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Abstract

The need for tools and techniques to formally analyze and
trace the responsibility for unsafe outcomes to decision-
making actors is urgent. Existing formal approaches assume
that the unsafe outcomes for which actors can be held respon-
sible are actually realized. This paper considers a broader no-
tion of responsibility where unsafe outcomes are not neces-
sarily realized, but their probabilities are unacceptably high.
We present a logic combining strategic, probabilistic and tem-
poral primitives designed to express concepts such as the risk
of an undesirable outcome and being responsible for exceed-
ing a risk threshold. We demonstrate that the proposed logic
is complete and decidable.

1 Introduction
Safety of AI systems is a well-recognised and important con-
cern. In multi-agent settings, where autonomous agents in-
teract in complex ways, it is important to not only be able to
determine whether an unsafe outcome is possible in princi-
ple, but also, when such an outcome occurs, determine why
it occurred, which actions by which agents have caused it,
and whether it could have been prevented. With the devel-
opment of robots, self-driving cars and other autonomous
agents, the urgency for formal tools and techniques to anal-
yse the responsibility of AI systems has increased in last
decades (Dignum 2019; Smith 2020; Dastani and Yazdan-
panah 2023). This urgency has become clear in 2010 by the
flash crash incident, where interacting high frequency algo-
rithmic traders have led to extraordinary upheaval of U.S.
equity markets (Sommerville et al. 2012). In this and other
scenarios, the identification of agents, their performed ac-
tions, and their abilities that could have prevented the real-
ization of the outcome are essential in determining which
agent or group of agents can be held responsible for the re-
alized outcome.

The keystone of contemporary discussions about re-
sponsibility is so-called ’principle of alternate possibilities’
(Frankfurt 1969). This principle proposed by H. Frank-
furt states that an agent can be held responsible for an ac-
tion only if the agent could have acted differently. Fol-
lowing this principle we assume that responsibility of an
outcome can be attributed to an agent only if the agent
could (had strategic ability to) prevent the outcome. At the
same time, groups of agents can have much more strategic

power than single agents. This can create situations when
no single agent is able to prevent an (undesirable) outcome,
but a group of agents has the required ability. Following
some existing approaches to formally analyse group respon-
sibility and blameworthiness (Bulling and Dastani 2013;
Naumov and Tao 2020), we consider a group of agents G to
be responsible for some outcome φ if (1) φ actually holds,
(2) group G could have prevented φ, and (3) G is minimal,
i.e. there is no smaller group (w.r.t. set inclusion) that sat-
isfies condition (2). While first two conditions are natural
interpretation of the Frankfurt’s principle of alternate pos-
sibilities, the third one is specific for coalitional settings.
This condition is argued to be necessary (Lindahl 1977;
Belnap and Perloff 1993; Yazdanpanah et al. 2019; Naumov
and Tao 2020), because if any coalition can achieve some
outcome, then all its super-coalitions can either. Without
condition (3), the grand coalition would always be responsi-
ble if at least one of its sub-coalitions is. Note also that this
definition does not require uniqueness of G, so there can be
multiple groups responsible for φ.

These approaches assume that the responsibility for an
(unsafe or undesirable) outcome can be assigned to a group
of agents if the (unsafe or undesirable) outcome actually
holds (condition 1). However, unsafe outcomes are not nec-
essarily the states of affairs where a bad event has actually
happened, but also the states of affairs where the probabil-
ity that the bad event happens is unacceptably high. Thus,
in ascribing the responsibility of unsafe outcome to a set of
agents, it is not sufficient to consider situations where the
bad event has actually happened, for example when two au-
tonomous vehicles collided. It is just as important to con-
sider ‘near misses’ and ‘risky’ situations, that is, the situa-
tions where the bad event has not happened, but its proba-
bility is unacceptably high, for example, when autonomous
cars are set to drive with high speeds and close distances to
each other. Such scenarios are also considered in legal prac-
tices where someone is held responsible for changing the
probability of a state of affairs. For example, the criminal
law of many legal systems does not only respond to already
occurred harms, but also to the so-called “endangerment of-
fences” that create the danger of harm (ten Voorde 2014;
Feinberg 1984). In criminal law, the danger of harm is de-
scribed as the state where the chance of (remote) harms is
unacceptably high. Examples of endangerment offences in
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criminal law are Child Endangerment law (Sim 2019) and
Driving Endangerment law (Cunningham 2008). In such
cases, an individual is held responsible because 1) the in-
dividual has created a risky situation where the probability
of (remote) harm is unacceptably high, and 2) the individual
could act differently to prevent such risky situation. Leaving
very young children alone at home or drinking while driving
are examples of endangerment offences that create risky sit-
uations. The existing formal approaches to responsibility do
not capture the notion of endangerment, or the responsibility
for a probabilistic state of affairs in general.

In order to formally investigate this broad notion of re-
sponsibility, we model such scenarios by associating a prob-
ability measure over propositions to each possible state.
This allows us to talk about propositions which are false in
a state (e.g. proposition ‘vehicle collided’ is false) but have
a high probability (e.g. because the vehicles are set to drive
fast and close to each other). To elaborate this idea on a
simple example, consider a state in which the probability of
propositions ’head’ (head is up) and ’tail’ (tail is up) of a
coin is 1/2, regardless of which side of the coin is actually
up in that state. The coin in this state is considered as a fair
coin. An agent can then act to change probabilities of these
propositions by tampering with the (fair) coin such that in
the resulting state the probability of proposition ‘head’ is
0.99 (and the probability of proposition ’tail’ is 0.01). Note
that despite the low probability the proposition ’tail’ can be
true in the resulting state. This and other examples show
scenarios where actions by agents or groups of agents can
increase the probability of a particular event without neces-
sarily making this event true. In such scenarios, an agent or
a group of agents can be held responsible for creating risky
and unsafe outcomes if they increase the risk of undesirable
events.

In this paper, we propose and investigate a logic com-
bining coalition ability operator from (Pauly 2002) with a
probabilistic operator from (Heifetz and Mongin 2001) that
allow reasoning about probabilities and their changes. In
this logic, we can express that the probability of an event is
greater than a certain number. For example, we can express
that the probability of an accident has become greater than
10%. Although the proposed logic can be used to analyse
various aspects of AI systems that involve reasoning about
risks and probabilistic uncertainty in general, in this paper
we use this logic to model and analyse the notion of (group)
responsibility for risk.

The paper is organized as follows. In Section 2 we intro-
duce concurrent game structures endowed with probabilities
and additional temporal relation. In Section 3 we propose
and discuss the definition of group responsibility for tak-
ing risk with respect to the proposed models. In Section
4 we propose a logic GRR and demonstrate that the operator
RespG(φ,α)meaning ”a groupG is responsible for making
a risk of φ higher than α” is expressible in GRR. Then we
provide a (weakly) complete Hilbert-style axiomatisation of
GRR and prove its decidability. Finally, in Section 5 we
briefly overview existing works in this field and in Section 6
we discuss the proposals for future work.

2 Preliminaries: Models
At first, we need to define Concurrent Game Structures.

Definition 1 (CGS, pointed). A concurrent game struc-
ture (CGS) is a tuple Γ = (AG, S,Act, d, o), comprising
a nonempty finite set of all agents AG = {1, . . . , k}, a
nonempty finite set of states S, where S0 ⊆ S denotes the
set of initial states, and a nonempty finite set of (atomic) ac-
tions Act. Function d ∶ AG × S Ð→ P(Act)/{∅} defines
nonempty sets of actions available to agents at each state,
and o is a (deterministic) transition function that assigns the
outcome state s′ = o(s, (α1, . . . , αk)) to a state s and a tu-
ple of actions (α1, . . . , αk) with αi ∈ d(i, s) and 1 ≤ i ≤ k,
that can be executed by AG in s. For αG that is an action
profile of a non-grand coalitionG ⊂ AG, o(s,αG) is defined
as the set containing all outcomes of αG completed by ac-
tions of agents outside the coalition. A pointed CGS is given
by (Γ, s), where Γ is a CGS and s is a state in it.

Given a CGS Γ, a positional (memoryless) strategy for
an agent a ∈ AG or a-strategy, is a function stra ∶ S Ð→
d(a,S). Given a coalition G = {a1, . . . , am}, a positional
strategy strG = ⟨stra1 , . . . , stram⟩ maps each state from S
to a tuple of actions ⟨stra1(s), . . . , stram(s)⟩.

A modelM = (AG, S,Act, d, o,Past, P, V ) of our logic
is a CGS endowed with a temporal relation Past, a probabil-
ity function P and a valuation function V . For a temporal
relation Past ⊆ S ×S we use s′ ∈ Past(s) to denote sPasts′,
i.e. s′ is one-step reachable from s by Past relation. We re-
quire that ∀s, x, y ∈ S ∶ if x ∈ Past(s) and y ∈ Past(s), then
x = y i.e., each state has at most one temporal predecessor.
By this reason we can use s′ ∈ Past(s) and s′ = Past(s) in-
terchangeably. We use this extension to ensure that given a
state s ∈ S we can always identify the unique previous state
s′ = Past(s). This assumption is important since verify-
ing responsibility requires evaluating strategic power of the
agents on the previous step. To guarantee that this tempo-
ral relation Past and a transition function o are aligned, we
impose the following constraints:

R0 ∀s ∈ S, s0 ∈ S0 ∶ s0 ≠ o(s, strAG) for any strategy strAG
R1 ∀s, s′ ∈ S ∶ s′ ∈ Past(s), then s ∉ S0

R2 s ∉ S0 ⇒ ∃s′ ∈ S ∶ s′ ∈ Past(s)

R3 s′ ∈ Past(s)⇒ ∃strAG, s = o(s
′, strAG)

Intuitively, R0 states that the grand coalition cannot en-
force an initial state. R1 means that initial states have no
past. Property R2 means that non-initial states have a past.
And R3 implies that if s′ is the past of s, then the grand
coalition must be able to move from s′ to s. As a result of
this semantic choice each initial state s0 ∈ S0 generates a
tree of transitions: each state has a unique Past predecessor
and a non-empty set of o-successors.

We also require that our model is also endowed with a
probability function P ∶ S ↦ (2S ↦ [0,1]) assigning each
state with a probability measure on S. Every P (s) must
satisfy the following conditions for all s ∈ S:

P1 P (s)(S) = 1,

P2 P (s)(∅) = 0,
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P3 P (s) is (finitely) additive, i.e.
P (s)( ⋃

0≤i≤m
Xi) = ∑

0≤i≤m
P (s)(Xi),

where Xi ∩Xj = ∅ for any i ≠ j,
P4 P (s) is reflexive, i.e. P (s)({s}) > 0,
P5 P (s)({s′}) > 0 implies P (s) = P (s′).

The first three conditions are standard properties of proba-
bility, and reflexivity (the actual state of affairs has a non-
zero probability) is a natural property of probability mea-
sure associated with states. Condition P5 enforces the fact
that given a state s ∈ S and another state s′ ∈ S, such that
s assigns s′ a non-negative probability (i.e. s′ belongs to
the support set of S), it holds that s and s′ share the same
counterfactual probabilistic information, so P (s) = P (s′).
Finally, V is a standard valuation function V ∶ PropÐ→ 2S .

3 Responsibility for Risk
To define the notion of group responsibility for taking risks
with respect to our models, let us consider a simple example.
Example 1 (Drink-driving). After a party Alice is facing a
choice to take a taxi and make a safe trip home, leaving her
car at the bar, or to break the law and choose unsafe (above
acceptable risk level) trip driving her car home. Assume that
Alice decides to take a taxi, but even though it was a safer
choice, the taxi gets into an accident.

Let crashed be a proposition ’Alice gets into an accident’.
Alice has two possible actions Acta = {taxi, drive}. We
assume that the probability of getting into an accident in a
taxi is .01, while this probability increases to .05 in case of
drunk driving (the numbers are arbitrary). The second agent
in this scenario is the environment, which decides what the
outcome of the action is (we denote the environment’s ac-
tions by e1 and e2).

Let us fix the acceptable risk level αcrashed = .02. Only the
action taxi is under the acceptable risk level in this example.
Note that due to P5, P (s1) = P (s2) and P (s′1) = P (s

′
2).

s0 init
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Figure 1: Model for Example 1. In this picture the temporal rela-
tion Past is omitted for readability: s0 = Past(s′) for all s′ ≠ s0.
Blue and Red rectangles are schematic representations of states as-
signed with a non-zero probability in s1 and s′1 respectively.

So, if Alice is in initial state s0 and decides to take a taxi,
then she may make a transition to s1, in which the probabil-
ity of an accident is low: P (s1)(crashed) ≤ αcrashed. But
even though the risk is acceptable in s1, the accident may

happen. Alternatively, we can assume that the action drive
may lead to a state s′2, in which the risk of crashed exceeds
the acceptable risk level, but an accident does not happen.

Though in our example Alice may get home without an
accident if she decided to drive, it can hardly be justified as a
correct decision. In order to deal with such scenarios, when
some (group of) agent can keep the probability of undesir-
able outcome sufficiently low, but does not do it, we propose
the definition of group responsibility for taking risks.

Definition 2 (Responsibility for Risk). Let s− ∈ Past(s). We
say that a group G is responsible for exceeding acceptable
risk α ∈ [0,1] of a state of affairs S′ ⊆ S in s if the following
conditions hold

1. P (s, S′) > α,
2. There is a strategy strG for G, such that for all s′ ∈
o(s−, strG) it holds that P (s′, S′) ≤ α,

3. G is minimal, i.e. no proper subset of G satisfies (2).

We believe that this definition reflects the above men-
tioned intuitions naturally.

4 Logical Characterization
Now we are ready to introduce a logic for reasoning about
group responsibility for taking risk (GRR). This logic is a fu-
sion of Coalition Logic (Pauly 2002) and Probability Logic
for Type Spaces (Heifetz and Mongin 2001) together with a
temporal past operator. These ingredients are combined with
the express purpose of being able to formalise Definition 2,
that is, to be able to define the notion of being responsible
for unacceptable level of risk.

4.1 Language and Semantics
Definition 3 (Language). The language of GRR is defined
by the following grammar

φ ∶∶= p ∣ ¬φ ∣ φ ∧ φ ∣ Lαφ ∣ [G]φ ∣ ⊟φ,

where p ranges over Prop ∪ {init}, G ranges over 2AG

and α is any rational in [0,1].

We use this special proposition variable init to distin-
guish initial states. Lαφ operator means ”probability of φ
is at least α”. Derived operators Mαφ ”probability of φ is at
most α” and Iαφ ”probability of φ is equal (identical) to α”
can be defined as Mαφ ≡ L1−α¬φ and Iαφ ≡ Lαφ ∧Mαφ
respectively. It also follows that ¬Lαφ and ¬Mαφ can be
read as ’probability ofφ is strictly smaller than α’ and ’prob-
ability of φ is strictly greater than α’ respectively. Formula
[G]φ reads as ”group G can enforce φ to be true” and the
formula ⊟φ reads as ”φ was true at the previous step”. The
Boolean connectives ∨,→,↔,� and ⊺ are defined in the
usual manner using ¬ and ∧. The dual operator for ⊟ is
defined in the standard way: ◇−φ ≡ ¬ ⊟ ¬φ.

Definition 4. Given a modelM and a state s ∈ S we define
⊧ relation in the following way:
M, s ⊧ p iff s ∈ V (p);
M, s ⊧ ¬φ iffM, s ⊭ φ;
M, s ⊧ φ ∧ ψ iffM, s ⊧ φ andM, s ⊧ ψ;
M, s ⊧ [G]φ iff there is a strategy strG for G, such that for

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

324



all s′ ∈ o(s, strG) it holds thatM, s′ ⊧ φ;
M, s ⊧ Lαφ iff P (s)([φ]M) ≥ α;
M, s ⊧ ⊟φ iff ∀s′ ∈ Past(s) ∶M,s′ ⊧ φ.

We use [φ]M as an abbreviation for {s ∈ S ∣M, s ⊧ φ}.
We will omit superscript and write [φ] if it is clear which
model we are referring to.

4.2 Expressing Responsibility for Risk
This language allows us to define the new notion of respon-
sibility for taking risk as a formula of GRR:

RespG(φ,α) ≡def ¬Mαφ∧◇− [G]Mαφ∧ ⋀
H⊂G

◇− ¬[H]Mαφ

We can check the correspondence between RespG(φ,α)
and Definition 2 by checking the semantics of ⊧ relation
from Definition 4.

1. M, s ⊧ ¬Mαφ iff P (s)([φ]M) > α

2. M, s ⊧◇− [G]Mαφ iff in the unique s− ∈ Past(s) there is
a strategy strG for G, such that for all s′ ∈ o(s−, strG) it
holds that P (s′)([φ]M) ≤ α

3. M, s ⊧ ⋀H⊂G◇− ¬[H]Mαφ iff no proper subset of G sat-
isfies [H]Mαφ in the unique s− ∈ Past(s)

It can be easily seen that RespG(φ,α) operator does in-
deed encode Definition 2.

Proposition 1. A group G is responsible for exceeding ac-
ceptable risk α ∈ [0,1] of a state of affairs [φ]M ⊆ S in s in
a sense of Definition 2 if and only if (M, s) ⊧ RespG(φ,α).

Returning to Example 1, we claim Alice to be re-
sponsible for not keeping the risk of crashed under
α = .02 in (M, s2), because M, s2 ⊧ ¬M.02crashed
and M, s2 ⊧ ◇− [{a}]M.02crashed and hence M, s2 ⊧
Respa(crashed, .02). Even though an accident does not
actually happen in s2: M, s2 ⊧ ¬crashed. While for s1
the situation is opposite: M, s1 ⊧ crashed and M, s1 ⊧
¬Respa(crashed, .02).

4.3 Axiomatisation
Now we are ready to discuss the axiomatisation of GRR. As
we already mentioned, GRR is essentially a fusion of coali-
tion logic (Pauly 2002) and probability logic for type spaces
(Heifetz and Mongin 2001). So the proof system for our
logic combines original axioms for [G] and Lα operators
with fairly standard axioms for temporal operator ⊟.

Axioms (CL1)-(CL5) are taken from (Pauly 2002), (CL6)
guarantees that the grand coalition cannot enforce the initial
state, K⊟ and U⊟ ensure that each state has a unique past,
1⊟ and 2⊟ say that initial states has no past and non-initial
states have a past. 3⊟ says that the grad coalition can make
a transition from past to the current state. (A1-A8) axioms
are taken from (Heifetz and Mongin 2001). Note that the
numeration of A1-A8 axioms may look odd, but we inten-
tionally take it from the original paper. Finally, (T) ensures
reflexivity while (4’) and (5’) (Fagin and Halpern 1994;
Heifetz and Mongin 2001) guarantee that P (s) satisfies con-
dition (P5).

Axioms:
(Taut) All propositional tautologies
(CL1) ¬[G]�
(CL2) [G]⊺
(CL3) ¬[∅]¬φ→ [AG]φ
(CL4) [G](φ ∧ ψ)→ [G]φ
(CL5) [G1]φ ∧ [G2]ψ → [G1 ∪G2](φ ∧ ψ),

where G1 ∩G2 = ∅
(CL6) ¬[AG]init
(K⊟) ⊟(φ→ ψ)→ (⊟φ→ ⊟ψ)
(U⊟) ◇−φ→ ⊟φ
(1⊟) init→ ⊟�
(2⊟) ¬init→◇− ⊺
(3⊟) ¬init ∧ φ→ ⊟[AG]φ
(A1) L0φ
(A2) Lα⊺
(A5) Lαφ→ ¬Lβ¬φ, where α + β > 1
(A8) ¬Lαφ→Mαφ
(T) L1φ→ φ
(4’) Lαφ→ L1Lαφ
(5’) ¬Lαφ→ L1¬Lαφ
Rules:
(MP) From φ and φ→ ψ, infer ψ
(Eq) From φ↔ ψ, infer [G]φ↔ [G]ψ.
(Nec⊟) From φ, infer ⊟φ
(A6) From φ↔ ψ infer Lαφ↔ Lαψ
(B) From (φ1, . . . , φm)↔ (ψ1, . . . , ψn),

infer
m

⋀
i=1
Lαiφi ∧

n

⋀
j=2

Mβjψj → Lγψ1,

where γ = (α1 + ⋅ ⋅ ⋅ + αm) − (β2 + ⋅ ⋅ ⋅ + βn)

Table 1: The proof system for GRR.

The inference rule (B) of our probabilistic fragment re-
quires additional clarification. The notation

(φ1, . . . , φm)↔ (ψ1, . . . , ψn)

intuitively means that the same number of formulas from
the set {φ1, . . . , φm} is true as from the set {ψ1, . . . , ψn}.
Formally, it is defined as follows.

By φ(k) we denote either the formula

⋁
1≤l1<⋅⋅⋅<lk≤m

(φl1 ∧ ⋅ ⋅ ⋅ ∧ φlk)

or � if k >m, similarly for ψ(k). Then

(φ1, . . . , φm)↔ (ψ1, . . . , ψn)

stands for the formula
max(m,n)

⋀
k=1

φ(k) ↔ ψ(k).

In addition to the axioms and inference rules from Table 1
we will need to use some derived theorems to state the com-
pleteness result.
Proposition 2. The following axiom and inference rule
schemata can be derived from GRR:
(A1+) E1⊺ and ¬Mα⊺, where α < 1

Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

325



(A2+) E0� and ¬Lα�, where α > 0
(A7) Lαφ→ Lβφ, where α > β
(A7+) Mαφ→Mβφ, where α < β
(A12) Eαφ→ ¬Eβφ, where α ≠ β
(B’) From ((φ1, . . . , φm) ↔ (ψ1, . . . , ψn)) infer

(¬Mα1φ1⋀(
m

⋀
i=2
Lαiφi)⋀(

n

⋀
j=2

Mβjψj)→ ¬Mγψ1),

where γ = (α1 + ⋅ ⋅ ⋅ + αm) − (β2 + ⋅ ⋅ ⋅ + βn).

The proof of this proposition can be found in (Heifetz and
Mongin 2001).

4.4 Completeness and Decidability
For the completeness proof we need to consider a slightly
different, but equivalent semantics. More precisely, we need
to replace (Act, d, o) inM with an effectivity structure E.
An effectivity structure as introduced in (Pauly 2002) as-
signs each state s ∈ S with an effectivity function, i.e.,
E ∶ S Ð→ (2AG Ð→ 22

S

). This construction has a similar
interpretation to the originally described transitions in our
models, since effectivity functions describe choices avail-
able to each coalition G. Intuitively, in a state a coalition
G is effective in achieving states X ⊆ S iff this coalition
has a joint strategy which will result in an outcome in X
no matter what other agents do. More formally, given a
coalition G = {a1, . . . , am} we say that G can enforce a
set of states S′ ⊆ S in s ∈ S, i.e. S′ ∈ E(s)(G) if and
only if there is a joint action (α1, . . . , αm) for G, such that
o(s, (α1, . . . , αm)) ⊆ S

′.
So, the new (effectivity) model is a tuple Me =
(AG, S,E,Past, P, V ). Let Me be the class of all such
models. The interpretation of all operators in GRR except
[G] wrtMe remains the same as in Definition 4. For [G]φ
we say that

M, s ⊧ [G]φ iff [φ]M ∈ E(s)(G)

It was shown in (Goranko and Jamroga 2004) that
transition- and effectivity-based semantics are equivalent for
coalition logic. This implies straightforwardly that for any
φ ∈ L(GRR), ∃M ∈ M, s ∈ S ∶ M, s ⊧ φ iff ∃M′ ∈
Me, s

′ ∈ S′ ∶M′, s′ ⊧ φ.
To ensure this property we need to require effectivity

functionsE to be truly playable, which is a standard require-
ment for coalition logic CL (Pauly 2002; Goranko, Jamroga,
and Turrini 2013).

Definition 5. For any s ∈ S the effectivity function E(s) is
truly playable iff it satisfies the following conditions:

E1 ∀G ⊆ AG ∶ ∅ ∉ E(s)(G) (Liveness)
E2 ∀G ⊆ AG ∶ S ∈ E(s)(G) (Safety)

E3 X ∉ E(s)(∅) implies X ∈ E(s)(AG), whereX denotes
S ∖X (AG-maximality)

E4 X ∈ E(s)(G) and X ⊆ Y implies Y ∈ E(s)(G) (Out-
come monotonicity)

E5 If G ∩ D = ∅, X ∈ E(s)(G) and Y ∈ E(s)(D), then
X ∩ Y ∈ E(s)(G ∪D) (Superadditivity)

E6 Enc(s) ≠ ∅, where Enc(s) is the non-monotonic core of
the empty coalition:
Enc(s) = {X ∈ E(s)(∅) ∣ ¬∃Y (Y ∈ E(s)(∅) and Y ⊊
X)}

We call an effectivity function playable if it only satis-
fies E1–E5. On finite domains E6 follows from E1 to E5
(Goranko, Jamroga, and Turrini 2013), so on finite domains
an effectivity function is playable iff it is truly playable.

To prove completeness, we will show how to build a (fi-
nite) model for any formula φ such that ¬φ is not derivable
in GRR. This would imply that any valid formula is deriv-
able. First, we fix a GRR-consistent formula φ and define a
set cl(φ) such that:

Definition 6 (Closure). For any GRR-consistent formula φ,
cl(φ) is the smallest set, such that

• cl(φ) contains all subformulas of φ;
• cl(φ) contains init, ⊟�;
• Let A(φ) be an ordered set of all rational numbers p

q
∈

[0,1] where q is the smallest common denominator of all
α appearing in φ. Then, for any formulas of the form
Lαψ ∈ cl(φ) and Mαψ ∈ cl(φ) both Lβψ ∈ cl(φ) and
Mβψ ∈ cl(φ), where β ranges over A(φ);

• cl(φ) is closed under single negation: if ψ ∈ cl(φ), and
ψ is not of the form ¬ξ, then ¬ψ ∈ cl(φ).

Let Ω be the set of all maximally consistent sub-
sets s of cl(φ) where each s is in addition extended
by adding all formulas below that are consistent with
s: for every set of consistent subsets {X1, . . . ,Xm}
of cl(φ), add ⋁{⋀X1 ⋅ ⋅ ⋅⋀Xm}. Then, if ¬init ∈
s, and ⋁{⋀X1 ⋅ ⋅ ⋅⋀Xm} is consistent with s, add
⊟[AG]⋁{⋀X1 ⋅ ⋅ ⋅⋀Xm} to s. Note that s remains con-
sistent, becasue ¬init ∧ φ → ⊟[AG]φ is an axiom of GRR.
Now s contains a conjunction of all the formulas originally
in s, a disjunction defining all subsets of Ω it belongs to and
a special formulas of the form ⊟[AG]φ to ensure that prop-
erty R3 holds. We denote a set of all formulas contained
in Ω as cl∗(φ) = ⋃

s∈Ω
s. So, Ω is a set of maximal consistent

subsets of cl(φ), such that each s ∈ Ω contains characteristic
formulas of itself and all subsets of Ω it belongs to, together
with formulas of the form ⊟[AG]φ. It it can be easily veri-
fied that ∣Ω∣ ≤ 2O(∣φ∣⋅∣A(φ)∣).

Now, the following can be shown straightforwardly: (1) Ω
is finite, (2) any subset of Ω is an equivalence class of some
formula from cl∗(φ) i.e., ∀S′ ⊆ Ω∃ψ ∈ cl∗(φ) ∶ S′ = [ψ],
where [ψ] = {s ∈ Ω ∣ ψ ∈ s} and (3) [φ1] ⊆ [φ2] iff ⊢ φ1 →
φ2.

We want to ensure that for any formula ψ ∈ cl∗(φ) and
any state s ∈ Ω, s contains a well-defined probability in-
terval for ψ. Formally, we want to require that for each
ψ ∈ cl∗(φ) and each s ∈ Ω, s contains at least one formula
of each forms Lαψ and Mβψ (preserving consistency of s)
such that max{α ∶ Lαψ ∈ s} ≤ min{β ∶ Mβψ ∈ s}, where
α,β ∈ A(φ). For any ψ ∈ s there may be several choices of
the formulas Lαψ and Mαψ satisfying the conditions, but it
is sufficient to choose any of them. In particular, we can do
it using the following simple algorithm. Fix a state s ∈ Ω
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and a formula ψ ∈ cl∗(φ) and let Ai(φ) be i’s element of
A(φ). Starting from i = 0 we can run the following pro-
cedure: (1) if s ∪ LAi(φ)ψ is consistent, add LAi(φ)ψ to s,
(2) if s ∪M1−Ai(φ)ψ is consistent, add M1−Ai(φ)ψ to s, (3)
i = i + 1. Repeating this procedure until i > ∣A(φ)∣ will re-
sult in obtaining a desirable property mentioned above. Note
that now some interval is defined for all ψ ∈ cl∗(φ) such that
ψ ∈ s since if s is consistent, then s ∪L0ψ ∪M1ψ is consis-
tent as well since L0ψ and M1ψ are derivable in GRR. So,
the first iteration of this procedure will always add LAi(φ)ψ
and M1−Ai(φ)ψ to s. In the next lemma we will show that
max{α ∶ Lαψ ∈ s} −min{β ∶Mβψ ∈ s} ≤

1
q

.
For any s ∈ Ω and any ψ ∈ cl∗(φ) we define

α̃ψ =max{α ∶ Laψ ∈ s} and β̃ψ =min{β ∶Mβψ ∈ s}

Now, we can state the following lemma:
Lemma 1. 1. ∀γ ∈ A(cl(φ)), γ ≤ α̃ψs ⇒ Lγψ ∈ s and γ ≥
β̃ψs ⇒Mγψ ∈ s

2. There are only two cases—either α̃ψs = β̃
ψ
s and Iα̃ψs ψ ∈ s,

while Iγψ ∉ s for γ ≠ α̃ψs , or α̃ψs < β̃
ψ
s , and Iγψ ∉ s,

∀γ ∈ A(cl(φ))

3. β̃ψs − α̃
ψ
s ≤

1
q

Proof. The proof is essentially the same as the proof of
Lemma A.2 from (Heifetz and Mongin 2001). (1) holds
since γ ≤ α̃ψs ⇒ Lγψ ∈ s follows from (A7) and γ ≥

β̃ψs ⇒ Mγψ ∈ s follows from (A7+). For (2) assume by
contradiction that α̃ψs > β̃

ψ
s . Then from (1) we have that

both Lβ̃ψs ψ ∈ s and Mα̃ψs
ψ ∈ s. Then both Eβ̃ψs ψ ∈ s and

Eα̃ψs ψ ∈ s hold which is a contradiction by (A12). Thus for
α̃ψs = β̃

ψ
s it holds that Iα̃ψs ψ ∈ s and for any γ ≠ α̃ψs Iγψ ∉ s

by (A12). For the case where α̃ψs < β̃
ψ
s the definition of

α̃ψs and β̃ψs implies that Iγψ ∉ s for any γ ∈ A(cl(φ)).
For (3) suppose that β̃ψs − α̃ψs >

1
q

. But then there is some

γ ∈ A(cl(φ)) ∩ (α̃ψs , β̃
ψ
s ). This implies that ¬Lγψ ∈ s and

¬Mγψ ∈ s contradicting (A8).

Note that for any s ∈ Ω and any ψ ∈ cl∗(φ), where ψ is of
the form Lαχ or ¬Lαχ it holds that max{α ∶ Lαψ ∈ s} = 1
by axioms 4’ and 5’ respectively. Now for any state s ∈ Ω
and any subset X ⊆ Ω, where X = [ψ] we can define Fsψ to
be either {α̃ψs } if α̃ψs = β̃

ψ
s or the open interval (α̃ψs , β̃

ψ
s ) if

α̃ψs < β̃
ψ
s . Note that this construction is well-defined since

{α̃ψs } and {β̃ψs } are defined for all ψ ∈ cl∗(φ) and any X ⊆
Ω is an equivalence class of some ψ ∈ cl∗(φ). Let, for each
set s ∈ Ω, P (s) be a probability measure on the subsets of Ω
such that:

∀X ⊆ Ω, P (s)([ψ]) ∈ Fsψ, where X = [ψ] (P)

Lemma 2. Probability measure P (s) exists for all s ∈ Ω.

Proof. By the same technique as in (Heifetz and Mongin
2001).

Now, we are ready to define a canonical model.

Definition 7 (Canonical Model). A (finite) canonical model
is the tupleMc = (Sc, Sc0,AG

c,Pastc,Ec, P c, V c), where

• Sc = Ω, Sc0 = {s ∈ S
c ∶ init ∈ s},

• AGc = AG,
• ∀s, s′ ∈ Sc ∶ choose one s′, s.t s′ ∈ Pastc(s) from the set

of {s′ ∣ ∀ ⊟ ψ ∈ cl(φ) ∶ ⊟ψ ∈ s⇒ ψ ∈ s′},
• For s ∈ Sc,X ⊆ Sc, X ∈ Ec(s)(G) ⇔

{
∃φ̃ ⊆X ∶ s ⊢ [G]φ for G ≠ AG
∀φ̃ ⊆ Sc/X ∶ s ⊬ [∅]φ for G = AG},

where φ̃ ∶= {s ∈ Sc ∣ φ ∈ s},
• For P c any probability function P ′ existing by Lemma 2,
• V c(p) = {s ∈ Sc ∣ p ∈ s}.

Proposition 3. P (s) satisfies P4 and P5.

Proof. To prove P4 it is sufficient to show that for all s ∈ Ω
it holds that α̃φss > 0, where φs is the characteristic formula
of s. Assume that this is not the case. Then Fsφs = {α̃

φs
s } =

0. Then M0φs ∈ s which is equivalent (by definition) to
L1¬φs ∈ s. Then, by T axiom it follows that ¬φs ∈ s which
is impossible due to consistency of s. Then our assumption
was wrong and P (s) is reflexive.

Condition P5 says that P (s) is a Harsanyi type space
(Heifetz and Mongin 2001) (this property is also called uni-
formity (Fagin and Halpern 1994)), for which probabilistic
fragment of GRR together with (4’) and (5’) is known to be
complete. For details see Theorem 5.2 in (Heifetz and Mon-
gin 2001) or Theorem 4.2 in (Fagin and Halpern 1994).

Proposition 4. Ec(s)(G) is truly playable for all s ∈ Sc
and all G ⊆ AG.

Proof. By the same technique as in (Pauly 2002). Note that
our modelMc is finite, so it requires to check only E1-E5
conditions (Goranko, Jamroga, and Turrini 2013).

Proposition 5. For all s ∈ Sc and all G ⊆ AG, Ec(s)(G)
satisfies R0 and Rc satisfies R1-R3.

Proof. (Sketch:) Property R0 is guaranteed by (CL6) and
(CL3) axioms. R1 is enforced by (1⊟), R2 by (2⊟) and R3
by (3⊟).

Proposition 3–Proposition 5 guarantee thatMc is a model
of our logic. So, we are ready to establish the Truth lemma.

Lemma 3 (Truth Lemma). For all ψ ∈ cl(φ),M c, s ⊧ ψ iff
ψ ∈ s.

Proof. The proof of the Truth Lemma is standard and will
be done by induction of the formula size.

Case p trivial
Case booleans trivial
Case [G]φ. Consider the case when G ≠ AG. As-

sume that Mc, s ⊧ [G]φ. Then, by semantics there is
X ⊆ Sc ∶ X ∈ Ec(s)(G) and for all s′ ∈ X ∶M c, s′ ⊧ φ. By
construction of canonical model ∃φ̃0 ⊆ X ∶ [G]φ0 ∈ s. By
induction hypothesis {s′ ∣ M c, s′ ⊧ φ} = φ̃. Then X ⊆ φ̃
and then φ̃0 ⊆ φ̃. Then ⊢GRR φ0 → φ. From Equivalence
rule for [G] operator, the fact that [G]φ0 ∈ s and consistency
of s we derive that [G]φ ∈ s. Consider the other direction.
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If [G]φ ∈ s, φ̃ = {s′ ∶ M c, s′ ⊧ φ} holds by induction hy-
pothesis, thenMc, s ⊧ [G]φ follows immediately.

For the case G = AG, letMc, s ⊧ [G]φ. Then, there is
X ⊆ Sc ∶ X ∈ Ec(s)(G) and for all s′ ∈ X ∶ M c, s′ ⊧ φ.
Then ∀ψ̃ ⊆ Sc/X ∶ [∅]ψ ∉ s. And since ¬̃φ ⊆ Sc/X it
follows that [∅]¬φ ∉ s and then, by CL3 axiom, ¬[G]φ ∉ s.
By maximality of s, it follows that [G]φ ∈ s. For the other
direction, let [G]φ ∈ s. Let X = {s ∣ M c, s ⊧ φ}. We
want to show that ∀ψ̃ ⊆ Sc/X, [∅]ψ ∉ s. Note that [¬φ] =
Sc/X and then ∀ψ̃ ⊆ Sc/X,⊢GRR ψ → ¬φ. Assume by
contradiction that ∃ψ̃ ⊆ Sc/X ∶ [∅]ψ ∈ s. But since ψ →
¬φ, it must also hold that [∅]¬φ ∈ s by (Eq). It contradicts
our previous assumption that [G]φ ∈ s. Thus, ∀ψ̃ ⊆ Sc/X ∶
[∅]ψ ∉ s and henceMc, s ⊧ [G]φ.

Case Lαφ. For right-to-left direction, Lαφ ∈ s implies
P c(s)([φ]) ≥ α by the construction. ThenMc, s ⊧ Lαφ.
For the other direction, Mc,w ⊧ Lαφ ⇔ P c(s)([ψ]) ≥
α. By the construction of P c and α̃ψs we know that
P c(s)([ψ]) = α̃ψs and α̃ψs ≥ α. Then, Lαψ ∈ s.

Case ⊟φ. Mc, s ⊧ ⊟φ ⇐⇒ ∀s′ ∈ Pastc(s),M c, s′ ⊧ φ
by definition of ⊧ relation. ∀s′ ∈ Pastc(s),M c, s′ ⊧ φ⇐⇒
∀s′ ∈ Pastc(s), φ ∈ s′ by previous induction step. ∀s′ ∈
Pastc(s),∀ ⊟ φ ∈ cl(φ) ∶ ⊟φ ∈ s⇐⇒ φ ∈ s′.

Theorem 1 (Completeness). Logic GRR is complete wrt
MGRR, i.e. ⊧ φ iff ⊢GRR φ.

Proof. Right-to-left direction follows from the soundness of
GRR. For left-to-right direction consider formula φ such
that ⊬GRR φ. Construct a modelM for ¬φ. It follows from
Lemma 3 that ∃x ∈ S, such thatM, s ⊧ ¬φ. Then ⊭MGRR φ
sinceM ∈MGRR.

Theorem 2 (Decidability). The satisfiability problem for
GRR is decidable.

Proof. The proof follows the technique presented in (Dau-
tović, Doder, and Ognjanović 2021). We show that a for-
mula φ is satisfiable iff it is satisfiable in one of finitely many
‘solvable pre-structures’ of a fixed size bounded by ∣φ∣.

From the proof of Completeness theorem, we know that
a formula φ is satisfiable iff it is satisfiable in a model
M ∈ Me with at most 2∣cl(φ)∣ states. Thus, it is sufficient
to check only models with l ≤ 2∣cl(φ)∣ states; however since
our models include probability measures, there are infinitely
many such models. In order to restrict the set of models to
check to be finite, we will consider pre-structures which do
not have probability measures, but where it is easy to check
whether a corresponding measure does exist (in which case
we call them solvable). The existence of one of such solv-
able pre-structures satisfying φ will guarantee the existence
of a proper model (with a probability measure attached to
each state) that satisfies φ.

Let Prob(φ) be the set of all subformulas of φ of the
form Lαψ (here we assume that φ contains only the prim-
itive probabilistic operators of the form Lα, since the other
operators, like Mα, are introduced as abbreviations), and
let Prop(ϕ) denote the set of propositional letters from
φ. For every l ≤ 2∣cl(φ)∣ we consider pre-structures M =

(S,AG,{∼i}i∈AG,R,E, pseudo − P ,V ), where all items
except pseudo − P and V are defined in a standard way.
V ∶ Prop(φ) Ð→ 2S is a valuation function restricted to
Prop(φ), and pseudo−P is ’emulating’ a probability mea-
sure:
pseudo − P ∶ S × Prob(φ)Ð→ {true, false}.

It is clear that there are only finitely many pre-structures
for each l. These pre-structures are not models of our logic,
but we can check if a subformula of φ holds in some state s
of this pre-structure using the ⊧′ relation which is defined in
a standard way, except the case for Lαψ. For this case it is
defined as follows:
M,s ⊧′ Lαψ iff pseudo − P (s,Lαψ) = true.

We will consider only those pre-stuctures M such that
M,s ⊧′ φ for some s ∈ S. For each such M we want
to check whether M can be extended to a model M =
(S,AG,{∼i}i∈AG,R,E,P, V ) ∈M of our logic.1 In other
words, we want to check if pseudo−P can be replaced by a
probability function P such that P agrees with pseudo −P ,
i.e., for every state s and every ψ ∈ Prob(φ) we have
M, s ⊧ ψ iff pseudo −P (s,ψ) = true. It is straightforward
to check that for suchM it holds thatM, s ⊧ χ iffM,s ⊧′ χ
whenever χ is a subformula of φ. For this purpose we con-
sider special systems of linear equations and inequalities to
define a probability measure P (s) for each s:
(1) P (s)(sj) ≥ 0 for each sj ∈ S
(2) ∑

sj∈S

P (s)(sj) = 1

(3.1) ∑sj ∶M,sj⊧′ψ
P (s)(sj) ≥ α for every formula Lαψ

such that pseudo − P (s,Lαψ) = true
(3.2) ∑sj ∶M,sj⊧′ψ

P (s)(sj) < α for every formula Lαψ

such that pseudo − P (s,Lαψ) = false
(4) P (s)(s) > 0
(5) for each s′ ∈ S, either (5.1) P (s)(s′) = 0 or (5.2) for
every sj ∈ S, P (s)(sj) = P (s′)(sj).

Inequality (1) ensures that the probability measure of any
state is non-negative, and equation (2) guarantees that the
sum of probability measures of all states is equal to 1. The
inequalities (3.1) and (3.2) guarantee that P agrees with
pseudo − P . For (3.1) and (3.2), we used the property that
for every X ⊆ S, P (s)(X) = ∑sj∈X P (s)(sj). Finally, (4)
and (5) guarantee that every P (s) satisfies P4 and P5.

Note that the equations and inequalities listed above form
not one, but a number of finite systems of equations and in-
equalities. Indeed, adding (5) (for any two fixed s, s′) to any
system Sys results with a disjunction of two different ex-
tensions of Sys (one containing (5.1), and one containing
(5.2)). For the purposes of our proof, it is sufficient to find at
least one solution of one such system of linear equations and
inequalities with the set of variables {P (s)(s′) ∣ s, s′ ∈ S},
and it is well known that the problem of solving systems
of inequalities is decidable. So, given a pre-structure, we
can check whether pseudo − P corresponds to a system of
inequalities that has a solution (is a solvable pre-structure).

1The way in which V extends V is obviously irrelevant.
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It is straightforward to see that if there is a solvable pre-
structure for φ, then φ is satisfiable.

The other direction: if φ is satisfiable, then there is a solv-
able pre-structure for φwith 2∣cl(φ)∣ states, is trivial since the
canonical model for gives rise to a solvable pre-structure.

We have shown that φ is satisfiable iff there is a solv-
able pre-structure for φ with at most l ≤ 2∣cl(φ)∣ states.
Since we have finitely many possibilities for the choice of
l, and for every l there are only finitely many possibilities
for the choice of pre-structure, we can check whether φ is
satisfiable by examining all finitely many such solvable pre-
structures.

Finally, let the model checking problem be ”given a
(M, s, φ) check if (M, s) ⊧ φ”. The following result can
be established straightforwardly.

Proposition 6 (Model checking). The model checking prob-
lem for GRR is decidable in polynomial time.

So, the problem of verifying whether a groupG is respon-
sible for the increased risk of φ in (M, s) is tractable.

5 Related Work
Several proposals to formalise such notions as responsibility
or blameworthiness have been made in recent years. Chock-
ler and Halpern (Chockler and Halpern 2004) studied the
notions of a degree of responsibility and blame based on the
definition of causality for the case of a single agent. Their
definition of causality elaborates on the simple requirement
of being able to prevent a state of affairs and replaces it
with being able to prevent it under some contingency. For
example, it is possible that agent a cannot prevent a state
of affairs because even if a does not act to bring it about,
another agent b would have done so. However an action
by a can still be considered a cause of the state of affairs,
under the contingency that b had chosen to act differently.
The notion of responsibility is treated as a causal notion,
which does not take into account the agent’s epistemic state
(whether the agent was aware of the consequences of his or
her actions). The notion of blame takes the agent’s epis-
temic state into account, by introducing a probability distri-
bution over the models of the world according to the agent.
If the agent assigns a high probability to the actual model of
the world, then the degrees of responsibility and blame are
very similar. However if an agent assigns a low probabil-
ity to the actual state of affairs and actual effects of actions,
then their degree of blame may be very low. In (Alechina,
Halpern, and Logan 2017), these notions were applied to
determining the degree of responsibility and blameworthi-
ness in a multi-agent context. Halpern and Kleiman-Weiner
(Halpern and Kleiman-Weiner 2018) studied the interplay
of notions such as degree of blameworthiness and intention
together with their connection to moral responsibility judge-
ments. Logical modeling of interplay between knowledge
and responsibility based on epistemic STIT logic (Herzig
and Troquard 2006) was studied in (Ramı́rez Abarca and
Broersen 2021) and (Lorini, Longin, and Mayor 2013).
In strategic multi-agent settings, de Lima, Royakkers and
Dignum (de Lima, Royakkers, and Dignum 2010) proposed

a logical framework for reasoning about both forward- and
backward-looking individual responsibility. In this frame-
work the notions of responsibility were formalized as a
combination of basic modalities such as agents’ actions,
abilities, obligations and knowledge. Later Royakkers and
Hughes (Royakkers and Hughes 2020) extended this frame-
work and formalized various notions of group responsibility
and blameworthiness proposed by Van de Poel (van de Poel
2011). Yazdanpanah et al. (Yazdanpanah and Dastani 2016;
Yazdanpanah et al. 2019) studied individual and group re-
sponsibility under imperfect information, and provided for-
mal analyses for both forward and backward notions of re-
sponsibility. Naumov and Tao (Naumov and Tao 2020) pro-
vided a logical analysis of the interplay between blamewor-
thiness and knowledge. They proposed a sound and com-
plete logic for reasoning about blameworthiness in strategic
games with imperfect information.

Our logic has a past operator, in common with many tem-
poral logics. The operator is also somewhat similar to the
converse modality in logics of actions, such as, for example,
Propositional Dynamic Logic (Parikh 1978; Schild 1991;
De Giacomo and Lenzerini 1994). Unlike the converse
modality or converse action in (Deuser and Naumov 2021),
our past is unique, in common with widely accepted intu-
itions in temporal logic: the past is linear, even if the future
is branching. There is just one history that actually hap-
pened. In particular, if we are only talking about one step
histories, there is a single state in the past (and not multi-
ple alternative yesterdays). We stress that this choice is not
forced by technical considerations but is deliberate and cor-
responds to the consensus in temporal logic about modelling
the past.

On the technical side, this article belongs to a large body
of work on combining modalities in order to be able to anal-
yse AI systems. There are well-known logics that com-
bine temporal and probabilistic modalities as well as tem-
poral and strategic. Recently, logics combining strategic
modalities with probabilities have also been proposed, but
they concentrate on probabilities of the outcomes of ac-
tions and strategies, rather than strategies to enforce a par-
ticular probability distribution (Bulling and Jamroga 2009;
Novák and Jamroga 2011; Huang, Su, and Zhang 2012;
Naumov and Tao 2019; Aminof et al. 2019).

6 Discussion
In this paper we present a logic GRR for reasoning about
group responsibility for taking risks. GRR demonstrates that
such notion of responsibility can be formalized via a combi-
nation of primitive modalities such as strategic ability, time
and probability rather than as a separate modal operator. We
believe that the logic we propose in this paper is the first at-
tempt to combine probabilistic logic in the sense of (Fagin
and Halpern 1994) with strategic modalities. We provide
a complete axiomatisation of the logic in order to facilitate
the study of definable concepts and their properties. We also
show that the logic has a decidable satisfiability problem,
which makes it possible for the agents to reason automati-
cally about whether they could be held responsible for the
increased levels of risks. Finally, it holds that the model
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checking problem for GRR is decidable in polynomial time.
So, our framework can be combined with automated verifi-
cation techniques and, thus, given a model it is always possi-
ble to verify if some group of agents is responsible in terms
of the interpretation of responsibility discussed in our paper.
Additional feature of our approach is the fact that we use
only finitary languages and stay on the propositional level
of reasoning avoiding first-order quantification in our syn-
tax while working with probabilities. These properties are
desirable for practical means in AI research and they are not
always the case for probabilistic logics.

Here we mention a few properties of RespG(φ,α) oper-
ator. The first obvious observation suggests that if the group
G is responsible for exceeding acceptable risk level α for φ,
it is not always the case that G is responsible for exceeding
a lower risk level α′ for φ. This property obviously holds
since ‘being able to make a probability that φ holds at most
α’ does not imply ‘being able to make a probability that φ
holds at most α′’. One can also expect that the opposite must
be derivable in GRR, but surprisingly, it is not!
Proposition 7. ⊭ RespG(φ,α) → RespG(φ,α

′), where
α′ > α.

At first glance this seems counterintuitive, because if
some group G can enforce the probability of φ to be at most
α, then it can automatically enforce it to be at most α′, be-
cause ⊢GRR [G]Mαφ→ [G]Mα′φ for α′ > α. So, condition
(2) of Definition 2 is satisfied. But the condition (1) can be
violated: P (s, S′) > α does not imply P (s, S′) > α′ for
α′ > α and hence ⊬GRR ¬Mαφ → ¬Mα′φ. Next, consider
how different groups interact. Assume that some group G is
responsible for some risk level α of φ and another group D
is responsible for another risk level β of φ. Then it is ob-
viously not the case that together they are responsible for φ
according to either α or β.
Proposition 8. ⊧ RespG(φ,α) ∧ RespD(φ,β) →
¬RespG∪D(φ,min(α,β)), where D ∩G = ∅.
Proposition 9. ⊧ RespG(φ,α) ∧ RespD(φ,β) →
¬RespG∪D(φ,max(α,β)), where D ∩G = ∅.

It is easy to see that both RespG∪D(φ,min(α,β)) and
RespG∪D(φ,max(α,β)) violate minimality condition (3)
from Definition 2, because antecedent guarantees that there
are two proper subsets of G ∪ D, namely G and D, that
can enforce P (s)([φ]) ≤ α and P (s)([φ]) ≤ β respec-
tively. Finally, consider how RespG(φ,α) operator deals
with Boolean connectives. In is natural to assume that if
group G is responsible for (φ,α) and it is also responsible
for (φ→ ψ,α), then G must be responsible for (ψ,α). Sur-
prisingly, it is also not derivable in GRR!
Proposition 10. ⊭ RespG(φ,α) ∧ RespG(φ → ψ,α) →
RespG(ψ,α).

The idea of the proof is to construct a counterexample
violating a minimality condition (3): there is no guarantee
that G is a minimal coalition that could enforce P (ψ) ≤
α. So, there exists a model M and a state s, such that
M,s ⊧ ◇− [H]Mαψ, where H ⊂ G. The last two proposi-
tions demonstrate that RespG(φ,α) operator behaves simi-
larly for the case of conjunction.

Proposition 11. ⊭ RespG(φ,α) ∧ RespG(ψ,α) →
RespG(φ ∧ ψ,α).

We can construct a counterexample as follows. Let α =
0, so condition (2) holds if G can enforce P (φ) = 0. For
simplicity, let G = {i}. Assume that i has three options: to
enforce P (φ) = 0 and P (ψ) = 1, to enforce P (φ) = 1 and
P (ψ) = 0, or to enforce P (φ) = .5 and P (ψ) = .5. If the
last choice is made, then bothRespi(φ,α) andRespi(ψ,α)
hold, but not Respi(φ ∧ ψ,α).

Proposition 12. ⊭ RespG(φ ∧ ψ,α) → (RespG(φ,α) ∧
RespG(ψ,α)).

For counterexample assume that P (s)([ψ]) = 1 in all
states s ∈ S. And G can enforce P (s)([φ]) = 0. If the
group ignores this choice and α = 0, then RespG(φ ∧ ψ,α)
holds since G could possibly enforce P (s)([φ ∧ ψ]) = 0,
but RespG(ψ,α) does not hold, because G has no control
over the probability of ψ.

These results demonstrate that it is often impossible to
transfer responsibility to other groups of agents or events.
In other words, if the group G is responsible for φ with a
risk level α, then in most cases it does not imply any claim
about responsibility of other groupD for (φ,α) or any claim
about responsibility ofG for another state of affairs ψ and/or
another risk level β.

Our work also has some limitations that inspire directions
for future research. We build GRR over a Coalition logic
CL which is essentially a Next-fragment of ATL logic (Alur,
Henzinger, and Kupferman 2002). The choice of the use of
Coalition logic was to consider strategic ability in the sim-
plest abstract setting. The consequence of this is that respon-
sibility is defined with respect to previous state, and not to an
arbitrary state in the history. Other work, e.g., Yazdanpanah
et al. (Yazdanpanah et al. 2019), have used ATL to define
a group of agents responsible for an outcome if the group
had an alternative to prevent the outcome at some point in
the past. Another direction of future research is incorpo-
rating imperfect information in the spirit of (Jamroga 2003;
Jamroga and van der Hoek 2004; Fervari et al. 2017;
Naumov and Tao 2020). This however involves solving the
problem of axiomatising CL or ATL under the strongly uni-
form strategies semantics.

In most probabilistic temporal logics and in Markov De-
cision Processes, probability distributions are over outcomes
of non-deterministic actions. In this paper, we have chosen
not to couple probability distributions to actions; our mod-
els admit free floating states that are not the outcome of any
action by the agents but contribute to the probability dis-
tribution on its outcomes; or, the set of outcomes may be
partitioned in two equivalence classes of probability distri-
butions. We can however add an explicit environment agent
as in Example 1 that is the source of non-determinism, and
make the states in the outcome of each action of the grand
coalition minus the environment agent to be exactly a single
equivalence class where all states have the same probability
distribution. This will make our semantics match the setting
of the MDPs (where a transition by all agents is to a proba-
bility distribution over states). Axiomatisation of this setting
is the topic of future work.
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