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Abstract
Public observation logic (POL) reasons about agent expecta-
tions and agent observations in various real world situations.
The expectations of agents take shape based on certain pro-
tocols about the world around and they remove those possi-
ble scenarios where their expectations and observations do
not match. This in turn influences the epistemic reasoning of
these agents. In this work, we study the computational com-
plexity of the satisfaction problems of various fragments of
POL. In the process, we also highlight the inevitable link that
these fragments have with the well-studied Public announce-
ment logic.

1 Introduction
Reasoning about knowledge among multiple agents plays
an important role in studying real-world problems in a dis-
tributed setting, e.g., in communicating processes, proto-
cols, strategies and games. Multi-agent epistemic logic (EL)
(Fagin et al. 1995) and its dynamic extensions, popularly
known as dynamic epistemic logics (DEL) (van Ditmarsch,
van der Hoek, and Kooi 2008) are well-known logical sys-
tems to specify and reason about such dynamic interactions
of knowledge. Traditionally, agents’ knowledge is about
facts and EL/DEL mostly deals with this phenomenon of
‘knowing that’. More recently, the notions of ‘knowing
whether’, ‘knowing why’ and ‘knowing how’ have also been
investigated from a formal viewpoint (Wang 2018).

These agents also have expectations about the world
around them, and they reason based on what they observe
around them, and such observations may or may not match
the expectations they have about their surroundings. Follow-
ing (Wang 2011), such perspectives on agent reasoning were
taken up by (van Ditmarsch et al. 2014) and studied formally
in the form of Public observation logic (POL). We present
below a situation that POL is adept at modelling. The exam-
ple is in the lines of the one considered in (Chakraborty et
al. 2022):
Example 1. Let us consider a robotic vacuum cleaner
(vbot) that is moving on a floor represented as a 7 × 7 grid
(see Figure 1). On the top right of the floor, there is a debris-
disposal area, and on the bottom left, there is a power source
to recharge. Two children Alice and Bob are awed by this
new robotic cleaner. They are watching it move and trying
to guess which direction it is moving. The system is adaptive,

Figure 1: A robotic vacuum cleaner on the floor (in the middle of
the grid). The power source is at bottom left, whereas the debris-
disposal area is at top right.

thus the global behaviour is not hard-coded but learned. We
suppose that vbot moves on a grid and the children may ob-
serve one of the four directions: right (▶), left (◀), up(▲) or
down(▼), and of course, combinations of them. Note that,
for example, observing ◀ means that the bot moves one step
left. Let Alice be aware of a glitch in the bot. Then her ex-
pectations regarding the vbot’s movements include the fol-
lowing possibilities:

1. The bot may go up or right for debris-disposal, but may
make an erroneous move, that is, a down or a left move.

2. The bot may go towards power source without error.

The only difference between Bob’s expectation and that of
Alice is that Bob does not consider the bot to make an error
while moving towards debris-disposal since he is unaware
of the glitch.

Suppose the vbot is indeed moving towards power from
the center of the grid. Hence if the bot makes one left move,
◀, Bob would know that the bot is moving towards power
whereas Alice would still consider moving towards debris-
disposal a possibility.

The example concerns certain rules that we follow in our
daily life, they deal with situations where agents expect cer-
tain observations at certain states based on some pre-defined
protocols, viz. the bot mechanism in the example given
above. They get to know about the actual situation by ob-
serving certain actions which agree with their expectations
corresponding to that situation. POL does not deal with the
protocols themselves, but the effect those protocols have in
our understanding of the world around us in terms of our
expectations and observations. In (Chakraborty et al. 2022)
we have investigated the computational complexity of the
model-checking problem of different fragments of POL, and
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Figure 2: Complexity results of satisfiability of various fragments
of POL−.

in this paper, we will deal with the computational complex-
ity of the satisfaction problem of various proper fragments
of POL (cf. Figure 2). We will show how certain simple
fragments of POL give rise to high complexity with respect
to their computational behaviour.

To prove the complexity results of some fragment(s) of
POL we use a translation to Public announcement logic
(PAL) (Plaza 2007), whereas, for other fragment(s), a
tableau method is utilized where the tableau rules provide a
mix of modal logic reasoning and computations of language
theory residuals.

Outline. In Section 2, we recall the relevant definitions
of POL. In Section 3, we describe an application of the
satisfiability problem of POL−. In Section 4 we present a
NEXPTIME algorithm for POL− using the tableau method.
In Section 5, we prove that POL− is in NEXPTIME-Hard.
In section 6, we present the complexity results for various
fragments of POL−. Section 7 discusses related work, and
Section 8 concludes the paper.

2 Background
In this section, we provide a brief overview of a fragment of
public observation logic (POL) (van Ditmarsch et al. 2014),
which we term as POL−.

2.1 A Fragment of POL(POL−)
Let Agt be a finite set of agents, P be a countable set of
propositions describing the facts about the state and Σ be a
finite set of actions.

An observation is a finite string of actions. In the vacuum
bot example, an observation may be ◀ ▼ ▶ ▲ and similar
others. An agent may expect different potential observations
to happen at a given state, but to model human/agent expec-
tations, such expectations are described in a finitary way by
introducing the observation expressions (as star-free regular
expressions over Σ):
Definition 1 (Observation expressions). Given a finite set of
action symbols Σ, the language Lobs of observation expres-
sions is defined by the following BNF:

π ::= ∅ | ε | a | π · π | π + π

where ∅ denotes the empty set of observations, the constant ε
represents the empty string, and a ∈ Σ.

In the bot example, the observation expression (◀ ·▼+ ▶
·▲) models the expectation of the bot’s movement in either
way, towards the power source or the debris-disposal area,
whereas (◀)3 · (▼)3 models the expectation of moving to-
wards the power source.

debris

(▶ +▲)≤3

power

(◀ +▼)≤3

debris (▶ +▲)≤3(▼+ ◀ +ε)(▶ +▲)≤3

s t

u

Alice, Bob
Alice

Alice

Figure 3: Model describing the initial knowledge of the two agents
Alice and Bob about the expectation of the vbot .

The size of an observation expression π is denoted by |π|.
The semantics for the observation expressions are given by
sets of observations (strings over Σ), similar to those for
regular expressions. Given an observation expression π, its
set of observations is denoted by L(π). For example, L(▶
) = {▶}, and L(◀ ·▼+ ▶ ·▲) = {◀ ▼,▶ ▲}. The
(star-free) regular language π\w is the set of words given by
{v ∈ Σ∗ | wv ∈ L(π)}. The language Pre(π) is the set of
prefixes of words in L(π), that is, w ∈ Pre(π) iff ∃v ∈ Σ∗

such that wv ∈ L(π) (namely, L(π\w) ̸= ∅).

Example 2. (◀ ·▼)\ ◀= (◀ ·▼+ ▶ ·▲)\ ◀= ▼, and
Pre(◀ ·▼+ ▶ ·▲) = {ε,◀,◀ ▼,▶,▶ ▲}.

We now present a modified version of epistemic expecta-
tion models from (van Ditmarsch et al. 2014) that capture
the expected observations of agents. They can be seen as
epistemic models together with, for each state, a set of po-
tential or expected observations. Recall that an epistemic
model is a tuple ⟨S,∼, V ⟩ where S is a non-empty set of
states, ∼ assigns to each agent in Agt an equivalence rela-
tion ∼i⊆ S × S, and V : S → 2P is a valuation function.

Definition 2 (Epistemic expectation model with finite obser-
vations). An epistemic expectation model with finite obser-
vations M is a quadruple ⟨S,∼, V,Exp⟩, where ⟨S,∼, V ⟩
is an epistemic model (the epistemic skeleton of M) and
Exp : S → Lobs is an expected observation function as-
signing to each state an observation expression π such that
L(π) ̸= ∅ (finite non-empty set of finite sequences of obser-
vations). A pointed epistemic expectation model with finite
observations is a pair (M, s) where M = ⟨S,∼, V,Exp⟩ is
an epistemic expectation model with finite observations and
s ∈ S. In what follows we will use the ‘epistemic expecta-
tion model’ to denote the ‘epistemic expectation model with
finite observations’.

Intuitively, Exp assigns to each state a set of potential or
expected observations. We now provide the model definition
of the example mentioned in the introduction (cf. Figure 3)
For the sake of brevity, we do not draw the reflexive arrows.
If the vbot moves one step left, ◀, then while Alice still
considers moving to the debris-disposal area a possibility,
Bob does not consider that possibility at all, as described by
Example 1, and depicted by the edge in Figure 3 between
the states u and t, annotated by Alice and not Bob.

The logic POL was introduced to reason about agent
knowledge via the matching of observations and expecta-
tions, and as we mentioned earlier, the difference between
POL and POL− is just a technical one. The main idea ex-
pressed in these logics is the following: While observing an
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action, people would tend to delete some impossible scenar-
ios where they would not expect that observation to happen.
For this purpose, the update of epistemic expectation models
with respect to some observation w ∈ Σ∗ is provided below.

Definition 3 (Update by observation). Let w be an observa-
tion over Σ and let M = ⟨S,∼, V,Exp⟩ be an epistemic
expectation model. The updated model M|w = ⟨S′,∼′

, V ′,Exp′⟩ is defined by: S′ = {s | L(Exp(s)\w) ̸= ∅},
∼′
i = ∼i|S′×S′ , V ′ = V |S′ , and Exp′(s) = Exp(s)\w .

The main idea of the updated model is to delete the states
where the observationw could not have happened. To reason
about agent expectations and observations, the language for
POL− is provided below.

Definition 4 (POL− syntax). Given a countable set of
propositional variables P , a finite sets of actions Σ, and a
finite set of agents Agt, the formulas φ of POL− are given
by:

φ ::= ⊤ | p | ¬φ | φ ∧ φ | Kiφ | [π]φ

where p ∈ P , i ∈ Agt, and π ∈ Lobs .

Intuitively, Kiφ says that ‘agent i knows φ and [π]φ says
that ‘after any observation in π, φ holds’. The other proposi-
tional connectives are defined in the usual manner. We also
define ⟨π⟩φ as ¬[π]¬φ and K̂iφ as ¬Ki¬φ. Typically, ⟨π⟩φ
says that ‘there exists an observation in π such that φ holds’.
Formula K̂iφ says that ‘agent i imagines a state in which φ
holds’.

The logic POL− is the Star-Free fragment of POL, that
is, it is the set of formulas in which the π’s do not contain
any Kleene star ∗. A more restricted version is the Word
fragment of POL−, where π’s are words, that is, obser-
vation expressions without + operators. We consider both
the single-agent word fragment of POL−, and multi-agent
word fragment of POL−. Furthermore, we consider single-
agent POL−, and multi-agent POL− (full POL−).

Definition 5 (Truth definition for POL−). Given an epis-
temic expectation model M = (S,∼, V,Exp), a state s ∈ S,
and a POL−-formula φ, the truth of φ at s, denoted by
M, s ⊨ φ, is defined by induction on φ as follows:

M, s ⊨ p ⇔ p ∈ V (s)
M, s ⊨ ¬φ ⇔ M, s ⊭ φ

M, s ⊨ φ ∧ ψ ⇔ M, s ⊨ φ and M, s ⊨ ψ
M, s ⊨ Kiφ ⇔ for all t : (s ∼i t implies M, t ⊨ φ)
M, s ⊨ [π]φ ⇔ for all observations w over Σ,

w ∈ L(π) ∩ Pre(Exp(s))
implies M|w, s ⊨ φ

where Pre(π) is the set of prefixes of words in L(π), that
is, w ∈ Pre(π) iff ∃v ∈ Σ∗ such that wv ∈ L(π) (namely
L(π\w) ̸= ∅).

The truth of Kiφ at s follows the standard possible
world semantics of epistemic logic. The formula [π]φ
holds at s if for every observation w in the set L(π) that
matches with the beginning of (i.e., is a prefix of) some
expected observation in s, φ holds at s in the updated
model M|w. Note that s is a state in M|w because w ∈

Pre(Exp(s)). Similarly, the truth definition of ⟨π⟩φ can
be given as follows: M, s ⊨ ⟨π⟩φ iff there exists w ∈
L(π) ∩ Pre(Exp(s)) such that M|w , s ⊨ φ. Intuitively, the
formula ⟨π⟩φ holds at s if there is an observation w in L(π)
that matches with the beginning of some expected observa-
tion in s, and φ holds at s in the updated model M|w. For
the example described earlier, we have:

- M, t |= [◀](KBob¬debris ∧ K̂Alicedebris), if the vbot
moves one step left, ◀, then while Alice still considers
moving to the debris-disposal area a possibility, Bob does
not consider that possibility at all.

Satisfiability Problem for POL−: Given a formula φ, does
there exist a pointed epistemic expectation model M, s such
that M, s |= φ? We investigate the complexity of this prob-
lem. The fragments of POL− that we consider are (i) single-
agent word fragment, (ii) multi-agent word fragment, (iii)
single-agent POL−, and, (iv) full POL−.

3 An Application
Let us now consider a scenario which can be aptly described
using the satisfiability problem of POL−. We go back to the
cleaning bot example introduced earlier. Let Alice be agent
a and Bob be agent b. Suppose the vbot is moving towards
the power source without making any error. Evidently, the
possibilities considered by the agents, based on the informa-
tion available to them are given as follows:

- Possibilities considered by Alice who has the information
about the glitch in the bot:

K̂adebris ∧ K̂a⟨◀ +▼⟩debris ∧ K̂apower

- Possibilities considered by Bob who is not aware of the
glitch in the bot:

K̂bdebris ∧ K̂bpower

Now, we model the expectations as follows: Consider the
expression, πpn = (▼+ ◀)n that represents a sequence of
moves of length n the bot can make to get to to the power
source without any error. We use a formula Pn to express
the following: As long as the bot is observed to make n
many moves towards the power source, reaching it is still a
possibility.

Pn =(⟨◀⟩⊤ ∧ ⟨▼⟩⊤)

∧ [πp1 ](⟨◀⟩⊤ ∧ ⟨▼⟩⊤)

∧ [πp2 ](⟨◀⟩⊤ ∧ ⟨▼⟩⊤) . . .

∧ [πpn](⟨◀⟩⊤ ∧ ⟨▼⟩⊤)

The first conjunct of Pn translates to move towards the
power source, a move towards down or left can be observed.
The second conjunct translates to the following: after the
observation of a single left or down movement, another left
or down movement can be observed. The other conjuncts
can be described similarly.
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For the scenario described in the introduction, we can
consider Pn to create a formula where n is at most 3, with-
out an error. Let us denote such a formula by ψp. Simi-
larly, a formula can express the movement towards debris-
disposal with at most one error and with no error as ψde
and ψd, respectively. A situation where the bot is moving
towards the power source without any error, but a considers
the possibility of moving towards debris-disposal with an er-
ror can be expressed as K̂aψde∧ψp. Similarly, a formula can
be considered for modelling the expected observation when
both the agents consider the possibility of the bot moving to-
wards debris-disposal area without an error: K̂aψd ∧ K̂bψd.
We call the (finite) set of all such formulas, Γp. Similarly,
we can construct a set Γde of formulas, when the bot can
make an error while going towards debris-disposal area or
Γd when it is moving towards the debris-disposal without
any error.

Suppose we want to conclude the following in the current
scenario: After one wrong move, b knows that the bot is
not moving towards debris-disposal, but a still considers the
possibility. The formula, INFOab, say, turns out to be

⟨▼+ ◀⟩(Kbpower ∧ K̂adebris)

The actual scenario is that the bot is indeed moving towards
power. Hence, to check whether INFOab can be concluded
in this scenario, a satisfiability solver for POL− can check
the (un)satisfiability of the formula

¬((
∧
ψ∈Γp

ψ) → INFOab)

4 Algorithm for the Satisfiability Problem of
POL−

In this section, we design a proof system using the tableau
method to prove satisfiability of POL−.

A term in a tableau proof is of the form (σ w ψ) |
(σ w ✓) | (σ, σ′)i, where i ∈ Agt. The σ is called a
state label that represents a state in the model, w ∈ Σ∗ is a
word over a finite alphabet and ψ is a formula in POL−.

The term (σ w ψ) represents the fact that the state la-
belled by σ survives after the model is projected on the word
w, and after projecting on w, ψ holds true in the state corre-
sponding to σ.

The term (σ w ✓) represents the fact that the state la-
belled by σ survives after the model is projected on word
w.

The term (σ1, σ2)i represents in the model, the states rep-
resented by σ1 and σ2 should be indistinguishable for the
agent i ∈ Agt, where Agt is a finite set of agents.

For space reasons, the term (σ1, σ2)i∈Agt stands for the
set of terms {(σ1, σ2)i | i ∈ Agt}.

Without loss of generality, the formula φ is assumed to be
in Negative Normal form, the syntax of which is as follows:

φ :=⊤ | p | ¬p | ψ ∨ χ | ψ ∧ χ |
K̂iψ | Kiψ | ⟨π⟩ψ | [π]ψ

Given a formula we denote by φ, FL(φ) the Fischer-
Ladner Closure of φ, (see (Harel, Tiuryn, and Kozen 2000)).

Propositional Rules

Clash rule
(σ w p), (σ w ¬p)

⊥

AND rule
(σ w ψ ∧ χ)

(σ w ψ), (σ w χ)

OR rule
(σ w ψ ∨ χ)

(σ w ψ) | (σ w χ)

Knowledge Rules

Knowledge
(σ w Kiψ), (σ′ w ✓), (σ, σ′)i

(σ′ w ψ)

Possibility
(σ w K̂iψ)

(σ, σn)i, (σn w ✓), (σn w ψ)

Reflexivity −−
(σ, σ)i, for all i ∈ Agt

Transitivity
(σ, σ′′)i, (σ′′, σ′)i

(σ, σ′)i

Symmetry
(σ′, σ)i

(σ, σ′)i , i ∈ Agt

Diamond and Box Rules

Diamond Decompose
(σ w ⟨ππ′⟩ψ)
(σ w ⟨π⟩⟨π′⟩ψ)

Diamond ND Decompose
(σ w ⟨π1 + π2⟩ψ)

(σ w ⟨π1⟩ψ) | (σ w ⟨π2⟩ψ)

Diamond Project
(σ w ⟨a⟩ψ)

(σ wa ✓), (σ wa ψ)

Box Project
(σ w [π]ψ), (σ wa ✓)

(σ wa [π\a]ψ)

Empty Box
(σ w [ϵ]ψ)

(σ w ψ)

Survival Rules

Constant Valuation Up
(σ w p)

(σ ϵ p)

(σ w ¬p)
(σ ϵ ¬p)

Survival Chain
(σ wa ✓)

(σ w ✓)

Figure 4: Tableau rules. σ is any state symbol, w is any word, p is
any propositional variable, i is any agent, π is any regular expres-
sion, a is any letter. Note that Reflexivity rule has no antecedent.

4.1 The Tableau Rules
The tableau rules for this fragment have been shown in Fig-

ure 4. Here an inference rule looks like this:
A

C1|C2| . . . |Cn.
Here each Ci and A is a set of tableau terms. The Cis

are called consequences, A is the antecedent. Intuitively the
rule is interpreted as ”If all the terms in A are true, then all
the terms in at least one of Ci’s are true”.

In Figure 4, the left column is the rule name and the right
column is the rule. For example, the Box Project Rule states
that ”The state labelled by σ survives after projection on
word w and it satisfies [π]ψ ((σ w [π]ψ)) and σ still sur-
vives a further projection on letter a((σ wa ✓)) then after
further projection on a, [π\a]ψ should hold true in the state
labelled by σ ((σ wa [π\a]ψ)).”. Recall π\a denotes the
residual of π by a (see Section 2).

Similarly, the Diamond Project rule says that if a certain
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state σ, under some word projection w has to satisfy ⟨a⟩ψ,
then that state σ has to survive projection on wa and also
satisfy ψ under the same projection.

A tableau proof can be assumed a tree. Each node of the
tree is a set of tableau terms Γ. An inference rule can be
applied in the following way:

IfA ⊆ Γ andCi’s are not in Γ, the children of Γ are Γ∪Ci
for each i ∈ [n].

When no rules can be applied on a Γ, we say Γ is saturated
(leaf node in the proof tree).

If ⊥ ∈ Γ, we say that branch is closed. If all the branches
of the proof tree is closed, we say the tableau is closed, else
is open.

Given a POL− formula φ, we start with Γ =
{(σ ϵ φ), (σ ϵ ✓)} ∪ {(σ, σ)i, i ∈ Agt}.
Example 3. Suppose we aim at deciding whether

φ := K̂i⟨a⟩p ∧ ⟨a⟩Ki¬p

is satisfiable or not. For simplicity we suppose there is a
single agent i. Here are the terms added to the set of terms:

1. (σ ϵ φ), (σ ϵ ✓) (initialization)
2. (σ, σ)i by Reflexivity rule
3. (σ ϵ K̂i⟨a⟩p), (σ ϵ ⟨a⟩Ki¬p) by AND rule
4. (σ′ ϵ ⟨a⟩p), (σ′ ϵ ✓), (σ, σ′)i by Possibility rule
5. (σ′, σ′)i by Reflexivity rule
6. (σ′, σ)i by Symmetry rule
7. (σ′ a p), (σ′ a ✓) by Diamond Project on 2
8. (σ a ✓), (σ a Ki¬p) by Diamond Project on 2
9. (σ′ a ¬p) by Knowledge rule on 3, 5, 6

10. ⊥ by Clash rule on 5,7

As we obtain ⊥, the formula φ is not satisfiable (by the
upcoming Theorem 6).

4.2 Soundness and Completeness of the Tableau
Rules

In this section, we provide the soundness and completeness
proof of the Tableau method for the satisfiability of POL−

Theorem 6. Given a formula φ, if φ is satisfiable, then the
tableau for Γ = {(σ ϵ φ), (σ ϵ ✓)} is open.
Theorem 7. Given a formula φ, if the tableau for Γ =
{(σ ϵ φ), (σ ϵ ✓)} is open, then φ is satisfiable.

The proof of Theorem 6 is done by induction. For short-
age of space, we give the proof of Theorem 6 in the extended
version (Chakraborty et al. 2023).

Proof of Theorem 7. Since by assumption, the tableau for
Γ = {(σ ϵ φ), (σ ϵ ✓)} is open, there exists a branch
in the tableau tree where in the leaf node there is a set of
terms Γl such that it is saturated and ⊥ /∈ Γl.

For the purpose of this proof, let us define a relation over
the words w̄ that appears in Γl. For any two word w̄1 and w̄2

that appears in Γl, w̄1 ≤pre w̄2 if and only if w̄1 ∈ Pre(w̄2).
Now, this relation is reflexive (w̄1 ∈ Pre(w̄1)), asymmetric
(if w̄1 ∈ Pre(w̄2) and w̄2 ∈ Pre(w̄1) then w̄1 = w̄2) and
transitive (if w̄1 ∈ Pre(w̄2) and w̄2 ∈ Pre(w̄3) then w̄1 ∈

Pre(w̄3)). Hence this relation creates a partial order among
all the words occurring in Γl. We also denote w̄1 <pre w̄2

to interpret the fact that w̄1 ≤pre w̄2 and w̄1 ̸= w̄2.
Now we create a model M = ⟨W, {Ri}i∈Agt, V, Exp⟩

out of Γl and prove that φ is satisfied by some state in the
model.

• W = {sσ | σ is a distinct label in the terms in Γl}
• Ri = {{sσ1 , sσ2} | (σ1, σ2)i ∈ Γl}
• V (sσ) = {p | (σ ϵ p) ∈ Γl}
• Exp(sσ) =

∑
w∈Λσ

w, where Λσ = {w | (σ w ✓) ∈
Γl and ∄w′ : ((σ w′ ✓) ∈ Γl and w <pre w

′)}

Note that, the new state label σn is only created in the pos-
sibility rule, with a reflexive relation on itself. Now consider
the set R′ = {(σ, σ′) | {(σ w ✓), (σ′ w′ ✓)} ⊆ Γl}.
Hence this can be considered a binary relation over the set
of all distinct σ that occurs in Γl. When a σ′ is created by
the possibility rule, by the relation rules, the reflexive, sym-
metric and transitive conditions are satisfied with respect to
every other label that has previously been there. Hence R′

is an equivalence relation, hence making Ri in the model an
equivalence relation.

Now, Theorem 7 follows from the following two claims,
the proofs of which we present later.

Claim 8. If (σ w ✓) ∈ Γl then sσ survives in M|w.

Claim 9. For any word w that occurs in Γl, any label σ and
any formula ψ, If (σ w ψ) ∈ Γl and (σ w ✓) ∈ Γl then
sσ survives in M|w and M|w, sσ ⊨ ψ.

Proof of Claim 8. We induct on the size of |w|.
Base Case. Let |w| = 1. Hence w ∈ {ϵ} ∪ Σ . Since

Γ ⊆ Γl and (σ ϵ ✓), and sσ is in M|ϵ = M.
For the case w = a for any a ∈ Σ. Hence there exists a

word w′ that occurs in a term in Γl labelled by σ such that
w ∈ Pre(w′)) and there is no other word bigger than w′

such that w′ is in its prefix, since the proof is on finite words
and formula, the proof terminates. Hence by definition of
w′ ∈ L(Exp(sσ)) which guarantees survival of sσ in M|a.

Induction Hypothesis. Assume the statement to be true
for |w| = n.

Inductive Step. Consider the case where |w| = n+ 1.
By assumption, (σ w ✓) ∈ Γl. Hence by the fact that

Γl is saturation and by the rule ”Survival Chain”, there is
(σ w′ ✓) ∈ Γl, where w = w′a for some a ∈ Σ. Hence by
IH, the result follows that sσ survives in M|w′ .

Now, by termination, there are finite many unique words
occurring in Γl. Clearly, w′ ≤pre w. Since there are fi-
nite many words, there is a w∗, which is of maximum size
such that w ≤pre w∗ and (σ w∗ ✓) ∈ Γl. Hence
w∗ ∈ Λσ in the definition of Exp of the model. Therefore
w∗ ∈ L(Exp(sσ)) and since w′ ≤pre w ≤pre w∗, sσ sur-
vives in M|w′ , hence sσ shall survive in M|w.

Proof of Claim 9. Naturally, we shall induct upon the size
of ψ.

Base Case. Let ψ is of the form p or ¬p. By the definition
of the function V for the model and the previous proof, the
statement stands true.
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Induction Hypothesis. Let us consider the statement is
true for any ψ such that |ψ| < n′ for some n′.

Inductive Step. We prove for |ψ| = n′. Again, we go
case by case on the syntax of ψ.

• ψ = K̂iχ. Since Γl is saturated, by the rule of possibility,
{(σ′ w χ), (σ, σ′)i, (σ

′ w ✓)} ⊆ Γl. By IH on the
subformula χ, the definition of the model, the proof of
the previous statement, and the rule ”survival chain”, sσ′

survives in M|w and M|w, sσ′ ⊨ χ. Also by definition,
{sσ, sσ′} ∈ Ri, hence proving M|w, sσ ⊨ K̂iχ.

• ψ = Kiχ. Since Γl is saturated, and by previous state-
ment sσ′ is surviving for every (σ′ w ✓), by the rule of
knowledge (σ′ w χ) ∈ Γl for every (σ, σ′)i. Hence by
IH on subformula, M|w, sσ′ ⊨ χ for every σ′ such that
{σ, σ′} ∈ Ri.

• ψ = ⟨π + π′⟩χ. Since Γl is saturated, hence by the
ND Decomposition, either the term (σ w ⟨π⟩χ) ∈ Γl
or (σ w ⟨π′⟩χ) ∈ Γl. By IH, M|w, sσ ⊨ ⟨π⟩χ or
M|w, sσ ⊨ ⟨π′⟩χ and hence M|w, sσ ⊨ ⟨π + π′⟩χ.

• ψ = ⟨ππ′⟩χ. Since Γl is saturated, hence
(σ w ⟨π⟩⟨π′⟩χ) ∈ Γl. By IH, since ⟨π⟩⟨π′⟩χ ∈ FL(ψ),
hence M|w, sσ ⊨ ψ.

• ψ = ⟨a⟩χ. Note that we don’t consider a general word w′

in the diamond as given w′ = aw′′, a formula ⟨w′⟩χ is
satisfiable if and only if ⟨a⟩⟨w′′⟩χ is satisfiable.

• ψ = [π]χ. Let us consider (σ wa ✓) ∈ Γl for some
a ∈ Σ. Hence by the proof of the first statement, sσ ∈
M|wa. Also |L(π)| < |L(π\a)|. Hence by induction on
the size of formula M|wa, sσ ⊨ [π\a]χ which implies
M|w, sσ ⊨ [π]χ.

This completes the proof of Theorem 7

4.3 A NEXPTIME Upper Bound
Now we design an algorithm based on tableau and prove ex-
istence of an algorithm that takes non-deterministically ex-
ponential steps with respect to the size of φ. Now given a φ,
we now create a tree of nodes, where each node Tσ contains
terms of the tableau of the form (σ w ψ) and (σ w ✓),
where w ∈ Σ∗ is a word that is occuring in tableau, and ψ
is a formula in FL(φ). Each node Tσ refers to a state la-
bel σ in tableau, a term of the (σ w ψ) ∈ Tσ intuitively
translates to in the state corresponding to σ, after project-
ing model on w, the state survives and there ψ is satisfied.
Similarly, (σ w ✓) ∈ Tσ means state corresponding to σ
survives after projection on w. The tableau tree created, we
call it TP

We saturate the rules carefully such that each node in the
tree corresponds to a single state in the model. This tech-
nique is well studied in (Halpern and Moses 1992).

Theorem 10. The satisfiability of POL− is in NEXPTIME.

Proof. Given the tree TP we create in the procedure, a
node Tσ is marked satisfiable iff it does not have bot,
{(σ w Kiψ), (σ w ¬ψ)} ⊈ Tσ and all its successors
are marked satisfiable. We prove three statements:

• Statement 1: Each node is of at most exponential size,
that is, has at most exponential many terms.

• Statement 2: Maximum children a node can have is poly-
nomial.

• Statement 3: The height of the tree is polynomial.

Proof of Statement 1. Since a term in a node Tσ is of the
form (σ w ψ), where w is a word over some finite alphabet
Σ and ψ is a formula of POL−.

According to the shape of the rules, a formula that
can be derived is always in FL(φ). Since |FL(φ)| ≤
O(|φ|)(Harel, Tiuryn, and Kozen 2000), hence there can be
at most O(|φ|) many formulas.

Also, since a regular expression π occuring in a modality
is star-free (that is does not contain the Kleene star), hence
a word w ∈ L(π) is of length at most |π| which is again
of length at most φ. Also there are at most |FL(φ)| many
regular expressions. Hence there are at most |Σ|O(p(|φ|)),
where p(X) is some polynomial on X , many unique words
possible. Hence therefore, there can be at most exponential
many terms in a single node.
Proof of Statement 2. From a node Tσ , a child is created for
every unique triplet of (σ w K̂ψ) in Tσ . Number of such
triplets possible is, as proved is at most polynomial with re-
spect to |φ|.
Proof of Statement 3. For proving this, we use md(Γ),
given a set of formulas Γ, is the maximum modal depth over
all formulas in Γ. Finally we define F (Tσ) as the set of
formulas occuring in the node Tσ .

Consider Tσ , the node T iσ′ is i- successor of Tσ and T jσ′′

be the j successor of T iσ′ (i ̸= j). Note that all the formulas
in F (T jσ′′) are from FL closure of all the Kj and K̂j formu-
las from F (T iσ′).

Also all the formulas in F (T iσ′) are in the FL closure of
theKi and K̂i formulas occusring in Tσ . Hencemd(T jσ′′) ≤
md(F (T iσ′)). Therefore, there can be at most O(|φ|c) such
agent alterations in one path of TP (not linear because there
can be polynomial many words paired with each formula).

Now let us consider how many consecutive i succesors
can happen in a path. Suppose a Tσ has a new i-successor
node Tσ′ for the term (σ w K̂iψ). Due to the fact that
the indistinguishability relation is equivalence for each agent
due to the Transitivity, Symmetry rule and the reflexivity that
infers in the possibility rule, hence all the possibility and
the knowledge formula terms of the form (σ w′ K̂iξ) or
(σ w′ Kiξ) of agent i are in the successor node Tσ′ in
the form (σ′ w′ K̂iξ) or (σ′ w′ K̂iξ) respectively, along
with the term (σ′ w ψ). Hence the number of such unique
combination of terms will be at most polynomial to the size
of |FL(φ)|.

Therefore, the height of TP is polynomial with respect to
the |φ|.

5 Hardness of Satisfiability in POL−

In this section, we give a lower bound to the Satisfiability
problem of POL−. We reduce the well-known NEXPTIME-

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

141



Figure 5: A set of tile types and an empty square, and a solution.

Complete Tiling problem to come up with a formula in the
POL− fragment that only has 2 agents.

Theorem 11. POL− satisfiability problem is NEXPTIME-
Hard.

Proof. We reduce the NEXPTIME-Complete tiling problem
of a square whose size is 2n where n is encoded in unary
(van Emde Boas 2019) (see Figure 5). The instance of the
tiling problem is (T, t0, n) where T is a set of tile types (e.g

), t0 is a specific tile that should be at position (0, 0), and n
is an integer given in unary. Note that the size of the square
is exponential in n. We require the colours of the tiles to
match horizontally and vertically.

The idea of the reduction works as follows. We consider
two tilings A and B. We will construct a formula tr(T, t0, n)
expressing that the two tilings are equal, contains t0 at (0, 0),
and respect the horizontal and vertical constraints.

With the help of two epistemic modalities Ki and Kj we
can simulate a standard K modal logic □. For the rest of
the proof, we consider such a □ modality and its dual ♢.
We encode a binary tree whose leaves are pairs of positions
(one position in tiling A and one in tiling B). Such a tree is of
depth 4n: n bits to encode the x-coordinate in tiling A, n bits
to encode the x-coordinate in tiling B, n bits to encode the
y-coordinate in tiling A, n bits to encode the y-coordinate in
tiling B. A pair of positions is encoded with the 4n proposi-
tional variables: p0, . . . , p4n−1. The first p0, . . . , p2n−1 en-
codes the position in tiling A while the later p2n, . . . , p4n−1

encodes the position in tiling B. At each leaf, we also use
propositional variables qAt (resp. qBt ) to say there is tile t
at the corresponding position in tiling A (resp. tiling B).
The following formula enforces the existence of that binary
tree T by branching over the truth value of proposition pℓ at
depth ℓ:

∧
ℓ<4n

□ℓ
(
♢pℓ ∧ ♢¬pℓ ∧

∧
i<ℓ

(pi→□pi) ∧ (¬pi→□¬pi)

)
(1)

Now, by using of specific Boolean formulas over
p0, . . . , p4n−1, it is easy to express equality, presence of t0
at (0, 0) and horizontal and vertical constraints:

□4n

∨
t

qAt ∧
∧
t̸=t′

(¬qAt ∨ ¬qAt′ )

 (2)

□4n

∨
t

qBt ∧
∧
t ̸=t′

(¬qBt ∨ ¬qBt′ )

 (3)

□4n(position in tiling A = 0) → qAt0 (4)

□4n(
x-coordinate of position in A
= 1 + x-coordinate of position in B ) (5)

→
∨

t,t′|t matches t′ horizontally

(qAt ∧ qBt′ ) (6)

□4n(
y-coordinate of position in A
= 1 + y-coordinate of position in B ) (7)

→
∨

t,t′|t matches t′ vertically

(qAt ∧ qBt′ ) (8)

The main difficulty is to be sure that all pairs of positions
with the same position for - let’s say - tiling A indicates the
same tile for the tiling A (i.e. the same variable qAt is true).
To this aim, we will write a formula of the following form

[π any position in A ]
∨
t

□4nqAt ∧ [πany position in B]
∨
t

□4nqBt .

To be able to perform observations to select any position in
tiling A (resp. B) whatever the position in tiling B (resp. A)
is, we introduce the alphabet Σ = {A, Ā,B, B̄}. We write
these two formulas that make a correspondence between val-
uations on the leaves and observations:

□4n
∧

i=0..2n−1

[A+ Ā]i
(

(pi → ⟨A⟩⊤ ∧ [Ā]⊥)∧
(¬pi → ⟨Ā⟩⊤ ∧ [A]⊥)

)
(9)

□4n
∧

i=2n..4n−1

[B+ B̄]i−2n

(
(pi → ⟨B⟩⊤ ∧ [B̄]⊥)∧
(¬pi → ⟨B̄⟩⊤ ∧ [B]⊥)

)
(10)

The idea is that a 2n-length word on alphabet {A, Ā} corre-
sponds to a valuation over p1, . . . , p2n−1, and thus a position
in tiling A and only that 2n-length word on alphabet {A, Ā}
is observable. In the same way, a word on alphabet {B, B̄}
corresponds to a valuation over p2n, . . . , p4n−1, thus a posi-
tion in tiling B.

We also say that the inner node (non-leaf) of the binary
tree is never pruned by observations (all 2n-length words
over {A, Ā,B, B̄} are observable):

□<4n
∧

i=0..2n−1

[Σ]i(⟨A⟩⊤ ∧ ⟨Ā⟩⊤ ∧ ⟨B⟩⊤ ∧ ⟨B̄⟩⊤) (11)

The formula for ensuring the uniqueness of qAt whatever the
position in tiling B, and the other way around are then:

[(A+ Ā)2n]
∨
t

□4nqAt ∧ [(B + B̄)2n]
∨
t

□4nqBt (12)

The intuition works as follows. When evaluating [(A +
Ā)2n]□4nqAt , we consider all words w in L((A + Ā)2n)
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and we consider any pruning M|w of the model M which
contains the binary tree T . In M|w, only the leaves where
the valuation on p0, . . . , p2n−1 that corresponds to w stays.
With

∨
t, we choose a tile type t in T . The modality □4n

then reaches all the leaves and imposes that qAt holds.
The reduction consists of computing from an in-

stance (T, t0, n) of the tiling problem the POL− formula
tr(T, t0, n) which is the conjunction of (1-12), which is
computable in poly-time in the size of (T, t0, n) (recall n
is in unary). Furthermore, one can check that (T, t0, n) is
a positive instance of the tiling problem iff tr(T, t0, n) is
satisfiable.

6 Complexity Results of Fragments of POL−

In this section, we consider a few fragments of POL− and
we give complexity results for them. First, we consider the
single agent fragment of POL−, and then we prove com-
plexity results for the word fragment of POL− (both single
and multi-agent) using reductions to PAL.

6.1 Single Agent Fragment of POL−
While we have shown (in Theorem 10) that the satisfiabil-
ity problem of the POL− is NEXPTIME-Hard, the hardness
proof holds only for the case when the number of agents is at
least 2. However, we prove that satisfiability problem in the
single Agent fragment of POL− is PSPACE-Hard, although
single-agent epistemic logic S5 is NP-Complete.

We prove it by reducing TQBF into our problem.
The TQBF problem is: given a formula φ of the form
Q1x1Q2x2 . . . Qnxnξ(x1, x2, . . . , xn) where Qi ∈ {∀, ∃}
and ξ(x1, x2, . . . , xn) is a Boolean formula in CNF over
variables x1, . . . , xn, decide whether the formula φ is true.
Theorem 12. The satisfiability problem for single agent
fragment of POL− is PSPACE-Hard.

The proof follows in the same lines as the proof of
PSPACE-Hardness of the model-checking problem of the
POL− (Chakraborty et al. 2022). The complete proof can
be found in the extended version (Chakraborty et al. 2023).

6.2 Word Fragment of POL−
To investigate the complexity of the satisfaction problem of
the word fragment of POL−, we use a translation of POL−

to PAL. Before going forward, let us give a very brief
overview of the syntax and semantics of PAL.

Public announcement logic (PAL) To reason about an-
nouncements of agents and their effects on agent knowledge,
PAL (Plaza 2007) was proposed. The underlying model that
is dealt with in PAL is epistemic, ⟨S,∼, V ⟩ where S is a
non-empty set of states, ∼ assigns to each agent in Agt an
equivalence relation ∼i⊆ S × S, and V : S → 2P is a
valuation function. The language is given as follows:
Definition 13 (PAL syntax). Given a countable set of propo-
sitional variables P , and a finite set of agentsAgt, a formula
φ in Public Announcement Logic (PAL) can be defined re-
cursively as:

φ := ⊤ | p | ¬φ | φ ∧ φ | Kiφ | [φ!]φ

where p ∈ P , and i ∈ Agt.

Typically, [φ!]ψ says that ‘if φ is true, then ψ holds af-
ter having publicly announced φ’. Similarly, as in POL−

syntax, the respective dual formulas are defined as,

K̂iψ = ¬Ki¬ψ
⟨φ!⟩ψ = ¬[φ!]¬ψ

Formula ⟨φ!⟩ψ says that φ is true, and ψ holds after an-
nouncing φ. Before going into the truth definitions of the
formulas in PAL, let us first define the notion of model up-
date.
Definition 14 (Model Update by Announcement). Given an
epistemic model, M = ⟨S,∼, V ⟩, s ∈ S, and a PAL for-
mula φ, the model M|φ = ⟨S′,∼′, V ′⟩ is defined as:
• S′ = {s ∈ S | M, s ⊨ φ}
• ∼′

i = ∼i|S′×S′ ,

• V ′(s) = V (s) for any s ∈ S′.
Now we are all set to give the truth definitions of the for-

mulas in PAL with respect to pointed epistemic models:
Definition 15 (Truth of a PAL formula). Given an epistemic
model M = ⟨S,∼, V ⟩ and an s ∈ S, a PAL formula φ is
said to hold at s if the following holds:
• M, s ⊨ p iff p ∈ V (s), where p ∈ P .
• M, s ⊨ ¬φ iff M, s ⊭ φ.
• M, s ⊨ φ ∧ ψ iff M, s ⊨ φ and M, s ⊨ ψ.
• M, s ⊨ Kiφ iff for all t ∈ S with s ∼i t, M, t ⊨ φ.
• M, s ⊨ [ψ!]φ iff M, s ⊨ ψ impliesM|ψ, s ⊨ φ.

On complexity To study the satisfiability problem for the
word fragment of POL−, we transfer the following result
from PAL to POL−:
Theorem 16. (Lutz 2006) The satisfiability problem of PAL
is NP-Complete for the single-agent case and PSPACE-
Complete for the multi-agent case.

PAL is the extension of epistemic logic with dynamic
modal constructions of the form [φ!]ψ that expresses ‘if φ
holds, then ψ holds after having announced φ publicly’.
The dynamic operator ⟨π⟩ in the word fragment of POL−

consists in announcing publicly a sequence of observations.
W.l.o.g. as π is a word a1 . . . ak, ⟨π⟩ can be rewritten as
⟨a1⟩ . . . ⟨ak⟩. In other words, we suppose that the POL− dy-
namic operators only contain a single letter. The mechanism
of POL− is close to Public announcement logic (PAL). Ob-
serving a consists in announcing publicly that wa occurred
where w is the observations already seen so far.

We introduce fresh atomic propositions pwa to say that
letter a is compatible with the current state given that the
sequence w was already observed.

For all words w ∈ Σ∗, we then define trw that translates
a POL− formula into a PAL formula given that w is the al-
ready seen observations seen so far:

trw(p) =p

trw(¬φ) =¬trw(φ)
trw(φ ∧ ψ) =trw(φ) ∧ trw(ψ)
trw(Kiφ) =Kitrw(φ)

trw(⟨a⟩φ) =⟨pwa!⟩trwa(φ)
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We finally transform any POL− formula φ into tr(φ) :=
trϵ(φ).

Example 4. Consider the POL− formula φ := [a]⊥ ∧
⟨a⟩⟨a⟩⊤. tr(φ) is [pa!]⊥ ∧ ⟨pa!⟩⟨paa!⟩⊤. Note that if pa
is false, the truth value of paa is irrelevant.
Proposition 17. φ is satisfiable in the word fragment of
POL− iff tr(φ) is satisfiable in PAL.

Proof. (sketch) ⇒ Suppose there is a pointed POL−

model M, s0 such that M, s0 |= φ. We define M′ to be
like M except that for all states s in M, for all w ∈ Σ∗, we
say that pw is true at M′, s iff Exp(s)\w ̸= ∅. It remains to
prove that M′, s0 |= tr(φ). We prove by induction on φ that
for all w ∈ words(φ), if Exp(s)\w ̸= ∅ then M|w, s |= φ
iff M′, s |= trw(φ).

We only show the interesting case of φ = ⟨a⟩ψ. Here the
trw(⟨a⟩ψ) = ⟨pwa!⟩trwa(ψ). By assumption, M|w, s ⊨
⟨a⟩ψ. Hence M|wa, s ⊨ ψ. Therefore Exp(s)\wa ̸=
∅. By definition of M′, pwa is true in s. Therefore
by IH M′, s ⊨ trwa(ψ). And since pwa is true, hence
M′, s ⊨ ⟨pwa!⟩trwaψ. Conversely, assuming M′, s ⊨
⟨pwa!⟩trwa(ψ). Hence pwa is true in s. By definition, pwa is
true iff Exp(s)\wa ̸= ∅. Also by IH, M|wa, s ⊨ ψ. Hence
M|w, s ⊨ ⟨a⟩ψ.

⇐ Suppose there is a pointed epistemic model M′, s0
such that M′, s0 |= tr(φ). We define a POL− model M
like M′ except that for all states s, Exp(s) = {w ∈ Σ∗ |
M, s |= pw}. It remains to prove that M, s0 |= φ. For
the rest of the proof, we prove by induction on φ that for all
w ∈ Σ∗, if Exp(s)\w ̸= ∅ then M|w, s |= φ iff M′, s |=
trw(φ). The proof goes similarly as earlier.

Note that the single-agent and multi-agent word fragment
of POL− is a syntactic extension of propositional logic and
the multi-agent epistemic logic respectively, which are NP-
Hard and PSPACE-Hard respectively. From the fact that
the satisfiability problem of single agent and the multi-agent
fragments of PAL is in NP and PSPACE respectively, we
have the following corollaries of Proposition 17.
Corollary 18. The satisfiability problem of the single-agent
word fragment of POL− is NP-Complete.
Corollary 19. The satisfiability problem of the multi-agent
Word fragment of POL− is PSPACE-Complete.

7 Related Work
The complexity of Dynamic Epistemic Logic with ac-
tion models and non-deterministic choice of actions is
NEXPTIME-Complete too (Aucher and Schwarzentruber
2013) and their proof is similar to the one of Theorem 11.

The tableau method described for POL− uses a
general technique where terms contain the observa-
tions/announcements/actions played so far. This technique
was already used for PAL (Balbiani et al. 2010), DEL
(Aucher and Schwarzentruber 2013), and for a non-normal
variant of PAL (Ma et al. 2015).

Decidability of (single-agent) epistemic propositional dy-
namic logic (EPDL) with Perfect Recall (PR) and No Mira-
cles (NM) is addressed in (Li 2018). Although PR and NM

are validities in POL−, there are differences to consider even
in single agent. Firstly, in an EPDL model, a possible state
can execute a program a and can non-deterministically tran-
sition to a state among multiple states, whereas in POL−,
if a state survives after observation a, it gives rise to the
same state except the Exp function gets residued. Also, in
EPDL, after execution of a program, the state changes hence
the propositional valuation in the state changes, whereas
in POL−, the state survives after a certain observation and
hence the propositional valuation remains the same.

Whereas in POL−, observations update the model, there
are other lines of work in which specifying what agents ob-
serve define the epistemic relations in the underlying Kripke
model (Charrier et al. 2016) (typically, two states are equiv-
alent for some agent i if agent i observes the same facts in
the two states).

8 Perspectives
This work paves the way to an interesting technical open
question in modal logic: the connection between POL− and
product modal logics. Single-agent POL− is close to the
product modal logic S5 × K, the logic where models are
Cartesian products of an S5-model and a K-model. Indeed,
the first component corresponds to the epistemic modality
K̂i while the second component corresponds to observation
modalities ⟨π⟩. There are however two important differ-
ences. First, in POL−, valuations do not change when obser-
vations are made. Second, the modality ⟨π⟩ is of branching
at most exponential in π while modalities in K-models do
not have branching limitations. We conjecture that the two
limitations can be circumvented but it requires some care
when applying the finite model property of product modal
logic S5×K. If this connection works, it would be a way to
prove NEXPTIME-Completeness of star-free single-agent
POL−.

Recall that POL− is close to PAL with propositional an-
nouncements only (see Proposition 17). We conjecture some
connections between POL− and arbitrary PAL (French and
van Ditmarsch 2008), and more precisely with Boolean arbi-
trary public announcement logic (van Ditmarsch and French
2022). Indeed, the non-deterministic choice + enables to
check the existence of some observation to make (for in-
stance, ⟨(a+ b)10⟩φ checks for the existence of a 10-length
word to observe), which is similar to checking the existence
of some Boolean announcement.

The next perspective is also to tackle POL with Kleene-
star in the language. This study may rely on techniques used
in epistemic temporal logics. PAL with Kleene-star is unde-
cidable (Miller and Moss 2005). Again, the undecidability
proof relies on modal announcements. Since POL is close
to Boolean announcements, this is a hope for POL to be de-
cidable. The idea would be to exploit the link between dy-
namic epistemic logics and temporal logics (van Ditmarsch,
van der Hoek, and Ruan 2013), and rely on techniques de-
veloped for tackling the satisfiability problem in epistemic
temporal logics (Halpern and Vardi 1989).
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