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Abstract

In standard propositional belief merging, one implicit as-
sumption is that all sources have exactly the same importance.
But there are many situations where the sources have dif-
ferent importance/reliability/expertise that have to be taken
into account in the merging process. In this work we study
the problem of weighted merging operators, which aimed to
take these weights into account in a sensible way. We give a
syntactical characterization of these operators, and then we
state a representation theorem in terms of plausibility pre-
orders on interpretations. We also propose a general method
to build weighted distance-based merging operators, and pro-
vide some concrete examples, using two different weight
functions.

1 Introduction
Belief merging aims at producing a coherent opinion from
a set of (typically) conflicting belief bases. Belief merg-
ing has been logically characterized (Konieczny and Pino
Pérez 2002; Revesz 1997), and a lot of their properties has
been studied, such as manipulability (Everaere, Konieczny,
and Marquis 2004; Everaere, Konieczny, and Marquis 2007;
Mata Dı́az and Pino Pérez 2023), truth-tracking perfor-
mances (Everaere, Konieczny, and Marquis 2010; Everaere,
Konieczny, and Marquis 2020), computational complexity
(Konieczny, Lang, and Marquis 2004; Haret et al. 2020), etc.

In these works, all the bases carry equal weight, which
was crucial for understanding the fundamental framework.
However, now that this foundation has been established,
it becomes important to consider cases where different
weights are assigned to each belief base. This approach is
more general, and necessary in numerous applications, al-
lowing for the reflection of varying degrees of credibility
among information sources.

Additionally, as advocated by Delgrande, Dubois and
Lang (2006), weighted belief merging can be seen as the
most general change setting, since we can obtain on one
hand classical belief merging as a special case when tak-
ing all the weights equal, and on the other hand iterated be-
lief revision, when the last piece of information is given a
weight big enough with respect to the previously received
ones. Delgrande, Dubois and Lang (2006) discuss these
links, but they did not provide any representation theorem.
This is what we propose in this work.

Belief merging operators can be use to merge either be-
liefs or goals. When merging beliefs, then the aim is of-
ten to find the correct (”true”) state of the world, and quite
straightforwardly it is interesting to listen more the most re-
liable sources, so the weights will encode the reliability (ex-
pertise) of the sources. When merging goals to take a col-
lective decision, it may happen that some participants have
more importance or more power than others (for instance
some participants can contribute more than others), then it
is crucial to be able to take these difference for the merging,
and the weights will encore the importance (power) of the
sources.

In the rest of the paper, after some preliminaries, where
we will give the necessary notations and definitions, we in-
troduced weighted IC merging operators, that are character-
ized by a set of postulates. Then we provide a representa-
tion theorem in terms of plausibility preorders on interpre-
tations. We also provide a general class of distance-based
weighted merging operators, that are guaranteed to satisfy
the postulates. Then we provides some examples of con-
crete weighted IC merging operators. And we illustrate their
behaviour characteristic on some examples.

2 Preliminaries
We consider a propositional language L over a finite alpha-
bet P of propositional letters. The set of consistent formulas
is denoted L∗. An interpretation is a function from P to
{0, 1}. The set of all interpretations is denoted Ω. An inter-
pretation ω is a model of formula if and only if it makes it
true in the usual classical truth functional way. [[ϕ]] denotes
the set of models of ϕ, i.e. [[ϕ]] = {ω ∈ Ω : ω |= ϕ}. We
note ϕ ≡ ϕ′ when ϕ and ϕ′ have exactly the same mod-
els. Let M be a set of interpretations, ϕM denotes a formula
whose set of models is M . When M = {ω} we will use the
notation ϕω for reading convenience.

An agent is characterized by some beliefs and by a relia-
bility degree, that encodes how important/reliable/expert he
is. Thus, an agent a is encoded by a couple of the form (ϕ α)
where ϕ is a consistent formula, the beliefs of a, and where
α is a strictly positive real number,1 the degree of reliability
associated to agent a.

1The set of strictly positive real numbers will be denoted R∗+.
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The set of agents will be denoted by A. A finite set of
agents is called a profile. We use Capital Greek letters to
denote profiles. The set of profiles is denoted E .

Let B and δ be functions given the beliefs and the reli-
ability of an agent respectively, that is B : A → L and
δ : A → R∗+ are the functions such that for every agent
a = (ϕ α), B(a) = ϕ and δ(a) = α.

We say that two agents a and a′ are equivalent (noted by
a↔ a’) if and only if B(a) ≡ B(a′) and δ(a) = δ(a′).

We say that two profiles Ψ and Ψ′ are equivalent (noted
by Ψ ↔ Ψ′) if and only if there is a bijection g from Ψ to
Ψ′ such that a↔ g(a).

Given two profiles Ψ and Ψ′ we can suppose that they
are disjoint (if not, we take Ψ′′ equivalent to profile Ψ′ and
disjoint from Ψ). Thus, the union of these two profiles (sup-
posed disjoint) is noted2 by Ψ t Ψ′. The union between a
profile Ψ and a profile {a} such that B(a) = ϕ and δ(a) = α
is noted by Ψ t a or Ψ t (ϕ α). We define Ψn as tni=1Ψi

where for each i, Ψi ↔ Ψ and for i 6= j Ψi and Ψj are
disjoint.

We note the conjunction between the bases of a profile
B(a1) ∧ ... ∧ B(an) by

∧
Ψ.

We say that the profile Ψ is consistent if and only if
∧

Ψ is
consistent, in that case we write ω |= Ψ instead of ω |=

∧
Ψ.

3 Weighted IC Merging
In this section we consider functions ∆ mapping a profile
Ψ and a consistent formula µ (that represents the integrity
constraints) into a formula ∆(Ψ, µ), noted ∆µ(Ψ) for short,
that is ∆ : E × L∗ −→ L∗. In the following, we give a
set of postulates that merging operators must satisfy in order
to behave rationally when the agents are related to weights
which encode their reliability degrees.

Definition 1. A merging operator ∆ is called a weighted
IC merging operator (WIC merging operator for short) if it
satisfies the postulates (WIC0-WIC12) below:

(WIC0) ∆µ(Ψ) ` µ
(WIC1) If µ is consistent, then ∆µ(Ψ) is consistent

(WIC2) If Ψ is consistent with µ, then ∆µ(Ψ) =
∧

Ψ ∧ µ
(WIC3) If Ψ1 ↔ Ψ2 and µ1 ≡ µ2,

then ∆µ1(Ψ1) ≡ ∆µ2(Ψ2)

(WIC4) If B(a1) ` µ, B(a2) ` µ and δ(a1) = δ(a2), then
∆µ(a1 t a2) ∧ B(a1) 6` ⊥ ⇒ ∆µ(a1 t a2) ∧ B(a2) 6` ⊥

(WIC5) ∆µ(Ψ1) ∧∆µ(Ψ2) ` ∆µ(Ψ1 tΨ2)

(WIC6) If ∆µ(Ψ1) ∧∆µ(Ψ2) is consistent,
then ∆µ(Ψ1 tΨ2) ` ∆µ(Ψ1) ∧∆µ(Ψ2)

(WIC7) ∆µ1(Ψ) ∧ µ2 ` ∆µ1∧µ2(Ψ)

(WIC8) If ∆µ1(Ψ) ∧ µ2 is consistent,
then ∆µ1∧µ2(Ψ) ` ∆µ1(Ψ) ∧ µ2

(WIC9) If β > α, if ∆µ(Ψ t (ϕ α)) ` ϕ,
then ∆µ(Ψ t (ϕ β)) ` ϕ.

2We use this t notation to insist on the fact that several agents
can have exactly the same couple (formula, weight), so a profile
can be, equivalently, be considered as a multiset of such couples.

(WIC10) If ϕ ∧ ∆µ(Ψ t (ϕ α)) 6` ⊥ and ϕ ∧ ∆µ(Ψ t
(ϕ β)) 6` ⊥, then ∆µ(Ψt(ϕ α))∧ϕ ≡ ∆µ(Ψt(ϕ β))∧ϕ

(WIC11) ∆µ((ϕ α)) ≡ ∆µ((ϕ β))

(WIC12) If ϕ is consistent with µ,
then ∃α, ∆µ(Ψ t (ϕ α)) ` ϕ

The postulates (WIC0-WIC8) are an adaptation of (IC0-
IC8) from the framework of belief merging (see (Konieczny
and Pino Pérez 2002)) to the framework of weighted belief
merging. The only difference is for (WIC4) where we need
to add an extra condition stating that the two agents must
have the same weights. (WIC4) states that if two agents have
the same weights, no priority (coming from their names or
any other information) can be given to one of them.

The most important postulates here are the ones that en-
force a good behaviour with respect to the weights.

(WIC9) states that increasing the weight of a source can
only be beneficial for this source. If the result of the merging
already implies the beliefs of a source with a given weight,
it will continue to do so with a bigger weight for this source.

(WIC10) states that the weight associated to a source has
to be seen as a penalty against conflicting formulas, but they
have no impact on formulae consistent with the source. So
if the result of the merging is consistent with the belief of an
agent, it will remain consistent whatever the weight of this
agent (this weight will only have an impact on the part of the
merging that is not consistent with the beliefs of the agent).

(WIC11) states that the result of the merging of a single
source will be the same whatever the weight of this source.
This postulate is about a very particular case, without any
particular interest by itself, but its implications are impor-
tant, since it ensures that weights are only used as amplifica-
tors of the plausibility relations associated to the beliefs of
the sources, without modifying them.

(WIC12) can be seen as a kind of success postulates for
the weights. It states that if the weight of a source is suffi-
ciently large, then this source will manage to impose its view
for the merging.

Clearly WIC merging operators are safe extensions of
classical IC merging operators. More formally, every WIC
merging operator ∆ induces a merging operator ∆̄ over pro-
files without weights in a natural way: to any weigthed
profile Ψ = {(ϕ1 1), . . . , (ϕn 1)} we can associate a pro-
file without weights Ψ̄ = {ϕ1, . . . , ϕn}. Then we define
∆̄µ(Ψ̄) = ∆µ(Ψ), and straightforwardly:

Proposition 1. For any WIC merging operator ∆, the oper-
ator ∆̄ is an IC merging operator.

Let us now provide a representation theorem for these
WIC merging operators in terms of plausibility relations on
interpretations.

Definition 2. A function Ψ→Ψ that maps each profile Ψ to
a total preorder over interpretations Ψ is called a weighted
syncretic assignment if it satisfies the conditions 1-10 below:

1. If ω |= Ψ and ω′ |= Ψ, then ω 'Ψ ω′

2. If ω |= Ψ and ω′ 6|= Ψ, then ω ≺Ψ ω′

3. If Ψ1 ↔ Ψ2, then Ψ1
=Ψ2
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4. For any a, a′ with δ(a) = δ(a′), ∀ω |= B(a),
∃ω′ |= B(a′) such that ω′ata′ω

5. If ωΨ1ω
′ and ωΨ2ω

′, then ωΨ1tΨ2ω
′

6. If ωΨ1ω
′ and ω ≺Ψ2 ω

′, then ω ≺Ψ1tΨ2 ω
′

7. If ω 6|= ϕ, ω′ |= ϕ and β > α, then
ωΨt(ϕ β)ω

′ =⇒ ωΨt(ϕ α)ω
′

8. If ω, ω′ |= ϕ then ∀α, β,
ωΨt(ϕ α)ω

′ ⇐⇒ ωΨt(ϕ β)ω
′

9. ω(ϕ α)ω
′ iff ω(ϕ β)ω

′

10. If ω |= ϕ∧µ and ω′ |= ¬ϕ∧µ, then ∃α ω ≺Ψt(ϕ α) ω
′

The conditions (1-6) are an adaptation of (1-6) from
the framework of belief merging (see (Konieczny and Pino
Pérez 2002)) to the framework of weighted belief merging.
Only (4) has been weaken to hold only when the agents have
the same weights, that is expected with this fairness prop-
erty: if two agents have the same weights, then no priority
should be given to one of them.

Condition 7 says that if an interpretation ω that is not a
model of the source is better than an interpretation ω′ that is
a model of this source, it will remain better if we use a lower
weight for this source.

Condition 8 states that the order between interpretations
that satisfy a source does not change regardless of the weight
associated to that source. So this weight will have an impact
only on interpretations that do not satisfy this source.

Condition 9 states that in a singleton profile the order be-
tween the interpretations does not change regardless of the
weight associated with the source. This condition is manda-
tory to ensure that the weigths do not interfere with the plau-
sibility relation.

Condition 10 states that any model of a source that is fea-
sible (i.e. that satisfies the constraints µ) can become better
than a non-model with a sufficiently large weight.

Observation 1. It is easy to see that Condition 7 is equiva-
lent to the following condition:
7’ If ω 6|= ϕ, ω′ |= ϕ and β > α,

then ω′ ≺Ψt(ϕ α) ω =⇒ ω′ ≺Ψt(ϕ β) ω

We can also straightforwardly generalize the two main
subfamilies of merging operators, namely majority and
arbitration operators, to this weighted setting. A majority
operator is a WIC merging operator that satisfies (Maj). An
arbitration operator is a WIC operator that satisfies (Arb).
(Maj) ∃n s.t. ∆µ(Ψ1 tΨn

2 ) ` ∆µ(Ψ2)

(Arb)

∆µ1(a1) ≡ ∆µ2(a2)
∆µ1↔¬µ2(a1 t a2) ≡ (µ1 ↔ ¬µ2)
µ1 6` µ2

µ2 6` µ1

⇒
∆µ1∨µ2(a1 t a2)

≡
∆µ1(a1)

These conditions have semantic counterparts as we will
see in the Representation theorem below:

(Maj-sa) ω ≺Ψ2 ω
′ ⇒ ∃n ω ≺ΨtΨn

2
ω′

(Arb-sa)
ω ≺a1 ω1

ω ≺a2 ω2

ω1 'a1ta2
ω2

}
⇒ ω ≺a1ta2

ω1

Let us now state the representation theorem for WIC
merging operators:

Theorem 1. An operator ∆ is an WIC merging operator
if and only if there exists a weighted syncretic assignement
Ψ→Ψ that maps each profile Ψ to a total preorder on inter-
pretations Ψ s.t. for every formula µ,

[[∆µ(Ψ)]] = min([[µ]],Ψ )

Moreover, a WIC merging operator ∆ satisfies (Maj) iff
the syncretic assignment satisfies (Maj-sa), and ∆ satisfies
(Arb) iff the syncretic assignment satisfies (Arb-sa).

Proof. (only if part). Let ∆ be a weighted merging operator
satisfying postulates (WIC0-WIC12). Let us define a syn-
cretic assignment as follows: for each profile Ψ, we define a
total pre-order Ψ by putting ∀ω, ω′ ∈ Ω, ωΨω

′ if and only if
ω |= ∆ϕ{ω,ω′}(Ψ). First we show that Ψ is a total pre-order:
Totality: ∀ω, ω′ ∈ Ω, from (WIC1), we know that
∆ϕ{ω,ω′}(Ψ) 6= ∅. From (WIC0), ∆ϕ{ω,ω′}(Ψ) ` ϕ{ω,ω′},
so either ω |= ∆ϕ{ω,ω′}(Ψ) or ω′ |= ∆ϕ{ω,ω′}(Ψ). It fol-
lows that ωΨω

′ or ω′Ψω.
Reflexivity: From (WIC0) and (WIC1) we have that
∆ϕω

(Ψ) ≡ ϕω . So ωΨω.
Transitivity: Assume that ω1Ψω2 (?) and ω2Ψω3 (??) and
suppose towards a contradiction that ω1 6Ψ ω3. So by defini-
tion and from (WIC0) and (WIC1) ∆ϕ{ω1,ω3}

(Ψ) ≡ ϕω3 (??
?). By (WIC7) we know that ∆ϕ{ω1,ω2,ω3}

(Ψ)∧ϕ{ω1,ω3} `
∆ϕ{ω1,ω3}

(Ψ). We consider two cases:
Case 1: ∆ϕ{ω1,ω2,ω3}

(Ψ) ∧ ϕ{ω1,ω3} is consistent. Then
by (WIC7) and (WIC8) we deduce that ∆ϕ{ω1,ω2,ω3}

(Ψ) ∧
ϕ{ω1,ω3} ≡ ∆ϕ{ω1,ω3}

(Ψ), from that and (? ? ?) we have
∆ϕ{ω1,ω2,ω3}

(Ψ) ∧ ϕ{ω1,ω3} ≡ ϕω3
. Thus we have that

ω1 6|= ∆ϕ{ω1,ω2,ω3}
(Ψ). But by (WIC1) ∆ϕ{ω1,ω2,ω3}

(Ψ) 6=
∅, so by (WIC0), either [[∆ϕ{ω1,ω2,ω3}

(Ψ)]] = {ω2, ω3} or
[[∆ϕ{ω1,ω2,ω3}

(Ψ)]] = {ω3}.
In the first case, by (WIC7) and (WIC8), we know

that ∆ϕ{ω1,ω2,ω3}
(Ψ) ∧ ϕ{ω1,ω2} ≡ ∆ϕ{ω1,ω2}

(Ψ).
As [[∆ϕ{ω1,ω2,ω3}

(Ψ)]] = {ω2, ω3}, ∆ϕ{ω1,ω2,ω3}
(Ψ) ∧

ϕ{ω1,ω2} ≡ {ω2} and ω1 6|= ∆ϕ{ω1,ω2}
(Ψ): Contradiction

with (?).
In the second case, by (WIC7) and (WIC8),

∆ϕ{ω1,ω2,ω3}
(Ψ) ∧ ϕ{ω2,ω3} ≡ ∆ϕ{ω2,ω3}

(Ψ). As
∆ϕ{ω1,ω2,ω3}

(Ψ) ≡ ϕω3 , we get that ω2 6|= ∆ϕ{ω1,ω2,ω3}
(Ψ)

so ω2 6|= ∆ϕ{ω2,ω3}
(Ψ): Contradiction with (??).

Case 2: ∆ϕ{ω1,ω2,ω3}
(Ψ) ∧ ϕ{ω1,ω3} is not consis-

tent. In this case, ∆ϕ{ω1,ω2,ω3}
(Ψ) ≡ ϕω2

. Then
∆ϕ{ω1,ω2,ω3}

(Ψ) ∧ ϕ{ω1,ω2} = ϕω2
. By (WIC7) and

(WIC8) it follows that ∆ϕ{ω1,ω2}
(Ψ) = ϕω2

, that is by
definition ω2 ≺Ψ ω1: Contradiction.
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As Ψ is total, reflexive and transitive, it is a total pre-order.
Now we will show that [[∆µ(Ψ)]] = min([[µ]],Ψ ).
First we show the inclusion [[∆µ(Ψ)]] ⊆ min([[µ]],Ψ ).

Assume that ω |= ∆µ(Ψ) and suppose towards a con-
tradiction that ω is not in min([[µ]],Ψ ). So we can
find a ω′ |= µ s.t. ω′ ≺Ψ ω, i.e. ω 6|= ∆ϕ{ω,ω′}(Ψ).
Since ∆µ(Ψ) ∧ ϕ{ω,ω′} is consistent, from (WIC7) and
(WIC8), we have ∆µ(Ψ) ∧ ϕ{ω,ω′} ≡ ∆µ∧ϕ{ω,ω′}(Ψ)

≡ ∆ϕ{ω,ω′}(Ψ). As ω 6|= ∆ϕ{ω,ω′}(Ψ) so necessarily
ω 6|= ∆µ(Ψ): Contradiction.

For the other inclusion [[∆µ(Ψ)]] ⊇ min([[µ]],Ψ ),
suppose that ω ∈ min([[µ]], Ψ). We want to show that
ω |= ∆µ(Ψ). Since ω ∈ min([[µ]],Ψ ), ∀ω′ |= µ, ωΨω

′

and so ω |= ∆ϕ{ω,ω′}(Ψ). As ∆µ(Ψ) ∧ ϕ{ω,ω′}
is consistent, from (WIC7) and (WIC8), we have
∆µ(Ψ) ∧ ϕ{ω,ω′} ≡ ∆ϕ{ω,ω′}(Ψ). But ω |= ∆ϕ{ω,ω′}(Ψ)

so ω |= ∆µ(Ψ).

It remains to check the conditions of the syncretic assign-
ment:
1. Suppose that ω |= Ψ and ω′ |= Ψ, then by (WIC2) we

have ∆ϕ{ω,ω′}(Ψ) = ϕ{ω,ω′} , so ωΨω
′ and ω′Ψω and then

by definition ω 'Ψ ω′.
2. Suppose that ω |= Ψ and ω′ 6|= Ψ, then by (WIC2)

∆ϕ{ω,ω′}(Ψ) = ϕω , so ωΨω
′ and ω′ 6Ψ ω, i.e. ω ≺Ψ ω′.

3. Let’s take Ψ1 ↔ Ψ2. We want to show that Ψ1
=Ψ2

.
From (WIC3), we know that ∆(Ψ1) ≡ ∆(Ψ2), then
∀ω, ω′ ∈ Ω, ωΨ1ω

′ ⇔ ωΨ2ω
′. Thus Ψ1 =Ψ2 .

4. We want to show that if δ(a′) = δ(a), ∀ω |= B(a),
∃ω′ |= B(a′) s.t. ω′ata′ω. First we show that ∃ω′ |=
∆B(a)∨B(a′)(ata′)∧B(a′). If not, we have ∆B(a)∨B(a′)(at
a′) ∧ B(a′) ` ⊥. From (WIC0) and (WIC1) we have that
∆B(a)∨B(a′)(ata′) ` B(a). Now by (WIC4) we get that ∃ω′
s.t. ω′ |= ∆B(a)∨B(a′)(ata′)∧B(a′). We get from (WIC7)
and (WIC8) that ω′ |= ∆ϕ{ω,ω′}(a t a

′). So ω′ata′ω.
5. Suppose that ωΨ1

ω′ and ωΨ2
ω′ then ω |=

∆ϕ{ω,ω′}(Ψ1) ∧ ∆ϕ{ω,ω′}(Ψ2). So from (WIC5),
ω |= ∆ϕ{ω,ω′}(Ψ1 tΨ2) and by definition ωΨ1tΨ2ω

′.
6. Suppose that ω ≺Ψ1

ω′ and ωΨ2
ω′. We want to show

that ω ≺Ψ1tΨ2
ω′. From assumption, ω |= ∆ϕ{ω,ω′}(Ψ1) ∧

∆ϕ{ω,ω′}(Ψ2) and ω′ 6|= ∆ϕ{ω,ω′}(Ψ1) ∧∆ϕ{ω,ω′}(Ψ2). So
from (WIC5) and (WIC6), ∆ϕ{ω,ω′}(Ψ1 tΨ2) ≡ ϕω . That
is ω |= ∆ϕ{ω,ω′}(Ψ1 t Ψ2) and ω′ 6|= ∆ϕ{ω,ω′}(Ψ1 t Ψ2),
thus by definition ω ≺Ψ1tΨ2

ω′.
7. Suppose that ω 6|= ϕ, ω′ |= ϕ, ω′ ≺Ψt(ϕ α) ω

and β > α. We have ω′ |= ∆ϕ{ω,ω′}(Ψ t (ϕ α)) and
ω 6|= ∆ϕ{ω,ω′}(Ψ t (ϕ α)), thus ∆ϕ{ω,ω′}(Ψ t (ϕ α)) `
ϕ. By (WIC9), we deduce that ∆ϕ{ω,ω′}(Ψ t (ϕ β)) `
ϕ. As ϕ{ω,ω′} is consistent, by (WIC1) ∆ϕ{ω,ω′}(Ψ t
(ϕ β)) is also consistent, thus ω′ |= ∆ϕ{ω,ω′}(Ψ t (ϕ β)).
As ∆ϕ{ω,ω′}(Ψ t (ϕ β)) ` ϕ, we deduce that ω 6|=
∆ϕ{ω,ω′}(Ψ t (ϕ β)), then ω′ ≺Ψt(ϕ β) ω.
8. We suppose that ω, ω′ |= ϕ, we want to show that,

∀α, β, ωΨt(ϕ α)ω
′ ⇐⇒ ωΨt(ϕ β)ω

′, we prove (⇒) (⇐
is symmetrical). Suppose that ωΨt(ϕ α)ω

′, by definition we
have ω |= ∆ϕ{ω,ω′}(Ψ t (ϕ α)), so ω |= ∆ϕ{ω,ω′}(Ψ t
(ϕ α)) ∧ ϕ, then ∆ϕ{ω,ω′}(Ψ t (ϕ α)) ∧ ϕ 6` ⊥ (?). From
(WIC1), we know that ∆ϕ{ω,ω′}(Ψ t (ϕ β)) is consistent,
and with (WIC0) that ∆ϕ{ω,ω′}(Ψ t (ϕ β)) |= ϕ{ω,ω′} .
Thus ∆ϕ{ω,ω′}(Ψt(ϕ β))∧ϕ 6` ⊥ (??). Then from (?), (??)
and by (WIC10) ∆ϕ{ω,ω′}(Ψt (ϕ α))∧ϕ ≡ ∆ϕ{ω,ω′}(Ψt
(ϕ β)) ∧ ϕ. As ω |= ∆ϕ{ω,ω′}(Ψ t (ϕ α)) ∧ ϕ, then ω |=
∆ϕ{ω,ω′}(Ψ t (ϕ β)) ∧ ϕ, thus ω |= ∆ϕ{ω,ω′}(Ψ t (ϕ β)),
so ωΨt(ϕ β)ω

′.
9. We prove ⇒ (⇐ is symmetrical). Suppose that
ω(ϕ α)ω

′. We want to show that ω(ϕ β)ω
′. From assump-

tion and by definition we deduce that ω |= ∆ϕ{ω,ω′}((ϕ α)).
By (WIC11) we deduce that ω |= ∆ϕ{ω,ω′}((ϕ β)), then by
definition ω(ϕ β)ω

′.
10. Assume that ω |= ϕ∧µ and ω′ |= ¬ϕ∧µ. We want to

show that ∃α s.t. ω ≺Ψt(ϕ α) ω
′. Suppose towards a contra-

diction that ∀α, ω′Ψt(ϕ α)ω. By (WIC12), as ϕ is consistent
with ϕ{ω,ω′}, we know that ∃α s.t. ∆ϕ{ω,ω′}(Ψ t (ϕ α)) `
ϕ.
We deduce that ω′ |= ϕ: Contradiction.

(If part) Let’s consider a syncretic assignment that maps
each profile Ψ to a total preorder on interpretations Ψ and
define an operator ∆ by putting [[∆µ(Ψ)]] = min([[µ]], Ψ).
We want to show that ∆ satisfies (WIC0-WIC12).
(WIC0) By definition [[∆µ(Ψ)]] ⊆ [[µ]].
(WIC1) If µ is consistent, then [[µ]] 6= ∅ and, as we have a

finite number of interpretations, we have no infinite de-
scending chains of inequalities, so min([[µ]],Ψ ) 6= ∅.
Then ∆µ(Ψ) is consistent.

(WIC2) Assume that
∧

Ψ ∧ µ is consistent. We want
to show that min([[µ]],Ψ ) = [[

∧
Ψ ∧ µ]]. First note

that if ω |=
∧

Ψ then from conditions 1 and 2, ω ∈
min(Ω,Ψ ). So if ω |= Ψ ∧ µ then ω ∈ min([[µ]],Ψ ):
min([[µ]],Ψ ) ⊇ [[

∧
Ψ ∧ µ]]. For the other inclusion con-

sider ω ∈ min([[µ]],Ψ ). Suppose towards a contradic-
tion that ω 6|=

∧
Ψ ∧ µ. Since ω 6|=

∧
Ψ, by condi-

tion 2 we have that ∀ω′ |=
∧

Ψ, ω′ ≺Ψ ω. In particu-
lar ∀ω′ |=

∧
Ψ ∧ µ, ω′ ≺Ψ ω. So ω 6∈ min([[µ]],Ψ ).

Contradiction.
(WIC3) Assume that Ψ1 ↔ Ψ2 and µ1 ≡ µ2, so

from condition 3 we have Ψ1
=Ψ2

and [[µ1]] = [[µ2]],
min([[µ1]],Ψ1

) = min([[µ2]],Ψ2
), thus ∆µ1

(Ψ1) ≡
∆µ1

(Ψ2).
(WIC4) Assume that B(a) ` µ,B(a′) ` µ, ∆µ(a t a′) ∧
B(a) 6|= ⊥ and δ(a) = δ(a′) .We want to show that
∆µ(ata′)∧B(a′) 6|= ⊥. Consider ω |= ∆µ(ata′)∧B(a).
Then from condition 4 we have that ∃ω′ |= B(a′) such
that ω′ata′ω. Then ω′ is minimal in [[µ]] with respect of
ata′ . Then ω′ |= ∆µ(a t a′) and therefore ∆µ(a t a′) ∧
B(a′) 6` ⊥.

(WIC5) Let ω |= ∆µ(Ψ1) ∧ ∆µ(Ψ2). Then ω ∈
min([[µ]],Ψ1

) and so ∀ω′ |= µ, ωΨ1
ω′. We have in the

same way ∀ω′ |= µ, ωΨ2ω
′. By condition 5, we have that
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∀ω′ |= µ, ωΨ1tΨ2ω
′. So ω ∈ min([[µ]],Ψ1tΨ2 ) and by

definition ω |= ∆µ(Ψ1 tΨ2).
(WIC6) Assume that ∆µ(Ψ1) ∧∆µ(Ψ2) is consistent. We

want to show that ∆µ(Ψ1 t Ψ2) ` ∆µ(Ψ1) ∧ ∆µ(Ψ2)
holds. Take ω |= ∆µ(Ψ1 tΨ2). So ∀ω′ |= µ, ωΨ1tΨ2

ω′.
Suppose towards a contradiction that ω 6|= ∆µ(Ψ1) ∧
∆µ(Ψ2). So ω 6|= ∆µ(Ψ1) or ω 6|= ∆µ(Ψ2). Sup-
pose that ω 6|= ∆µ(Ψ1) (the other case is analogous). As
∆µ(Ψ1) ∧∆µ(Ψ2) is consistent, then ∃ω′ |= ∆µ(Ψ1) ∧
∆µ(Ψ2), so ω′ |= ∆µ(Ψ1) and ω′ |= ∆µ(Ψ2). Then
by definition ω′ ≺Ψ1 ω and ω′Ψ2

ω, thus by condition 6
ω′ ≺Ψ1tΨ2

ω and then ω 6|= ∆µ(Ψ1 t Ψ2). Contradic-
tion.

(WIC7) Consider that ∆µ1(Ψ)∧µ2 is consistent (if not, the
result is straightforward), and let ω |= ∆µ1(Ψ) ∧ µ2. So
∀ω′ |= µ1, ωΨω

′. So ∀ω′ |= µ1 ∧ µ2, ωΨω
′, so ω |=

∆µ1∧µ2(Ψ).
(WIC8) Assume that ∆µ1

(Ψ) ∧ µ2 is consistent and let
ω′ |= ∆µ1

(Ψ) ∧ µ2. Consider ω |= ∆µ1∧µ2
(Ψ) and sup-

pose that ω 6|= ∆µ1
(Ψ). So ω′ ≺Ψ ω. But ω′ |= µ1 ∧ µ2

then ω 6∈ min([[µ1 ∧ µ2]],Ψ ). Thus ω 6|= ∆µ1∧µ2
(Ψ).

Contradiction.
(WIC9) Suppose that β > α and ∆µ(Ψ t (ϕ α)) ` ϕ. We

want to show that ∆µ(Ψ t (ϕ β)) ` ϕ. From assumption
we deduce that ∃ω |= ∆µ(Ψ t (ϕ α)) and ω |= ϕ. Sup-
pose towards a contradiction that ∆µ(Ψ t (ϕ β)) 6` ϕ,
then ∃ω′ |= ∆µ(Ψ t (ϕ β)) and ω′ |= ¬ϕ. Since
ω |= µ by (WIC0), then ω′Ψt(ϕ β)ω, so by condition 7
we have that ω′Ψt(ϕ α)ω (?). But ω ∈ min([[µ]],Ψt(ϕ α) )

and since ω′ ∈ [[µ]] by (WIC0), then by (?) ω′ ∈
min([[µ]],Ψt(ϕ α) ), thus ω′ |= ∆µ(Ψt (ϕ α)), then from
assumption ω′ |= ϕ. Contradiction.

(WIC10) Assume that ϕ ∧ ∆µ(Ψ t (ϕ α)) 6` ⊥ and
ϕ ∧∆µ(Ψ t (ϕ β)) 6` ⊥. We want to show that ∆µ(Ψ t
(ϕ α))∧ϕ ≡ ∆µ(Ψt (ϕ β))∧ϕ . From assumption, we
have ∃ω |= ϕ ∧∆µ(Ψ t (ϕ α)) and ∃ω′ |= ϕ ∧∆µ(Ψ t
(ϕ β)). As a consequence, ω, ω′ |= ϕ, and from condi-
tion (8) we have ∀α, β, ωΨt(ϕ α)ω

′ ⇐⇒ ωΨt(ϕ β)ω
′, so

∆ϕ{ω,ω′}(Ψt(ϕ α)) ≡ ∆ϕ{ω,ω′}(Ψt(ϕ β)). We can eas-
ily deduce by that this equivalence is preserved for each
ω |= ϕ ∧∆µ(Ψ t (ϕ α)) and ω′ |= ϕ ∧∆µ(Ψ t (ϕ β)).
Thus ∆µ∧ϕ(Ψ t (ϕ α)) ≡ ∆µ∧ϕ(Ψ t (ϕ β)). From
the assumption we have that ϕ ∧ ∆µ(Ψ t (ϕ α)) and
ϕ∧∆µ(Ψt (ϕ β)) are consistent, then from (WIC7) and
(WIC8) we have ∆µ(Ψt(ϕ α))∧ϕ ≡ ∆µ∧ϕ(Ψt(ϕ α))
and ∆µ(Ψ t (ϕ β)) ∧ ϕ ≡ ∆µ∧ϕ(Ψ t (ϕ β)), thus
∆µ(Ψ t (ϕ α)) ∧ ϕ ≡ ∆µ(Ψ t (ϕ β)) ∧ ϕ.

(WIC11) Direct from condition (9).
(WIC12) Suppose that ϕ is consistent with µ. We want to

show that ∃α, s.t. ∆µ(Ψt (ϕ α)) ` ϕ. Suppose, towards
a contradiction that ∀α, ∃ω′ |= ∆µ(Ψ t (ϕ α)) ∧ ¬ϕ.
Consider an increasing and unbounded sequence of pos-
itive real numbers (αk)k∈N. From the previous assump-
tion, for every αk, there exists an ωαk

such that ωαk
|=

∆µ(Ψ t (ϕ αk)) ∧ ¬ϕ. As Ω is finite, by the pigeonhole
principle, there exists an ω′ and a subsequence (αkn)n∈N
such that for all n ∈ N, ω′ |= ∆µ(Ψ t (ϕ αkn)) ∧ ¬ϕ.

Thus ∀ω |= µ, ω′Ψt(ϕ αkn )ω. We know that ϕ ∧ µ 6` ⊥,
so for all n ∈ N and ∀ω |= ϕ ∧ µ, ω′Ψt(ϕ αkn )ω (*).
By (WIC0) ω′ |= ¬ϕ ∧ µ. Let’s take ω |= ϕ ∧ µ.
By condition 10, we know that ∃α s.t. ω ≺Ψt(ϕ α) ω

′.
Since the sequence (αkn)n∈N is unbounded there exists
αkn0

> α and by condition 7’ (equivalent to 7) we have
ω ≺Ψt(ϕ αkn0 )

ω′. But this last statement is in contradic-
tion with (*).

Now we prove the second part of the theorem, that is, that
for WIC operators (Maj) is equivalent to (Maj-sa) and (Arb)
is equivalent to (Arb-sa).
(Maj ⇒ Maj-sa) Suppose that ω ≺Ψ2

ω′. We want to
show, assuming (Maj), that ∃n ω ≺Ψ1tΨn

2
ω′. From

supposition and by definition we have ω |= ∆ϕ{ω,ω′}(Ψ2)

and ω′ 6|= ∆ϕ{ω,ω′}(Ψ2). Suppose, towards a contradiction,
that ∀n ω′Ψ1tΨn

2
ω, then ω′ |= ∆ϕ{ω,ω′}(Ψ1 t Ψn

2 ), thus by
(Maj) we deduce that ω′ |= ∆ϕ{ω,ω′}(Ψ2). Contradiction.

(Maj-sa⇒Maj) First note that if ω ≺Ψ2 ω
′ and ω ≺Ψ1tΨn

2

ω′ then, by condition 6, we have ω ≺Ψ1tΨn+1
2

ω′. Thus,
using induction, it is easy to see that Maj-sa plus condition
6 entail the following statement:

ω ≺Ψ2 ω
′ ⇒ ∃n0∀nn0, ω ≺Ψ1tΨn

2
ω′

Note that the contrapositive form of this statement is the fol-
lowing one:

∀n0∃nn0, ωΨ1tΨn
2
ω′ ⇒ ωΨ2ω

′ (∗)

Suppose towards a contradiction that ∀n,∆µ(Ψ1tΨn
2 ) 6`

∆µ(Ψ2). From this we obtain ∀n, ∃ω |= µ, ∀ω′′ |=
µ, ωΨ1tΨn

2
ω′′ and ∃ω′ |= µ ω′ ≺Ψ2 ω. As Ω is finite,

by the pigeonhole principle, there exists an ω such that for
infinite integers n, we have ωΨ1tΨn

2
ω′′ for any ω′′ |= µ and

such that ∃ω′ |= µ, ω′ ≺Ψ2 ω. This condition entails the
premisses of (∗), therefore we have ωΨ2ω

′′ for any ω′′ |= µ
which is in obvious contradiction with the existence of a
ω′ |= µ, ω′ ≺Ψ2

ω.

(Arb ⇒ Arb-sa) Suppose that ω ≺a1
ω1, ω ≺a2

ω2 and
ω1 'a1ta2

ω2. First if ω1 = ω2 then ω ≺a1ta2
ω1

by condition 6. Now if ω1 6= ω2, then ∆ϕ{ω,ω1}
(a1) ≡

∆ϕ{ω,ω2}
(a2) ≡ ϕω . Also ∆ϕ{ω1,ω2}

(a1 t a2) = ϕ{ω1,ω2},
ϕ{ω1,ω} ∧ ¬ϕ{ω1,ω2} and ¬ϕ{ω1,ω} ∧ ϕ{ω1,ω2} are con-
sistent. Then by (Arb) we have that ∆ϕ{ω,ω1,ω2}

(a1 t
a2) = ϕω . And by (WIC7) and (WIC8) we deduce that
∆ϕ{ω,ω1,ω2}∧ϕ{ω,ω1}

(a1 t a2) ≡ ∆ϕ{ω,ω1}
(a1 t a2) ≡ ϕω ,

then ω ≺a1ta2
ω1.

(Arb-sa ⇒ Arb) Suppose that ∆µ1(a1) ≡ ∆µ2(a2),
∆µ1↔¬µ2(a1 t a2) ≡ (µ1 ↔ ¬µ2), µ1 ∧ ¬µ2 6` ⊥ and
µ2 ∧ ¬µ1 6` ⊥. We want to show that ∆µ1∨µ2(a1 t a2) ≡
∆µ1(a1).
First, we show that ∆µ1

(a1) ` ∆µ1∨µ2
(a1 t a2). Let’s

take ω ` ∆µ1
(a1), suppose towards a contradiction that

ω 6|= ∆µ1∨µ2
(a1 t a2). Then ∃ω1 |= µ1 ∨ µ2 ω1 ≺a1ta2

ω.
We consider 3 cases: ω1 |= µ1 ∧ µ2, ω1 |= µ1 ∧ ¬µ2 and
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ω1 |= ¬µ1 ∧ µ2.
Case 1: ω1 |= µ1 ∧ µ2. As ω |= ∆µ1(a1), ωa1ω1.
From assumption we have ∆µ1(a1) ≡ ∆µ2(a2). Thus
ω |= ∆µ2

(a2) and then ωa2
ω1. Then by condition 5 we

have ωa1ta2
ω1. Contradiction.

Case 2: ω1 |= µ1 ∧ ¬µ2 (case 3 is symmetric). As
ω1 6|= µ2, then ω1 6|= ∆µ2

(a2) and from assumption we
have ∆µ1

(a1) ≡ ∆µ2
(a2), then we have ω1 6|= ∆µ1

(a1).
Then ω ≺a1

ω1 and ω ≺a2
ω1. From this, by condition 6,

we have ω ≺a1ta2
ω1, a contradiction.

Now we will show that ∆µ1∨µ2(a1 t a2) ` ∆µ1(a1). Sup-
pose that ω |= ∆µ1∨µ2(a1 ta2) and suppose towards a con-
tradiction that ω 6|= ∆µ1(a1). We consider 3 cases:
Case 1: ω |= µ1 ∧ µ2, then ∃ω1 |= ∆µ1(a1), such that
ω1 ≺a1

ω. And as ∆µ1
(a1) ≡ ∆µ2

(a2), ω1 ≺a2
ω.

Thus by condition 6 we have that ω1 ≺a1ta2
ω, then

ω 6|= ∆µ1∨µ2
(a1 t a2). Contradiction.

Case 2: ω |= µ1 ∧ ¬µ2 (case 3, where ω |= ¬µ1 ∧ µ2

is symmetric). From assumption we know that ∃ω2 |=
¬µ1 ∧ µ2. As ∆µ1

(a1) ≡ ∆µ2
(a2), ∃ω1 |= ∆µ1

(a1)
such that ω1 ≺a1

ω and ω1 ≺a2
ω2. We deduce also from

∆µ1↔¬µ2(a1 t a2) ≡ (µ1 ↔ ¬µ2) that ω 'a1ta2 ω2, thus
by Arb-sa ω1 ≺a1ta2 ω. Thus ω 6|= ∆µ1∨µ2(a1 t a2).
Contradiction.

4 Distance-Based WIC Operators
In this Section we give a general method to construct a
weighted merging operator. This method is a generalization
of distance-based methods initiated in (Konieczny and Pino
Pérez 2002) and extended in (Konieczny, Lang, and Mar-
quis 2004) (see also (Konieczny and Pino Pérez 2011)). The
main ingredients will be a (pseudo) distance d between inter-
pretations, an aggregation function f and another function,
•, allowing us to take into account the weight along with the
distance.

Let us first formally define all these ingredients.

Definition 3. A pseudo-distance over interpretations is a
function d : Ω × Ω → R+ such that d(ω, ω′) = d(ω′, ω)
and d(ω, ω′) = 0 iff ω = ω′.

Definition 4. The distance between an interpretation ω and
a formula ϕ is defined by d(ω, ϕ) = minω′|=ϕ d(ω, ω′).

Definition 5. A weight function is a function • : R+ ×
R∗+ → R+, which satisfies the following properties:

- Increasing: If d 6= 0 and α > β, then •(d, α) > •(d, β),
and if d > d′, then •(d, β) > •(d′, β)

- Invariance of 0: ∀α, β, •(0, α) = •(0, β)
def
= •0

- Unbounded: ∀d > 0 , ∀K > 0, ∃α s.t. •(d, α) > K

Definition 6. An aggregation function is a mapping
f :

⋃
n

R+n → (I,≤), where I is a totally ordered set3,

which has the following properties:

3Usually, for example for the sum, I is simply R+ and ≤ the
natural order between real numbers. For Gmax or Gmin, I is⋃
nR

+n and ≤ the lexicographic order between vectors of real
numbers.

- Increasing: If β > γ, then f(α1, ..., β, ..., αn) >
f(α1, ..., γ, ..., αn)

- Symmetry: If σ is a permutation over {1, ..., n}, then
f(α1, ..., αn) = f(ασ(1), ..., ασ(n))

- Composition: If f(α1, ..., αn) ≥ f(β1, ..., βn), then
∀γ ≥ 0, f(α1, ..., αn, γ) ≥ f(β1, ..., βn, γ)

- Decomposition: ∀γ ≥ 0, if f(α1, ..., αn, γ) ≥
f(β1, ..., βn, γ), then f(α1, ..., αn) ≥ f(β1, ..., βn)

- Unbounded: ∀(α1, ..., αn), ∀(β1, ..., βn), ∀β, ∃α s.t.
f(α1, ..., αn, α) > f(β1, ..., βn, β)

Note that in a lot of works in the literature aggregation
functions are functions that maps a profile of real numbers
into a real number. We chose a little more complex set for
the image of the aggregation function, in order to be able to
include slightly more complex functions, like Gmax.

Now we assume we have a pseudo distance d, a weight
function • and an aggregation function f . Our next goal will
be to define an assignment based on these three functions
and to prove that the operator defined via the assigment is
a WIC operator. First we define the weighted distance be-
tween an interpretation ω and an agent a as follows:

d•d(ω, a) = •(d(ω,B(a)), δ(a))

Second, we define the distance between an interpretation ω
and a profile Ψ as follows:4

d•d,f (ω,Ψ) = fa∈Ψ d•d(ω, a)

Third, we define an assignment Ψ 7→d•d,f
Ψ by putting:

ω
d•d,f
Ψ ω′ iff d•d,f (ω,Ψ) ≤ d•d,f (ω′,Ψ)

Finally, we define semantically the operator ∆
d•d,f
µ associ-

ated to d, • and f as:

[[∆
d•d,f
µ (Ψ)]] = min([[µ]],

d•d,f
Ψ )

Theorem 2. Let d, • and f be a pseudo distance, a weight
function and an aggregation function respectively. Then, the
operator ∆d•d,f is a WIC merging operator.

Before giving the proof of this result we state a lemma
with is very useful in order to simplify its proof. For space
reasons we don’t give the (straightforward) proofs of the
lemma.
Lemma 1. Let f be an aggregation function. Then the
following conditions hold:
1. If (α1, . . . , αn) and (β1, . . . , βn) are two vectors of R+n

such that ∀i ≤ n, αi ≤ βi and there exists j ≤ n such that
αj < βj , then f(α1, . . . , αn) < f(β1, . . . , βn).
2. f(α1, . . . , αn) ≤ f(β1, . . . , βn) and f(α′1, . . . , α

′
k) ≤

f(β′1, . . . , β
′
k) entails f(α1, . . . , αn, α

′
1, . . . , α

′
k) ≤

f(β1, . . . , βn, β
′
1, . . . , β

′
k).

3. f(α1, . . . , αn) < f(β1, . . . , βn) and f(α′1, . . . , α
′
k) ≤

f(β′1, . . . , β
′
k) entails f(α1, . . . , αn, α

′
1, . . . , α

′
k) <

f(β1, . . . , βn, β
′
1, . . . , β

′
k).

4If Ψ = {a1, . . . , an}, fa∈Ψ d•d(ω, a) is the short notation of
f(d•d(ω, a1), . . . , d•d(ω, an)).
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Proof of Theorem 2: By definition of ∆d•d,f and Theo-

rem 1 it is enough to prove that the mapping Ψ 7→d•d,f
Ψ is a

weighted syncretic assignment.
1. Suppose that ω |= Ψ and ω′ |= Ψ, we want to show that
ω 'Ψ ω′. We have ∀a ∈ Ψ, d(ω, a) = d(ω′, a) = 0, so
∀a ∈ Ψ, d•d(ω, a) = d•d(ω

′, a) = •0 (invariance of 0), and
f({d•d(ω, a) | a ∈ Ψ}) = f({d•d(ω′, a) | a ∈ Ψ}).
2. Suppose that ω |= Ψ and ω′ 6|= Ψ, we want to show

that ω ≺d
•
d,f

Ψ ω′. Since, • is increasing in the first variable,
we have ∀ai ∈ Ψ, d•d(ω, ai) ≤ d•d(ω

′, ai), and ∃a ∈ Ψ s.t.
d•d(ω, a) < d•d(ω

′, a). From this and Lemma 1.1, we obtain

easily ω ≺d
•
d,f

Ψ ω′.
3. We want to show that if Ψ1 ↔ Ψ2, then Ψ1

=Ψ2
. Sup-

pose that Ψ1 = {a1, ..., an} and Ψ2 = {a′1, ..., a′n}, and for
every i ∈ {1, ..., n}, ai ↔ a′i, i.e. ∀ω ∈ Ω, d(ω, ϕi) =
d(ω, ϕ′i) and αi = α′i. So ∀i, d•d(ω, ai) = d•d(ω, a

′
i), and

f({d•d(ω, ai) | ai ∈ Ψ1}) = f({d•d(ω, a′i) | a′i ∈ Ψ2}).
As a consequence, Ψ1

=Ψ2
.

4. We want to show that ∀ω |= B(a), ∃ω′ |= B(a′)

s.t. ω′ �d
•
d,f

ata′ ω. We know that ∀ω |= B(a),
•(d(ω,B(a)), δ(a)) = •(0, δ(a)) = •0. Let ω be any
model of B(a). d(ω,B(a′) = minω′|=B(a′) d(ω, ω′): let
us consider ω′ |= B(a′) such that d(ω, ω′) = d(ω,B(a′)).
We have: d•d,f (ω, a t a′) = f(•(d(ω,B(a)), δ(a)),

•(d(ω,B(a′)), δ(a′))) = f(•0, •(d(ω, ω′), δ(a))), be-
cause δ(a) = δ(a′) and d(ω,B(a′)) = d(ω, ω′).
Note that d•d,f (ω′, a t a′) = f(•(d(ω′,B(a)), δ(a)),

•(d(ω′,B(a′)), δ(a′))) = f(•(d(ω′,B(a)), δ(a)), •0).
By symmetry, f(•(d(ω′,B(a)), δ(a)), •0) =
f(•0, •(d(ω′,B(a)), δ(a))). As d(ω′,B(a)) ≤
d(ω, ω′), by Lemma 1.1, f(•0, •(d(ω′,B(a)) , δ(a)))
≤ f(•0, •(d(ω, ω′), δ(a))), i.e. d•d,f (ω′, a t a′) ≤

d•d,f (ω, a t a′). Then by definition ω′ �d
•
d,f

ata′ ω.
5. This property follows straightforwardly from
Lemma 1.2.
6. This property follows straightforwardly from
Lemma 1.3.
7. We prove property 7’ which is equivalent to 7. Thus,

suppose ω |= ϕ, ω′ 6|= ϕ, ω ≺d
•
d,f

Ψt(ϕ α) ω
′ and β > α. We

want to show that ω ≺d
•
d,f

Ψt(ϕ β) ω
′. By definition we have

f({d•d(ω, ai) | ai ∈ Ψ t (ϕ α)}) < f({d•d(ω′, ai) | ai ∈
Ψ t (ϕ α)}). Since ω |= ϕ, we have f({d•d(ω, ai) | ai ∈
Ψ t (ϕ α)}) = f({d•d(ω, ai) | ai ∈ Ψ t (ϕ β)}). Then
we have f({d•d(ω, ai) | ai ∈ Ψ t (ϕ β)} < f({d•d(ω′, ai) |
ai ∈ Ψ t (ϕ α)}) (?). Note that, as d(ω′, ϕ) 6= 0 and
• is increasing, •(d(ω′, ϕ), α) < •(d(ω′, ϕ), β). Thus, by
increasing of f , we have f({d•d(ω′, ai) | ai ∈ Ψt(ϕ α)}) <
f({d•d(ω′, ai) | ai ∈ Ψt(ϕ β)}). From this and (∗) we have
f({d•d(ω, ai) | ai ∈ Ψ t (ϕ β)}) < f({d•d(ω′, ai) | ai ∈
Ψ t (ϕ β)}), that is ω ≺d

•
d,f

Ψt(ϕ β) ω
′.

8. This is a straightforward consequence of invariance of 0.
9. Suppose that ω(ϕ α)ω

′. We want to show that ω(ϕ β)ω
′

(that is enough by the symmetrical role of α and β). By
definition we have f(d•d(ω, (ϕ α))) ≤ f(d•d(ω

′, (ϕ α))).

We can deduce that d•d(ω, (ϕ α)) ≤ d•d(ω
′, (ϕ α)) (else-

where, by increasing of f we get a contradiction), i.e.
•(d(ω, ϕ), α) ≤ •(d(ω′, ϕ), α). We claim that d(ω, ϕ) ≤
d(ω′, ϕ). Suppose towards a contradiction that d(ω, ϕ) >
d(ω′, ϕ). As • is increasing, we obtain •(d(ω, ϕ), α) >
•(d(ω′, ϕ), α). A contradiction. Then, as • is increasing, we
have •(d(ω, ϕ), β) ≤ •(d(ω′, ϕ), β), i.e., d•(ω, (ϕ β)) ≤
d•(ω′, (ϕ β)). Since f is increasing, f(d•d(ω, (ϕ β))) ≤
f(d•d(ω

′, (ϕ β))), i.e., ω(ϕ β)ω
′.

10. Suppose that ω |= ϕ and ω′ 6|= ϕ. We want to
show that ∃α′, s.t. ω ≺Ψt(ϕ α′) ω′. We know that
∀(α1, ..., αn), ∀(β1, ..., βn), ∀β, ∃α s.t f(α1, ..., αn, α) >
f(β1, ..., βn, β). Let (βi) = (d•d(ω, ai) | ai ∈ Ψ),
(αi) = (d•d(ω

′, ai) | ai ∈ Ψ), and β = •0. Then ∃α s.t.
f(α1, ..., αn, α) > f(β1, ..., βn, β). From assumption we
have d(ω, ϕ) = 0 and d(ω′, ϕ) > 0. As d(ω, ϕ) = 0,
∀α, d•d(ω, (ϕ α)) = •0. As d(ω′, ϕ) > 0 and • is un-
bounded, ∃α′ s.t. •(d(ω′, ϕ), α′) > α. For this α′, by
increasing of f , we obtain f(α1, ..., αn, •(d(ω′, ϕ), α′)) >
f(β1, ..., βn, β). That is, f(α1, ..., αn, •(d(ω′, ϕ), α′)) >
f(β1, ..., βn, d

•
d(ω, (ϕ α

′))). Therefore ω ≺Ψt(ϕ α′) ω
′.

Let us now give some examples of • and check if the
instantiations satisfy these properties. Then, we will give
some aggregation operators f , leading to the definition of
a set of weighted merging operators by the combination of
the instantiation of • and f .

The most natural instances of • in order to take weight
into account with the distance is by multiplying the weight
by the distance, so our first instantiation will be the usual
multiplication ×. The second is by taking the power by the
weight (we need to shift all distances by 1 in this case, in
order to ensure that this function will be strictly increasing
for any distance greater than 0).

These functions will be defined as follows:
Definition 7. Let × and pow be the functions × : R+ ×
R∗+ → R+ and pow : R+ ×R∗+ → R+, defined by :

×(x, y) = x× y
pow(x, y) = (x+ 1)y

Proposition 2. × and pow are weighted functions.
As illustrative examples of aggregation functions, we will

take Σ and Gmax.
Definition 8. Let Σ :

⋃
nR

+n → (R+,≤) an aggregation
function, such that: Σ(y1, . . . , yn) = Σni=1yi

Definition 9. Let Gmax :
⋃
nR

+n → (
⋃
nR

+n,≤lex) an
aggregation function, such that:

Gmax(y1, . . . , yn) = (y1th

ρ(i1), . . . , y
nth

ρ(in))
where ρ is a permutation of {1, . . . , n} such that the yρ(i)

are in decreasing order and ≤lex is the lexicographic order.
It is not difficult to see that these two functions are ag-

gregation functions in the meaning of Definition 6. More
precisely, we have the following proposition:
Proposition 3. Σ and Gmax are aggregation functions, that
is, they satisfy all properties of Definition 6.

As a straightforward consequence of Theorem 2 and
Proposition 3 we have the following result:
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Proposition 4. Whatever the pseudo-distance d and the
weight function •, ∆d•d,Σ and ∆d•d,Gmax are weighted IC merg-
ing operators.

Actually, we know more about the behavior of these op-
erators. This will be establish in Propositions 5 and 6.

Proposition 5. Whatever the pseudo-distance d and the
weight function •, any ∆d•d,Σ operator is a majority
weighted IC merging operator and is not an arbitration
weighted IC merging operator.

Proof. • Arb We know from (Konieczny and Pino Pérez
2002) that ∆d,Σ is not an arbitration operator. So ∆d•d,Σ

cannot satisfy Arb.
• Maj Suppose that ω ≺Ψ2

ω′. We want to show
that ∃n, ω ≺Ψ1tΨn

2
ω′, then we have to show

that d•d,Σ(ω,Ψ1 t Ψn
2 ) < d•d,Σ(ω′,Ψ t Ψn

2 ), which
amounts to showing that d•d,Σ(ω,Ψ1) − d•d,Σ(ω′,Ψ1) <

d•d,Σ(ω′,Ψn
2 ) − d•d,Σ(ω,Ψn

2 ). From assumption we de-
duce that d•d,Σ(ω,Ψ2) < d•d,Σ(ω′,Ψ2), so d•d,Σ(ω′,Ψ2)−
d•d,Σ(ω,Ψ2) > 0(?). We have two cases: ωΨ1

ω′ and
ω �Ψ1

ω′.
Case 1: ωΨ1ω

′, by condition 6 we deduce that ∃n =
1, ω ≺Ψ1tΨ2 ω

′.
Case 2: ω �Ψ1 ω′, then d•d,Σ(ω,Ψ1) > d•d,Σ(ω′,Ψ1),
so d•d,Σ(ω,Ψ1) − d•d,Σ(ω′,Ψ1) > 0, as the value of
d•d,Σ(ω,Ψ1), d•d,Σ(ω′,Ψ1), d•d,Σ(ω′,Ψ2) and d•d,Σ(ω,Ψ2)

are fixed, by (?), we can easily find n such
that d•d,Σ(ω,Ψ1) − d•d,Σ(ω′,Ψ1) < d•d,Σ(ω′,Ψn

2 ) −
d•d,Σ(ω,Ψn

2 ) = n(d•d,Σ(ω′,Ψ2)− d•d,Σ(ω,Ψ2)).

Proposition 6. Whatever the pseudo-distance d and the
weight function •, any ∆d•d,Gmax operator is an arbitra-
tion weighted IC merging operator and is not a majority
weighted IC merging operator.

Proof. • Maj We know from (Konieczny and Pino Pérez
2002) that ∆d,Gmax is not a majoritarian operator. So
∆d•d,Gmax cannot satisfy Maj.

• Arb Suppose that ω ≺a1
ω′, ω ≺a2

ω′′

and ω′ 'a1ta2
ω′′. We want to show that

ω ≺a1ta2
ω′. By contradiction, suppose that

ω ≥a1ta2
ω′. Then Gmax(d•d(ω, a1), d•d(ω, a2)) ≥lex

Gmax(d•d(ω
′, a1), d•d(ω

′, a2)) (?). As ω ≺a1
ω′, we

know that d•d(ω, a1) < d•d(ω
′, a1). So, because of (?),

it must be the case that d•d(ω, a2) ≥ d•d(ω
′, a2) and

d•d(ω
′, a2) ≥ d•d(ω

′, a1). As ω′ 'a1ta2 ω′′, we know
that d•d(ω

′′, a2) = d•d(ω
′, a1) or d•d(ω

′′, a2) = d•d(ω
′, a2).

So d•d(ω, a2) ≥ d•d(ω′′, a2) and ω �a2 ω
′′: contradiction.

One very interesting point is that not all standard aggre-
gation functions still works in this weighted setting. In par-
ticular Gmin operators, that are IC merging operators in the
classical case, are not WIC merging operators:

Definition 10. Let Gmin :
⋃
nR

+n → (
⋃
nR

+n,≤lex) an
aggregation function, such that:

Gmin(y1, . . . , yn) = (y1th

ρ(i1), . . . , y
nth

ρ(in))

where ρ is a permutation of {1, . . . , n} such that the yρ(i)
are in increasing order and ≤lex is the lexicographic order.

Proposition 7. For all pseudo-distance d and all weighted
function •, ∆d•d,Gmin is not a weighted merging operator.

Proof. Consider a1 = (ϕ1, 1), where [[ϕ1]] = {00, 01};
a2 = (ϕ2, 2), where [[ϕ2]] = {01}, suppose [[µ]] = {00, 01}.
Let d and • be respectively any pseudo-distance and any
weighted function. We note d1 = d(00, ϕ2) > 0.

a1 a2 a2 ∆d•d,Gmin

00 0 d1 d1 (0, •(d1, 2), •(d1, 2))
01 0 0 0 (0,0,0)

With Ψ = {a1, a2, a2}, [[∆d•d,Gmin(Ψ)]] = {01}. Consider
[[ϕ]] = {00}, and note d2 = d(01, ϕ) > 0.

a1 a2 a2 (ϕ α) ∆d•d,Gmin

00 0 d1 d1 0 (0,0, •(d1, 2),•(d1, 2))
01 0 0 0 d2 (0,0,0, •(d2, α))

Whatever the weight α associated with ϕ, we obtain
[[∆d•d,Gmin(Ψ t (ϕ, α))]] = {01}. So it is not the case that
∆d•d,Gmin(Ψ t (ϕ, α)) ` α and (WIC12) is not satisfied.

When looking to postulates (WICP12) and (Maj) one can
see that they look similar, but they encode truly different
behaviours:
Proposition 8. The postulates (WICP12) and (Maj) are in-
dependent.

Proof. ∆d•d,Gmin is a majoritarian merging operator which
does not satisfy (WICP12). ∆d•d,Gmax satisfies (WICP12)
and is not a majoritarian merging operator. Finally,
∆d•d,Σ is a majoritarian merging operator and satisfies
(WICP12).

5 Examples
In this section we will provide some examples in order to
illustrate the impact of the weights on the behaviour of the
operators.
Example 1. Four doctors (a1, a2, a3 and a4) are unable
to come to an agreement on which of the candidates should
be recruited as resident doctors based on their evaluation
of their respective skills. They have asked the director of the
hospital for assistance in making their decision. The doctors
will make their decisions based on three criteria C1, C2 and
C3 (respectively. mobility, experience and perfect academic
background).

Doctor a1 believes that the best candidate is one who
meets only the third criterion (C3), while Doctors a2 and a3

believe that the best choice is someone who satisfies either
the first or second criterion. However, Doctor a4 believes
that the candidate should meet all criteria.

The director of the hospital assigns weights to each doctor
based on an his estimation of the reliability of the doctors
for this task, so he assigns a weight of 1 to Doctor a1, 4
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(ϕ1 1) (ϕ2 4) (ϕ3 5) (ϕ4 6) ∆
d×dH,Σ ∆

dpowdH,Σ ∆
d×dH,Gmax

000 1 1 1 3 28 4146 (18, 5,4,1)
001 0 2 2 2 30 1054 (12,10,8,0)
010 2 0 0 2 14 734 (12, 2,0,0)
011 1 1 1 1 16 114 ( 6, 5,4,1)
100 2 0 0 2 14 734 (12, 2,0,0)
101 1 1 1 1 16 114 ( 6, 5,4,1)
110 3 1 1 1 18 116 ( 6, 5,4,3)
111 2 2 2 0 20 328 (10, 8,2,0)

Table 1: The Behaviour of WIC Operators

to Doctor a2, 5 to Doctor a3 and 6 to Doctor a4. So we
have (ϕi αi) for each agent ai, s.t. [[ϕ1]] = {001}, α1 = 1;
[[ϕ2]] = {010, 100}, α2 = 4; [[ϕ3]] = {010, 100}, α3 = 5;
[[ϕ4]] = {111}, α4 = 6.

Table 1 summarizes the computations and allow compar-
isons between the operators. We see that with the same
weight function ×, the ∆

d×dH,Σ operator and the ∆
d×dH,Gmax

operators provide distinct results, the ∆
d×dH,Σ operator, with

a majority merging behavior, choose the best option for a2

and a3, whereas ∆
d×dH,Gmax tends towards a more consensual

result, as expected for an arbitration operator. We see also
that changing the weight function have an impact on the re-
sult since when we compare ∆

d×dH,Σ and ∆
dpowdH,Σ we see

that the results are different, since the pow function gives
a higher importance to the weights, so preventing the results
to be too far from agents with high weights.

Let us now look more specifically to Gmax operators, to
see how varying the weight of agents affects the behavior of
these arbitration operators.

Example 2. Let’s take [[ϕ1]] = [[ϕ2]] = [[ϕ3]] = {000} and
[[ϕ4]] = {111} and let’s take α1 = α2 = α3 = 1 and

α4 = 3. Computations for ∆
d×dH,Gmax are given in Table 2.

We can see the impact of the weight versus the number
of repetitions for Gmax and ×, more exactly we want to
compare the effect of applying a weight of 1 to a formula
ϕ1 repeated n times versus applying a weight of n to the
formula ϕ4. None of the models of ϕ1 and ϕ4 are present
in the result of merging, but the result is closer to ϕ4 than
to ϕ1, even when ϕ1 is repeated more times. And if we
increase the weight associated to ϕ4 from 3 to 4 (the value
can vary depending on the number of propositional variables
and the number of model bases), then the result will imply
ϕ4 (as ensured by (WIC12) there is always a weight where
this happens).

6 Conclusion
In this paper we proposed a characterization of weighted
propositional belief merging operators, i.e. operators that
merge the beliefs (or goals) of several sources expressed
in propositional logic when some sources are more impor-
tant/reliable/expert than others. Some previous works in the

(ϕ1 1) (ϕ2 1) (ϕ3 1) (ϕ4 3) ∆
d×dH,Gmax

000 0 0 0 3 (9,0,0,0)
001 1 1 1 2 (6,1,1,1)
010 1 1 1 2 (6,1,1,1)
011 2 2 2 1 (3,2,2,2)
100 1 1 1 2 (6,1,1,1)
101 2 2 2 1 (3,2,2,2)
110 2 2 2 1 (3,2,2,2)
111 3 3 3 0 (3,3,3,0)

Table 2: ∆
d×
dH,Gmax

literature already defined instances of such operators, but
this is, as far as we know, the first time that a family of such
operators is logically characterized.

Note that there are also in the literature other related
works that use weights for the merging (Lin 1996; Del-
grande, Dubois, and Lang 2006), or where the information is
intrinsically prioritized, as for instance the works on merg-
ing of possibilistic merging bases (Benferhat et al. 1999;
Benferhat and Kaci 2003; Qi, Liu, and Bell 2006; Qi et al.
2006; Benferhat, Lagrue, and Rossit 2009; Benferhat, La-
grue, and Rossit 2014). But none of these works proposes a
representation theorem. And, even if one can try to do some
technical translation between these settings, it is intrinsically
different to weight propositional belief bases to reflect either
their importance, reliability, expertise, than to merge a set of
bases of equal weights with quantified uncertainty expressed
by a weighted logic. So the most general setting would be
to allow to do a weighted merging of weighted logic. Never-
theless, in this work, we stick to the basic propositional logic
setting: we study the merging of weighted bases expressed
in propositional logic.

A lot remains to be done, in particular defining interest-
ing sub-classes of operators, where for instance the weight
function is more constrained. An interesting future work is
a more systematic study of weighted arbitration operators,
since these notions seem quite antinomic: arbitration oper-
ators are a translation in merging of egalitarist aggregation
approaches, where the aim is to satisfy (as much as possible)
everyone, whereas weights’ aim is to distort the process in
favor of higher weights. Exploring this kind of ”egalitarist
with weights” approaches could be useful not only for belief
merging, but for several social choice problems.

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

227



Acknowledgements
This work has benefited from the support of the AI Chair
BE4musIA of the French National Research Agency (ANR-
20-CHIA-0028). The fourth author has been partially
funded by the program PAUSE of Collège de France.
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