, D.; Montali, M.; Patrizi, F.; and Stawowy, M.
2016. Plan synthesis for knowledge and action bases. In
Kambhampati, S., ed., Proc. of the 25th Int. Joint Conf. on
Artificial Intelligence (IJCAI’16), 1022–1029. AAAI Press.
Fox, M., and Long, D. 2003. PDDL2.1: an extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research 20:61–124.
Gazen, B. C., and Knoblock, C. 1997. Combining the ex-
pressiveness of UCPOP with the efficiency of Graphplan. In
Proceedings of the 4th European Conference on Planning
(ECP’97), 221–233.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.
Ginsberg, M. L., and Smith, D. E. 1988. Reasoning about
action I: A possible worlds approach. Artificial Intelligence
35:165–195.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Edelkamp, S. 2005. The deterministic
part of IPC-4: An overview. Journal of Artificial Intelligence
Research 24:519–579.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hoffmann, J.; Weber, I.; Scicluna, J.; Kacmarek, T.; and
Ankolekar, A. 2008. Combining scalability and expres-
sivity in the automatic composition of semantic web ser-
vices. In 8th International Conference on Web Engineering
(ICWE’08).

Nebel, B. 2000. On the compilability and expressive power
of propositional planning formalisms. Journal of Artificial
Intelligence Research 12:271–315.
Pednault, E. P. D. 1989. ADL: exploring the middle
ground between STRIPS and the situation calculus. In
Brachman, R. J.; Levesque, H. J.; and Reiter, R., eds.,
Proceedings of the 1st International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR’89).
Toronto, Canada, May 15-18 1989, 324–332. Morgan Kauf-
mann.
Poggi, A.; Lembo, D.; Calvanese, D.; De Giacomo, G.;
Lenzerini, M.; and Rosati, R. 2008. Linking data to on-
tologies. Journal on Data Semantics X:133–173.
Stawowy, M. 2016. Plan Synthesis in Explicit-input Knowl-
edge and Action Bases. Ph.D. Dissertation, IMT School for
Advanced Studies Lucca, Italy.
Thiebaux, S.; Hoffmann, J.; and Nebel, B. 2005. In defense
of PDDL axioms. Artificial Intelligence 168(1–2):38–69.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

645

https://perspicuous-computing.science

	Introduction
	Background
	Pre-Compiling the eKAB PDDL
	Experiments
	Conclusion

