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Abstract

In this paper, we tackle a challenging task named
video-language segmentation. Given a video and
a sentence in natural language, the goal is to seg-
ment the object or actor described by the sentence
in video frames. To accurately denote a target ob-
ject, the given sentence usually refers to multiple
attributes, such as nearby objects with spatial rela-
tions, efc. In this paper, we propose a novel Polar
Relative Positional Encoding (PRPE) mechanism
that represents spatial relations in a “linguistic”
way, i.e., in terms of direction and range. Sentence
feature can interact with positional embeddings in
a more direct way to extract the implied relative
positional relations. We also propose parameter-
ized functions for these positional embeddings to
adapt real-value directions and ranges. With PRPE,
we design a Polar Attention Module (PAM) as
the basic module for vision-language fusion. Our
method outperforms previous best method by a
large margin of 11.4% absolute improvement in
terms of mAP on the challenging A2D Sentences
dataset. Our method also achieves competitive per-
formances on the J-HMDB Sentences dataset.

1 Introduction

In this paper, we tackle the video-language segmentation task.
Given a video and a natural language description, the model
is asked to generate pixel-level segmentation maps that seg-
ment the target object or the actor on interested frames ac-
cording to the description. It is a very challenging task. On
one hand, videos contain complex visual semantics. The se-
mantics not only depends on a single frame but also different
frames in the temporal domain. On the other hand, natural
language sentences also imply complex logic relations. To
accurately denote the target object, the description may need
to use nearby objects and corresponding spatial relations. For
example, as shown in Figure 1, the description “a girl in pink
dotted dress is standing near the wall” describes the girl with
the attributes “in pink dotted dress”, “standing”, and “near
the wall”. Among these attributes, “standing” is the action of
this girl, “in pink dotted dress” and “near the wall” are both
describing the spatial relations according to the dress and the
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Q1: Girl
Q2: A person in white shirt is walking

is standing

Figure 1: An illustration of the video-language segmentation task.
Each description is referring different attributes and spatial relations.
Spatial relations are highlighted in the sentences with corresponding
arrows in the frame. Best viewed in color.

wall. Therefore, the ability to exploit spatial relations is im-
portant to recognize the correct target.

Recognizing objects and actions in videos has been widely
researched. There are many existing methods for action
recognition and localization [Carreira and Zisserman, 2017,
Simonyan and Zisserman, 2014; Gu et al., 2018] in videos.
But these methods hardly model spatial relations between
different objects. Non-local networks [Wang et al., 2018]
aggregate the relations between different parts on the image
through self attention, and achieve great performances. But
the plain self attention mechanism is positional agnostic. It
only utilizes spatial relations in an implicit way.

Some other recent work [Shaw et al., 2018; Huang et al.,
2019] tried to explicitly model relative positional relations on
the feature maps. These methods define the relative positional
embeddings on the feature grid. In the 2D image scenario,
the differences of x and y coordinates are used to measure
distances [Bello et al., 2019]. But in most cases, natural lan-
guage descriptions tend to describe the relations in terms of
direction and range. For example, according to “a person on
the left of the car”, the target person has the direction relation
“left”, but without distance information. “Girl near the wall”
implies the girl has a short distance to the wall. Therefore,
in this paper, we propose a more direct relative positional en-
coding method that measures the spatial relations in terms of
direction and range, a.k.a., in terms of polar, and define the
corresponding embeddings to extract the implied spatial rela-
tions. Different from discrete coordinates, the direction ¢ and
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range r are continuous real values. Therefore we also pro-
pose two functions to parameterize the direction and range
embeddings respectively. As a side effect, the space com-
plexity is much more effective. We denote this approach as
Polar Relative Positional Encoding (PRPE). And with PRPE,
we design our Polar Attention Module (PAM) as the basic
vision-language fusion module in the network.

We evaluate our approach on two challenging datasets:
A2D Sentences and J-HMDB Sentences. On A2D Sentences,
our method outperforms the state-of-the-art method by a large
margin of 11.4% absolute improvement in terms of mAP.
Our method also achieves competitive performances on the
J-HMDB Sentences dataset.

2 Related Work

2.1 Action Recognition and Localization in Videos

Action recognition is a fundamental research area in com-
puter vision. Two-stream networks [Simonyan and Zisser-
man, 2014] and 3D ConvNets [Carreira and Zisserman, 2017;
Tran et al., 2015] are the most popular models for video
feature learning. At finer granularities, temporal localiza-
tion [Jiang er al., 2014], spatio-temporal localization [Gu et
al., 2018] and segmentation [Perazzi et al., 2016] are also im-
portant tasks for video analysis. There are also some recent
work [Anne Hendricks et al., 2017; Gao et al., 2017] try to
localize video clips temporally according to the given natural
language description.

In this paper, we tackle the video-language segmentation
task. The model needs to not only recognize the target object
and its action but also extract visual information and relations
described in the sentence.

2.2 Visual-Language Learning

Visual-language learning is a trending research direction in
the area of machine learning. Many visual-language joint
understanding tasks are gaining growing attention. Some
of the most attractive tasks are visual question answering
(VQA) [Antol et al., 2015; Johnson et al., 2017], referring
expression localization [Hu er al., 2016b], segmentation [Hu
et al., 2016a] and navigation [Anderson et al., 2018], etc. A
popular method to learn and exploit visual-language relation
is the dynamic networks [Li ef al., 2017]. Compared to tradi-
tional visual models, dynamic networks generate visual filters
as the network modules from the language input to transform
visual features. In the context of video-language segmenta-
tion, [Gavrilyuk er al., 2018] used language generated filter
to transform visual feature maps in the upsampling stage.

2.3 Attention Mechanism and Positional Encoding

The attention mechanism, especially self attention, is an
often-used mechanism in many machine learning areas, in-
cluding computer vision [Wang et al., 2018], natural language
processing [Devlin er al., 2019; Vaswani er al., 2017], etc.
The attention mechanism first computes an attention matrix,
measures the correlation between each pair of input elements.
According to the attention matrix, related elements are se-
lected by weighted sum.
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The naive attention mechanism does not encode position
information. Two identical elements on different positions
are considered representing same information, while in fact,
they are not. Many positional encoding approaches are pro-
posed to enhance the attention mechanism. The simplest
way is to concatenate low-dimension coordinates onto the
input features. Some other literature [Devlin et al., 2019;
Vaswani et al., 2017] used positional embedding to represent
position information. For each location, a distinct embedding
is used to add with the input feature. The location information
is embedded in the input feature for further modeling.

Another method to encode positional information is rela-
tive positional embedding. [Shaw er al., 2018] introduced
relative positional encoding in the scenario of 1D feature
sequence. For each possible relative positional relation, it
learns a distinct embedding vector. Besides from natural lan-
guage processing, relative positional encoding had been also
proved effective in many other areas [Huang et al., 2019;
Parmar et al., 2019]. In the 2D scenario, [Bello et al., 2019]
applied 1D relative positional encoding on the x and y direc-
tion respectively.

3 Ouwur Approach

3.1 Problem and Motivation

The video-language segmentation task receives an input
video, V = {f;,}L,, and a sentence, S = {w;}~ ;. For a
subset of frames (of interest) in V, { fi }, the model is asked to
generate a segmentation mask on each of these frames, which
segments the object or actor that S describes. Please refer to
Figure 1 for an example.

Video is a very complex data modality, especially in-the-
wild videos. First, the scenes of video frames are various.
There might be multiple similar objects within one frame.
Second, videos consist of a series of continuous images. The
images are evolving. Correctly understanding actions is still
not an easy task. Therefore, to clearly denote a target ob-
ject, the natural language descriptions usually refer to many
attributes: the action, the position on the frame, and the rela-
tions with nearby objects.

In previous work for this task [Gavrilyuk e al., 2018;
Wang et al., 2019], using the natural language description to
generate dynamic network modules to transform visual fea-
tures is a popular method. Dynamic networks have been
proven effective in similar tasks. While the plain dynamic
networks can only exploit the relations between the visual
features and the linguistic features, i.e., the object itself with
its action. Position information is ignored in the process.
Existing work about positional encoding [Shaw et al., 2018;
Bello et al., 2019] are based on feature grids. For example,
defining a distinct embedding for each position, or defining a
distinct embedding for each row and column difference. With
a proper positional encoding method, the absolute position
and relative position can be more effectively utilized. Con-
sidering the relations are described by natural language sen-
tences, which tend to describe spatial relations by words such
as “left”, “top right”, “near” and “in”, etc, traditional grid-
based positional encoding methods are not directly available
to interact with language information.
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In this paper, we propose a novel mechanism for explic-
itly encoding relative positional relations in terms of direc-
tion and range. We denote our method as Polar Relative Po-
sitional Encoding (PRPE). First, modeling relative positional
relations enables our model to extract the spatial relations be-
tween objects on the frames. Second, modeling direction and
range enables our model to exploit spatial relations described
in natural language easier. In another word, our PRPE makes
our model more “linguistic”. With PRPE, we build our model
and make use of spatial relations to tackle the video-language
segmentation task.

3.2 Polar Relative Positional Encoding

Self Attention Review

Before introducing our PRPE, we would like to review the
self attention mechanism first. Given a feature map B, we
first compute a query  and a key K using linear transfor-
mation, ) = g,(B) and K = gi(B), where g, and g, are
distinct linear transformation functions. An attention matrix
measures the similarities each pair of elements between @)
and K, Ay, = @ - K. Assuming B is a 2D feature map with
shape n x n x d (feature map size n x n and feature dimension
d), the attention matrix A has a shape of n? x n?. A; ; rep-
resents the similarity or relation between the ¢-th feature in @
and the j-th feature in K. For each Q);, A; is aggregated using
softmax, followed by weighted summing and linear transfor-
mation to compute the output value V':

V = g, (softmax(A)B).

Polar Relative Positional Encoding
In the plain self attention mechanism, the relations between
each pair of features are computed by the content similarity
only. While in our task, we need to find out the object that the
sentence describes. These sentences usually imply relative
position relations. In order to capture the implicitly presented
position information in the descriptions, we propose a novel
mechanism of relative positional encoding that represents rel-
ative positional relations in the polar coordinate system. The
polar coordinate system describes relative positions by direc-
tion ¢ and range r. By representing direction and range re-
lations as vector-valued embeddings, the information implied
by the given sentence S can be extracted and utilized directly.

Since ¢ and r are not discrete integers, these embeddings
cannot be defined as discrete vector sets as before [Shaw et
al., 2018]. Therefore, we design two vector-valued functions
f4 and f, to parameterize the direction and the range embed-
dings. The direction embedding function f; is only sensitive
to the direction parameter ¢. Absolute position and distance
are irrelevant to fy. Similarly, the range embedding function
f, is only sensitive to the distance r. Absolute position and
direction are irrelevant to f,..

The range of ¢ is [0,27). A direct thought of shaping
embedding function fy(¢) is using the trigonometric series,
a.k.a., the Fourier series:

1 . -
fo(0) =ago+ » Z(am cosip + by ;sinie),
i=1
where a4 ; and by ; are trainable coefficient vectors with di-
mension d.
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Similarly, we use the same trigonometric series expansion
for f,. to maintain numerical stability:

2mir 2mir

+ b, ;sin

12
fr(r)=a,0+ - a, ; cos ,
(r) ’ > )

— T'max Tmax
i=1

where a, ; and b, ; are trainable coefficient vectors for f.
with dimension d, and ry,,x is the maximum possible range
between two feature on a feature map. For a 2D feature map
with size 7 X 0, T'max = V2(n — 1). By training a; and by, f,,
and f,. can fit arbitrary vector-form function. f4 and f, contain
totally (4p + 2)d trainable parameters.

With direction embedding function fy; and range embed-
ding function f,., we can construct two n? x n? x d tensors
(vector-valued matrix), and extract the hidden feature repre-
senting the direction and range from the linear transformed
sentence feature s:

(1)

{ 2

Ay is the weight matrix measures the direction relations de-
scribed by S, and A, measures the range relations described
by S. M is the “Matrixize” operation that expands its pa-
rameter into the n? x n? matrix form. Since f, and f, are
vector-valued functions, M(f,) and M(f,) are both 3D ten-
sors with shape n? x n? x d. Together with Agp, the final
attention matrix is the sum of these three matrices:

A/ = Aqk+A¢+Ar

Ap = gy(s) - M(fy),
A, = gr(s) : M(fr)

3)

The final output of this module is the weighted sum according
to the new attention matrix A’:

V = g, (softmax(A")B).

The sentence feature s is then used as the dynamic filter to
transform visual features.

3.3 Full Model Architecture and Optimization

Full Model Architecture

Linguistic Encoder. We use a bi-LSTM to encode the input
sentence. After the normal-order LSTM and the reverse-order
LSTM, we concatenate the last hidden states of them as the
representation of the input sentence s.

Polar Attention Module and Full Model. With the mech-
anism we proposed before, we build our Polar Attention
Module (PAM) and the full model. Figure 3 shows the ar-
chitecture of our PAM. Our PAM takes at x n’ x n’ X d
3D feature map B or a n x n x d 2D feature map B and
the sentence feature vector s as inputs. We first compress the
input feature map into a “thumbnail” 2D feature map with
shape n x n x d. We then transform B into )" and K’ us-
ing linear transform and channel-wise multiplication with s.
The reason we use channel-wise multiplication between @Q’,
K’ and s is we want to compute the n? x n? attention matrix
that measures feature relations not only by content. Instead,
we use the sentence conditioned visual features, to measure
the relations between visual features according to the given
description.
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Figure 3: The architecture of our PAM. Blue arrows represent linear
transformation. Filled and open co-centric circles represent inner
product and channel-wise product respectively. Best viewed in color.

Both a; and b; are trainable parameters in the PAM. To-
gether with s, we obtain the final attention matrix A’ follow-
ing Equation 3 and the output value V. For the output value
V', we also use s to transform it using channel-wise multipli-
cation:

V' =gs(s)oV,
where g, is a linear transformation. We then interpolate V' to
a feature map with shape same as B, and add it back into B.

Figure 2 shows our model’s architecture. In the downsam-
pling phase, we use a pre-trained 13D network as the back-
bone. Following the suggestion of [De Vries er al., 20171,
we insert our PAM between the Inception blocks, enabling
language information works as a visual prior. During the up-
sampling phase, we apply our PAM and the 2x expansion al-
ternatively. We add the feature map with the corresponding
feature map from the downsampling phase to maintain frame
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details. At each step, we also generate an intermediate re-
sponse map to be supervised by the ground truth. It is very
helpful to keep the training stable. We use the average binary
cross entropy over response map pixels as the loss function.

Optimization

In the actual implementation, we do not compute the entire
n? x n? x d tensor for direction and range embeddings. Com-
puting the entire tensor is very space inefficient. Instead, we
compute one n? x n? matrix between s and each component

a; and b; first:

Apai = (8s(8) - ap,;)M(cosip),
Appi = (84(8) - by,i)M(sinig),
Ar,a,i (gT(S) . aryi)M<COS 27‘—”1),
rmax
. 2mir
Ay pi = (gr(s) - by;)M(sin . ).

Hence, Equation 1 and Equation 2 are reformulated as:

12
Ap = Apap+ » D (Agai+ Asbi), )
i=1
12
Ar = Ar,aqO + 5 Z(A’r,a,i + Ar,b,i)- (5)
i=1
The M function expands sins and coss into a n? x n? matrix.

Since sins and coss here are scalar valued, M operations here
only take n? x n? spaces. The total space complexity is n? x
n? x (2p+1) for A, or A,. A very small p can achieve pretty
good performances, therefore the optimized version is much
more efficient than the original n? x n? x d.
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Precision@ mAP Overall Mean
Methods 0.5 0.6 0.7 0.8 0.9 | 0.5:0.95 IoU IoU
Baseline 54.2 478 36.6 21.2 3.6 29.9 61.7 45.5
Baseline + EF 59.7 52,5 40.5 229 3.6 32.7 63.0 48.7
Baseline 2 60.7 551 456 296 6.9 36.5 65.1 51.0
Baseline 2 + SA 60.3 544 457 30.0 7.3 36.6 65.0 50.7
Baseline 2 + SA + Gate 61.0 555 46.2 30.7 7.2 37.0 65.6 51.1
Baseline 2 + SA + Gate + xyEbd 629 572 482 31.8 7.3 38.3 66.6 52.9
Baseline 2 + SA + Gate + dxyEbd | 62.0 56.6 46.5 314 7.9 37.8 66.1 52.0
Baseline 2 + SA + Gate + PRPE 63.4 579 483 32.2 83 38.8 66.1 52.9
Table 1: Ablation studies on the A2D Sentences datasets.
Precision@ mAP Overall Mean
Methods 0.5 0.6 0.7 0.8 0.9 | 0.5:0.95 ToU ToU
[Gavrilyuk eral.,2018] | 47.5 34.7 21.1 8.0 0.2 19.8 53.6 42.1
[McIntosh et al., 2018] | 52.6 45.0 34.5 20.7 3.6 30.3 56.8 46.0
[Wang et al., 2019] 55.7 459 319 16.0 2.0 27.4 60.1 49.0
Ours 63.4 579 483 322 83 38.8 66.1 52.9

Table 2: Comparison with state-of-the-arts on the A2D Sentences dataset.

4 Experiments

4.1 Datasets and Implementation Details

A2D Sentences. A2D Sentences dataset is an extended ver-
sion of the A2D dataset [Xu et al., 2015]. There are 3,036
training videos and 746 testing videos. Each video has mul-
tiple different descriptions corresponding to different objects
in the scenes. There are 5,359 training video-sentence pairs
and 1,295 testing video-sentence pairs. The metrics to eval-
uate models for this dataset are precisions on different [oUs:
0.5, 0.6, 0.7, 0.8 and 0.9. In addition, mAP (mean average
precision), overall IoU and mean IoU are used for evaluation.
Overall IoU measures the total intersection area of all test data
over the total union area. Mean IoU measures average over
the IoU of each test sample.

J-HMDB Sentences. J-HMDB Sentences is an extension
of the J-HMDB dataset [Jhuang er al., 2013]. It Contains 928
videos and 928 corresponding sentences. A2D Sentences is
used as the training set of J-HMDB. J-HMDB Sentences uses
the same evaluation metrics as A2D Sentences.

Implementation Details. We use TensorFlow to imple-
ment our model. p is set to 3 in our experiments. The learning
rate is 0.0005. We use a stack of 8 256 x 256 RGB frames as
the video input for a balanced performance and speed.

4.2 Ablation Studies

Improving the Model Architecture

We perform ablation studies in this part. First, we perform
an ablation study on model architecture. We implement our
Baseline model by imitating [Gavrilyuk et al., 2018], which
is removing early-stage fusion and the residual connection
between the encoding phase and decoding phase. And in
the PAM, the visual feature is channel-wise multiplied by the
sentence feature without self attention. The second model
is adding the channel-wise multiplication for video-language
feature between the Inception blocks in the encoding phase,
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denoted as Baseline + EF in Table 1. Since we use pre-
trained 13D weights as the initialization of our encoder, in-
serting modules between them is possible to break the archi-
tecture of the pre-trained model. The third model then in-
corporates the residual connections, denoting as Baseline 2
in Table 1. The first part of Table 1 shows the result of this
ablation study.

The early fusion of visual and linguistic features brings a
big improvement in terms of P@0.5 of 5.5%. On the other
hand, the residual connections further improve the model. In
terms of more strict metrics, especially P@0.9, residual con-
nections improves the accuracy from 3.6% to 6.9%, which is
a 91.7% relative improvement.

Ablation Study on the Module Structure

Starting from Baseline 2, we perform the ablation study on
the module structure. We first add the self attention into our
PAM, denoted as Baseline 2 + SA. We then use the sentence
conditioned feature to compute the attention matrix. This
model is denoted as Baseline 2 + SA + gate.

Together with self attention and the gate, we test differ-
ent types of positional encoding methods. First we try to use
the popular positional encoding method: positional embed-
ding. The positional embedding method defines an embed-
ding for each distinct position and adds them to the input fea-
ture. Since the input for our model is a series of RGB frames
with a very low feature dimension 3, we apply positional em-
bedding in each module. To be memory efficient, we define
the positional embeddings for each = and y position, instead
of every distinct position. This model is denoted as Baseline
2 + SA + Gate + xyEbd.

We also test the relative positional encoding method in
terms of x and y differences. We apply relative positional
encoding in each PAM. This model is denoted as Baseline 2
+ SA + Gate + dxyEbd in Table 1.

Lastly, we use PRPE as our full model. we denote this
model as Baseline2 + SA + Gate + PRPE in Table 1.
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Full model Ground Truth

Full model Ground Truth

Figure 5: Qualitative analysis on the A2D Sentences dataset between our full model and the baseline models. Best viewed in color.

" ! u [ AI

Query: woman pouring  Our prediction Ground Truth
out some beer

Figure 4: An example of our prediction result and the ground truth
on the J-HMDB Sentences.

An interesting phenomenon is the plain self attention mod-
ule does not improve the performances. A possible reason is
the plain self attention cannot gather useful information by
only measuring content similarities. By using sentence fea-
ture conditioned visual features to compute the attention ma-
trix, the performances get small improvements.

Based on this model, we compare multiple positional en-
coding methods. All positional encoding methods improves
a lot than the previous model. Our PRPE achieves the best
performance, which improves 2.4%, 1.1% and 1.8% in terms
of P@0.5, P@(.9 and mAP, respectively. It means our PRPE
is effective to explore spatial relations. And spatial relations
are very useful for high-quality segmentation.

4.3 Comparison with State-of-the-Arts

We first compare our approach with the SotA approaches
on the A2D Sentences dataset. Compared to previous ap-
proaches, our approach achieves the best performances. On
P@0.5, our method outperforms the SotA by a large margin
of 7.7%. On P@0.9, our method outperforms the SotA by
4.7%, which is a 131% relative improvement.

We then compare our approach with the state-of-the-art ap-
proaches on the J-HMDB Sentences dataset. Our method
outperforms previous methods on the metrics Precision@0.6
to Precision@0.9 and mAP. But our method achieves weak
performances on Precision@0.5. An important reason is the
ground truth mask from J-HMDB Sentences is not a stan-
dard segmentation map. The ground truth mask is generated
from a puppet, which is not an accurate segmentation mask,
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Precision@ mAP
Methods 0.5 0.6 0.7 08 0.9 | 0.5:0.95
[Gavrilyuk et al., 2018]* | 69.9 46.0 17.3 14 0.0 23.3
[MclIntosh et al., 2018] 63.8 479 263 4.0 0.0 24.3
[Wang et al., 2019] 75.6 56.4 28.7 34 00 28.9
Ours 69.07 57.2 319 6.0 0.1 29.4

Table 3: Comparison with state-of-the-arts on the J-HMDB Sen-
tences dataset. * indicates the method used RGB+Flow visual input.

as shown in Figure 4. Therefore our approach achieves lower
results on certain metrics.

4.4 Qualitative Analysis

We show the qualitative analysis in Figure 5. In the first ex-
ample, the description is looking for the “man in white top
standing in the center”. Both baseline models mistakenly seg-
ments the man on the left. With a correct understanding of at-
tributes, our full model segments the correct person in white
top. In the second example, the description is looking for
the “cat with gray fur sitting on the chair”. Both the Base-
line model and the Baseline 2 model failed to recognize the
cat, while our model successfully located the gray cat on the
chair. These examples showed that our approach takes advan-
tage of spatial relations described by the sentence to improve
segmentation.

5 Conclusions

We proposed a novel Polar Relative Positional Encoding
mechanism along with a Polar Attention Module for video-
language segmentation. Through extensive experiments, we
proved the importance of spatial relations described in the
sentence and the effectiveness of our proposed method. There
are still many challenges remains in this task. Existing meth-
ods only considered a short snippet around the interested
frames. Long-term action relations still remain unexplored.
We leave this part as future work.
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