
Sticky Existential Rules and Disjunction are Incompatible∗

Michael Morak
University of Klagenfurt, Austria

michael.morak@aau.at

Abstract
Stickiness is one of the well-known properties in the literature
that guarantees decidability of query answering under sets of
existential rules, that is, Datalog rules extended with existen-
tial quantification in rule heads. In this note, we investigate
whether this remains true in the case when rule heads are al-
lowed to be disjunctive. We answer this question in the neg-
ative, providing a strong undecidability result that shows that
the concept of stickiness cannot be extended to disjunctive
existential rules, even when considering only fixed atomic
queries and a fixed set of rules. This provides evidence that,
in order to keep query answering decidable, a stronger prop-
erty than stickiness is needed in the disjunctive case.

1 Introduction
Rule-based languages form the core of several applications
in the areas of databases and knowledge representation. In
the setting of ontological query answering, a traditional
databaseD is enriched with a set of rules Σ that represent an
ontology (that is, knowledge about the world). Conjunctive
queries (CQs) are then answered w.r.t. the combined knowl-
edge represented by the database and the ontology, that is,
D ∪ Σ. In this paper, we consider the language of existen-
tial rules, also known as Datalog± or tuple-generating de-
pendencies (TGDs), which are Datalog rules extended with
existential quantifiers in rule heads.

A TGD is a formula ∀X ϕ(X) → ∃Y ψ(X,Y), where ϕ
and ψ are conjunctions of atoms. In general, CQ answer-
ing w.r.t. a database enriched with TGDs is undecidable. A
wide range of syntactic restrictions have been introduced in
the literature that guarantee decidability. Notably, languages
based on the concepts of guardedness (Calı̀, Gottlob, and
Kifer 2013), stickiness (Calı̀, Gottlob, and Pieris 2012), and
weak-acyclicity (Fagin et al. 2005) have proven successful
in this regard.

In this paper we focus on the extension of TGDs with dis-
junction (that is, where the formula ψ above is a disjunc-
tion of conjunctions). These rules are then called disjunctive
existential rules or disjunctive tuple-generating dependen-
cies (DTGDs). A thorough investigation of the complexity
of CQ answering has been done for guarded classes of DT-
GDs (Bourhis et al. 2016) and for acyclicity-based notions

∗This note is an excerpt of the author’s doctoral thesis (Morak
2014), which has hitherto not been published at a scientific venue.

(Carral, Dragoste, and Krötzsch 2017). However, for the de-
cidable class of sticky TGDs (and its extensions), such an
investigation has not yet been presented. We aim to close
this gap in the present work.

In particular, we extend the class of sticky sets of TGDs
with disjunction, and give the relevant definitions to estab-
lish the corresponding class of sticky sets of DTGDs. We
then show that even for schemas with a maximum arity of
two and atomic queries, the CQ answering problem becomes
undecidable for sticky sets of DTGDs. Undecidability even
holds in the data complexity, where the set of DTGDs and
the CQ are fixed. Our proof technique reveals that a useful
extension of stickiness with disjunction seems impossible.

2 Preliminaries
Technical Definitions. We define the following pairwise
disjoint (infinite) sets: a set C of constants, a set N of la-
beled nulls, and a set V of regular variables. We denote
by X sequences (or sets) of variables X1, . . . , Xk, k ≥ 0.
A schema R is a set of relations (or predicates), each of
which has an associated arity. The arity of a relation r is de-
noted arity(r), and the maximum arity over all predicates
of schema R is denoted arity(R). A position in schema R
is a pair (r , i), where r is a relation in R, and i a number
such that 1 ≤ i ≤ arity(r). We will denote positions using
the notation r [i]. A term t is a constant (t ∈ C), labeled
null (t ∈ N), or variable (t ∈ V). An atomic formula (also
simply called an atom) has the form p(t1, . . . , tn), where p
is an n-ary predicate, and t1, . . . , tn are terms. For an atom
a, we denote as dom(a) and var(a) the set of terms and the
set of variables occurring in a, respectively. These notations
naturally extend to sets of atoms. For convenience, we will
treat conjunctions of atoms as sets of atoms. An instance I
over a schema R is a (possibly infinite) set of atoms of the
form p(t), where t is a tuple of constants and labeled nulls,
that is, t ⊆ (C∪N)|t|. A databaseD is a finite instance that
does not contain null values. When an instance I is treated
as a logical formula, it is the conjunction ∃X

∧
a∈I a, where

X contains a variable Xz for each labeled null z in I .

Disjunctive Tuple-Generating Dependencies (DTGDs).
A DTGD σ is a first-order formula of the form
∀X (ϕ(X) →

∨n
i=1 ∃Yi ψi(X,Yi)) , where n ≥ 1, X ∪

Y1 ∪ . . . ∪ Yn ⊂ V, and ϕ,ψ1, . . . , ψn are conjunctions

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

691

of atoms (possibly containing constants of C). The formula
ϕ is called the body of σ, denoted body(σ), while

∨n
i=1 ψi

is the head of σ, denoted head(σ). The set of variables
var(body(σ)) ∩ var(head(σ)) ⊆ X, that is, the variables
of X which appear both in the body and in the head of σ, is
known as the frontier of σ, and is denoted as fr(σ).

If n = 1, then σ is called tuple-generating dependency
(TGD). We will sometimes refer to sets of (D)TGDs as a
theory or as a set of (disjunctive) existential rules or simply
rules. The schema of a set Σ of DTGDs, denoted sch(Σ),
is the set of all predicates occurring in Σ. In the rest of the
paper, for brevity, we will omit the universal quantifiers in
front of DTGDs, and implicitly assume such a quantifica-
tion. We will also use the comma (instead of ∧) for con-
joining atoms in the body and in the head of a DTGD. An
instance I satisfies a DTGD σ, written I |= σ, if the follow-
ing holds: whenever there exists a homomorphism h such
that h(ϕ(X)) ⊆ I , then there exists i ∈ [n] and h′ ⊇ h
such that h′(ψi(X,Yi)) ⊆ I; I satisfies a set Σ of DTGDs,
denoted I |= Σ, if I |= σ, for each σ ∈ Σ. Sometimes, we
treat a set Σ of DTGDs as the logical formula (

∧
σ∈Σ σ).

Query Answering. A conjunctive query (CQ) q is a posi-
tive existential first-order formula ∃Yϕ(X,Y), where ϕ is
a conjunction of atoms with variables from X∪Y ⊂ V, and
possibly constants of C. A 0-ary CQ is called Boolean CQ
(BCQ). Atomic queries, denoted CQ1, are CQs with a single
atom. Unions of CQs (UCQs) are disjunctions of CQs.

The models of a database D and a theory Σ, de-
noted models(D,Σ), is the set of instances {I | I ⊇
D and I |= Σ}. The answer to a CQ q w.r.t. D and
Σ, denoted ans(q,D,Σ), is the set of tuples of constants⋂
I∈models(D,Σ){t | t ∈ q(I)}. The answer to a BCQ

q w.r.t. D and Σ is positive, denoted D ∪ Σ |= q, if
ans(q,D,Σ) 6= ∅. Our central problem, CQ-ANSWERING,
is defined as follows: given a BCQ1 q, a database D, and
a set Σ of DTGDs, decide whether it has a positive answer.
Following the taxonomy used by (Vardi 1982), the data com-
plexity of the above problems is calculated taking only the
database as input. For the combined complexity, the query
and set of DTGDs count as part of the input as well.

Disjunctive Chase. We employ the disjunctive chase in-
troduced in (Deutsch and Tannen 2005), i.e. an extension of
the well-known chase procedure where each step “branches”
out several instances, each satisfying one of the disjuncts in
the DTGD that is applied. Therefore, the result of the dis-
junctive chase is, in general, a set of instances.
Definition 2.1 (DTGD Chase Rule). Consider an instance
I , and a DTGD σ of the form ϕ(X)→

∨n
i=1 ∃Y ψi(X,Y).

σ is applicable to I if there exists a homomorphism h such
that h(ϕ(X)) ⊆ I , and the result of applying σ to I with h
is the set {I1, . . . , In}, where Ii = I ∪ h′(ψi(X,Y)), for
each i ∈ [n], and h′ ⊇ h is such that h′(Y) is a “fresh”
null not occurring in I , and following lexicographically all
those in I , for each Y ∈ Y. For such an application, which
defines a single chase step, we write I〈σ, h〉{I1, . . . , In}.

1We focus on BCQs because it is well-known they are
LOGSPACE-equivalent to CQs for CQ-ANSWERING.

A disjunctive chase tree of a database D and a set Σ of
DTGDs is a (possibly infinite) tree such that the root is D,
and for every node I , assuming that {I1, . . . , In} are the
children of I , there exists σ ∈ Σ and a homomorphism h
such that I〈σ, h〉{I1, . . . , In}. The disjunctive chase algo-
rithm for D and Σ consists of an exhaustive application of
DTGD chase steps in a fair fashion, that is, every DTGD that
can be applied is applied via at least one homomorphism in
each path of the chase tree. This leads to a disjunctive chase
tree T of D and Σ. Let chase(D,Σ) be the set {I | I is
the set of all atoms occurring in a branch of T}. Notice that
each such branch of T (i.e. a path from the root downwards)
is well-defined as the least fixpoint of a monotonic opera-
tor, even though such paths can of course be infinite. By
construction, each instance in chase(D,Σ) is a model of D
and Σ. Interestingly, chase(D,Σ) is a universal model set
of D and Σ, that is, for each I ∈ models(D,Σ), there ex-
ists J ∈ chase(D,Σ) and a homomorphism hJ such that
hJ(J) ⊆ I (Deutsch, Nash, and Remmel 2008). This im-
plies that the chase is the right tool for query answering.

3 Sticky Sets of DTGDs
In this section, we extend the syntactic restriction of sticky
sets of TGDs to DTGDs. Our extension also works for the
other sticky-based restrictions. However, as we will see, the
combination of the limited joins allowed by sticky theories
and disjunction lead to undecidability of CQ-ANSWERING.

3.1 Extending Sticky Sets of TGDs to DTGDs
Stickiness is determined by employing a marking algorithm
called SMarking (Calı̀, Gottlob, and Pieris 2012). The for-
mulation of the SMarking procedure given there is easy to
extend to DTGDs, as done below. For a DTGD σ, let
head(σ) denote all the atoms occurring in the head of σ,
independent of any disjunctions σ may contain.

Definition 3.1. SMarking takes a set Σ of DTGDs as input
and returns a set of marked DTGDs where for each marked
DTGD, every body variable is either marked, or not. The
procedure works in two steps, where the second step is ex-
haustively applied until a fixpoint is reached.

Initial Marking Step For each DTGD σ ∈ Σ and each
variable V in body(σ), if there exists an atom a in
head(σ) that does not contain V , mark V in σ.

Propagation Step For each TGD σ ∈ Σ and variable V
in body(σ), if there is a σ′ ∈ Σ such that head(σ) and
body(σ′) contain a relation r and the positions where V
appears in r in head(σ) coincide exclusively with posi-
tions of marked variables in body(σ′), then mark V in σ.

Analogously to the definition of sticky sets of TGDs, we
can now give the same definition of DTGDs.

Definition 3.2. A set Σ of DTGDs is sticky if there is no
DTGD σ ∈ SMarking(Σ) such that a marked variable oc-
curs in body(σ) more than once.

The extension of stickiness to DTGDs is purposefully nar-
row: it does not distinguish between disjunction and con-
junction in rule heads. As we will later see, this narrow ex-

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

692

tension already leads to undecidability, even though the ex-
tended SMarking procedure guarantees that the sticky prop-
erty (Calı̀, Gottlob, and Pieris 2011) is valid in each model
of the disjunctive chase w.r.t. sticky sets of DTGDs.

3.2 CQ-ANSWERING under Sticky Sets of DTGDs
We investigate the problems of CQ-ANSWERING, as well as
CQ1-ANSWERING. However, even in the case of sticky sets
of (non-disjunctive) TGDs, we can see that in fact both of
these problems are equivalent. We will later see that results
also hold for UCQs.

To make our investigation easier, it is not difficult to see
from the definition of sticky sets of DTGDs that CQs can
be encoded as rules, where the CQ becomes the rule body,
and a single, fresh propositional atom becomes the head. We
can then simply ask an atomic query consisting of just this
propositional atom. This observation immediately leads to
the following result:
Proposition 3.3. Under sticky sets of DTGDs, the
CQ-ANSWERING and CQ1-ANSWERING problems are
LOGSPACE-equivalent in combined and data complexity.

We can thus restrict our attention to arbitrary CQs, and all
the undecidability results obtained for the CQ-ANSWERING
problem also apply to CQ1-ANSWERING.

3.3 Undecidability of CQ-ANSWERING

We will now establish that the combination of stickiness and
non-determinism leads to undecidability. In fact the problem
lies in the combination of simple joins like cross products,
and disjunction. Allowed to interact, as is the case in sticky
sets of DTGDs, these two features lead to undecidability of
query answering. We thus do not even need the full expres-
sive power that stickiness provides. In fact it is sufficient
to take a set of disjunctive inclusion dependencies (DIDs)—
that is, DTGDs that only allow one body atom with non-
repeated variables, and hence are clearly sticky—and allow
a single, binary Cartesian product to appear. We thus define
the class of ×-DIDs as follows:
Definition 3.4. A set Σ of DTGDs is a set of ×-DIDs, if
Σ can be partitioned into two sets ΣDID and Σ×, such that
ΣDID is a set of DIDs, and Σ× is a set of cartesian products,
that is, TGDs of the form r(X), s(Y)→ rs(X′,Y′), where
r , s and rs are relations and X and Y are disjoint sets of
variables, with X′ ⊆ X and Y′ ⊆ Y.

With ×-DIDs it is possible to encode UCQs as CQs:
Proposition 3.5. Consider a database D, a set Σ of ×-
DIDs, and a UCQ Q over schema R. A database D′, a
set Σ′ of ×-DIDs, and a CQ q over a schema R′, with
arity(R) = arity(R′) can be constructed in polynomial
time such that D ∪ Σ |= Q if and only if D′ ∪ Σ′ |= q.

Proof (Idea). This can be achieved by making use of a hard-
coded ternary OR relation in the database, keeping track of
the atoms derived by the chase (by marking them with a spe-
cial constant via a cross-product rule), and having dummy
atoms to satisfy all UCQ disjuncts. The final CQ is con-
structed so that it ensures, using the OR relation, that at least
one UCQ disjunct is satisfied by non-dummy atoms.

Since×-DIDs are sticky, the above proposition also holds
for sticky sets of DTGDs:

Corollary 3.6. Under sticky sets of DTGDs, CQ-
ANSWERING and UCQ-ANSWERING are PTIME-
equivalent in the combined and data complexity.

Hence, sticky sets of DTGDs are expressive enough that
the query language no longer plays a role, and any undecid-
ability result shown for answering UCQs under sticky sets
of DTGDs also holds for CQs and atomic queries.

With the above definitions and observations in place, we
can now proceed to show our first undecidability result. In
order to show undecidability of CQ-ANSWERING under ×-
DIDs, we can simulate a general, deterministic Turing ma-
chine and thus provide a reduction from the halting problem.

Theorem 3.7. CQ-ANSWERING under ×-DIDs over a
schema R is undecidable, even when the arity of R is
bounded by the constant 2.

Proof. We will show this by reduction from the co-halting
problem. Let M = 〈S,Λ, δ, s0〉 be a deterministic Turing
machine, where S is a set of states with s0, sh ∈ S being the
starting and halting state, Λ = {1, 0,t} it’s alphabet with t
the blank symbol and δ : S×Λ→ S×Λ×{−1,+1, 0} the
transition function. We assume that there is only one halting
state sh and that when the machine halts, it accepts, and has
a do-nothing self-loop on sh. We also assume that M takes
no input, that is, the work tape contains only blanks, and
that the head is, for technical reasons, at the second position
of the tape and never moves further left than that. We will
construct a database D, a set of ×-DIDs Σ and a CQ q over
a schemaR, such that D ∪ Σ |= q iff M does not halt.

The idea of the construction is as follows: we will con-
struct an infinite grid, where each row represents a configu-
ration of the Turing machine and each column a position on
the tape. Using a disjunctive rule, we will guess, for each po-
sition and configuration, which symbol there is on the tape.
With a CQ q, we will then check that at least one model of
the chase represents a valid computation of M and that this
computation halts. To this end, let S′ = (S × Λ) ∪ Λ.
The SchemaR. R contains the following predicates:

• null(·): collects all null values.
• init(· , ·): the initial two configurations and cells.
• conf (· , ·): two subsequent configurations.
• cell(· , ·): two subsequent tape cells.
• confcell(· , ·): a configuration and a tape cell together.
• s(· , ·) for each s ∈ S′: a combination of a configuration

and a tape cell is labelled with s.

The Database D. In our database D we will simply store
two constants a, b in a relation init(a, b).
The Set of ×-DIDs Σ. First, we construct our grid:

• init(X,Y)→ conf (X,Y)

• init(X,Y)→ cell(X,Y)

• conf (X,Y)→ ∃Z conf (Y,Z),null(Z)

• cell(X,Y)→ ∃Z cell(Y,Z),null(Z)

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

693

• conf (X1, Y1), cell(X2, Y2)→ confcell(X1, X2)

We guess which element from S′ is true at each confcell :

• confcell(X1, X2)→
∨
s∈S′ s(X1, X2)

The CQ q. In order to construct q, we will construct a
union (i.e. disjunction) of CQs (UCQ) Q, which makes it
easier to grasp what conditions the query checks. In order
to check the validity of the transitions, and model the iner-
tia rules, notice that we can represent transitions in δ as a
six-tuple abc → a′b′c′ mapping a 3-tuple of symbols from
S′ (i.e. including the state) in one configuration to a 3-tuple
of symbols in the next configuration, where thus a, c ∈ Λ,
b ∈ S × Λ and a′, b′, c′ ∈ S′, obviously with only one of
a′, b′, c′ from S×Λ. With this observation in place, we now
give the formal definition of Q, where each of the following
four parts represents a set of disjuncts that check a certain
condition. For brevity, we may use disjunction inside a con-
junction. This can be converted to a UCQ by unfolding.

1. Qinitial is made up of three parts, checking the first, sec-
ond, and subsequent positions of the tape respectively:
• ∃X∃Y init(X,Y) ∧ (0 (X,Y) ∨ 1 (X,Y))

•
∨

[s,λ]∈(S′\{[s0,t]}) ∃X∃Y init(X,Y) ∧ [s, λ](X,Y)

• ∃X∃Y ∃Z init(X,Y)∧null(Z)∧(0 (Y, Z)∨1 (Y, Z))

2. Qtrans is made up of multiple disjuncts as follows. For
each of the possible rewriting rules abc → a′b′c′ that do
not occur in δ, we add the following disjunct, that will
thus make the query true if the transition function has
been violated.

∃X∃Y ∃X1∃X2∃X3 conf (X,Y) ∧ cell(X1, X2)∧
cell(X2, X3) ∧ a(X,X1) ∧ b(X,X2) ∧ c(X,X3)∧

a ′(Y,X1) ∧ b′(Y,X2) ∧ c′(Y,X3)

3. Qinert checks for a triple of symbols from Λ on the tape
and checks that the next configuration contains the same
ones. It is thus similar in structure to Qtrans . For each
triple abc of constants from Λ× Λ× Λ, and constant d ∈
Λ \ {b}, we add the following disjunct:

∃X∃Y ∃X1∃X2∃X3 conf (X,Y) ∧ cell(X1, X2)∧
cell(X2, X3) ∧ a(X,X1) ∧ b(X,X2) ∧ c(X,X3)∧

d(Y,X2)

4. Qhalt ≡

∃X∃Y [sh , 0](X,Y)∨ [sh , 1](X,Y)∨ [sh ,t](X,Y)

Correctness. The above construction is correct. Assume
that D ∪ Σ does not entail Q. Then this means that there is
an instance I ∈ chase(D,Σ), such that none of the disjuncts
of Q are true in I . But because I , by construction and non-
entailment of Qinitial , Qtrans and Qinert , represents a valid
computation of M , and I does not entail Qhalt , this means
that there must be an infinite computation ofM that does not
reach the halting state. Note that asM is deterministic, there
is exactly one such I . Conversely, assume that the query Q

holds in every model ofD∪Σ. This means that every model
either encodes an invalid computation, or a valid computa-
tion that reaches the halting state, by construction of Qhalt .
We thus have as desired that D ∪ Σ |= Q if and only if M
does not halt. Also note that the above construction uses
only ×-DIDs, and the schema has at most arity 2.

However, the proof yields a union of CQs instead of our
desired CQ. It remains to show that the result also holds for
CQs, but this follows immediately from Proposition 3.5.

In the proof, we show that the unconstrained combina-
tion of disjunction and cross products is a definite cause for
undecidability. From the construction, it seems impossible
to meaningfully combine stickiness with disjunction, since
the simplest combination (DIDs plus a single cross-product,
maximum arity 2) already induces undecidability. The next
result establishes undecidability also in the data complexity,
at the cost of increasing the maximum arity to at most 3.

Theorem 3.8. CQ-ANSWERING of fixed CQs under fixed
sets of ×-DIDs over a schema R is undecidable, even when
the arity ofR is bounded by the constant 3.

Proof (Idea). The proof is an adaptation of the previous one,
where data about the Turing machine is now stored in re-
lations in the database (i.e. possible symbols, illegal tran-
sitions according to the transition function δ). For each
confcell , we can then guess a symbol and store it in a three-
ary relation. Finally, in the query, we can check for guesses
that represent illegal transitions.

We thus have shown, as desired, that even for fixed sets of
×-DIDs and fixed queries, that is, in the data complexity, the
CQ-ANSWERING problem is still undecidable. The follow-
ing corollary follows immediately from the above results,
and the fact that sets of ×-DIDs are sticky sets of DTGDs:

Corollary 3.9. CQ-ANSWERING and CQ1-ANSWERING
under sticky sets of DTGDs are undecidable, even if we con-
sider only the data complexity.

These results provides further evidence that decidability
of CQ-ANSWERING under disjunctive extensions of sticky
TGDs seemingly cannot be meaningfully achieved: since
any set of inclusion dependencies is sticky, and sticky TGDs
allow for the expression of cross products, any extension of
sticky TGDs with disjunction should arguably at least con-
tain the class of ×-DIDs, and would thus inherit the unde-
cidablility of CQ-ANSWERING.

4 Conclusions
In this paper, we have investigated the impact of allow-
ing disjunctions in rule heads of sticky existential rules, or
TGDs, when considering the query answering problem. We
established an undecidability result for the query answering
problem, even when restricted to atomic queries. In fact, for
general queries, this result holds even when only unary and
binary predicates are allowed in the schema. Undecidability
even holds in the data complexity. Our results imply that it
does not seem possible to meaningfully combine the concept
of stickiness with disjunction.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

694

References
Bourhis, P.; Manna, M.; Morak, M.; and Pieris, A. 2016.
Guarded-based disjunctive tuple-generating dependencies.
ACM Trans. Database Syst. 41(4):27:1–27:45.
Calı̀, A.; Gottlob, G.; and Kifer, M. 2013. Taming the In-
finite Chase: Query Answering under Expressive Relational
Constraints. J. Artif. Intell. Res. 48:115–174.
Calı̀, A.; Gottlob, G.; and Pieris, A. 2011. New Expres-
sive Languages for Ontological Query Answering. In Proc.
AAAI. AAAI Press.
Calı̀, A.; Gottlob, G.; and Pieris, A. 2012. Towards More
Expressive Ontology Languages: The Query Answering
Problem. Artif. Intell. 193:87–128.
Carral, D.; Dragoste, I.; and Krötzsch, M. 2017. Restricted
chase (non)termination for existential rules with disjunc-
tions. In Sierra, C., ed., Proc. IJCAI, 922–928. ijcai.org.
Deutsch, A., and Tannen, V. 2005. XML Queries and Con-
straints, Containment and Reformulation. Theor. Comput.
Sci. 336(1):57–87.
Deutsch, A.; Nash, A.; and Remmel, J. B. 2008. The Chase
Revisited. In Proc. PODS, 149–158. ACM.
Fagin, R.; Kolaitis, P. G.; Miller, R. J.; and Popa, L. 2005.
Data Exchange: Semantics and Query Answering. Theor.
Comput. Sci. 336(1):89–124.
Morak, M. 2014. The Impact of Disjunction on Reasoning
Under Existential Rules. Ph.D. Dissertation, University of
Oxford, Oxford, Oxfordshire, UK.
Vardi, M. Y. 1982. The Complexity of Relational Query
Languages (Extended Abstract). In Proc. STOC, 137–146.
ACM.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

695

	Introduction
	Preliminaries
	Sticky Sets of DTGDs
	Extending Sticky Sets of TGDs to DTGDs
	 under Sticky Sets of DTGDs
	Undecidability of

	Conclusions

