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Abstract
Very Fast Decision Tree (VFDT) is one of the most
widely used online decision tree induction algo-
rithms, and it provides high classification accuracy
with theoretical guarantees. In VFDT, the split-
attempt operation is essential for leaf-split. It is
computation-intensive since it computes the heuris-
tic measure of all attributes of a leaf. To reduce
split-attempts, VFDT tries to split at constant inter-
vals (for example, every 200 examples). However,
this mechanism introduces split-delay for split can
only happen at fixed intervals, which slows down
the growth of VFDT and finally lowers accuracy.
To address this problem, we first devise an online
incremental algorithm that computes the heuristic
measure of an attribute with a much lower compu-
tational cost. Then a subset of attributes is carefully
selected to find a potential split timing using this
algorithm. A split-attempt will be carried out once
the timing is verified. By the whole process, com-
putational cost and split-delay are lowered signifi-
cantly. Comprehensive experiments are conducted
using multiple synthetic and real datasets. Com-
pared with state-of-the-art algorithms, our method
reduces split-attempts by about 5 to 10 times on
average with much lower split-delay, which makes
our algorithm run faster and more accurate.

1 Introduction
In recent years, the amount of data generated by industrial ar-
eas is growing significantly. [Dobre and Xhafa, 2014] pointed
out that approximately 25 exabytes of data are generated ev-
ery day. Traditional offline methods have to store all the data
first, then apply specific algorithms to train models. How-
ever, if large amounts of data arrive continuously, due to the
limited computing resources, the memory becomes a bottle-
neck. Training offline models after storing all data becomes
increasingly impractical. Therefore, it is particularly impor-
tant to design online algorithms to process data in real-time.

Over the past few decades, decision tree algorithms have
been deeply studied and applied in various fields due to its
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high efficiency, accuracy, and interpretability. Traditional de-
cision tree algorithms (ID3 [Quinlan, 1986], CART [Breiman
et al., 1984], C4.5 [Quinlan, 1993], etc.) are not suitable for
streaming environments. When a tree grows, the best attribute
is first selected based on all the data, and then apply it to
guide the tree split for learning more information. However,
it is impossible to store all data of a stream, thus decision
trees need to determine how much data should be accumu-
lated to select the right attribute. VFDT [Domingos and Hul-
ten, 2000] and its variants (EFDT [Manapragada et al., 2018],
VFDTc [Gama et al., 2003], etc.) are currently the most pop-
ular online decision tree methods, using Hoeffding bound as
the theoretical guarantee to assume that a small number of
samples are sufficient to select the best split attribute. By set-
ting the parameter δ in Hoeffding bound, VFDT can ensure
that the attribute selected during splitting is the best attribute
with 1− δ confidence.

In specific implementation details, since the volume of data
needed to be accumulated cannot be predicted in advance, a
naive approach is to perform a split-attempt of a leaf for every
newly arrived example to check whether the best attribute se-
lected from the current data satisfies the Hoeffing bound. This
approach results in high computational cost, as each split-
attempt needs to calculate heuristic measure functions (i.e.,
information gain [Quinlan, 1993] or Gini index [Breiman
et al., 1984]) of all attributes. A large number of algo-
rithms based on VFDT [Hulten et al., 2001; Gama et al.,
2003; Bifet and Gavaldà, 2009; Ikonomovska et al., 2011a;
Ikonomovska et al., 2011b] use the same approach to alleviate
this problem by setting a hyperparameter nmin and performs
split-attempt every nmin examples, therefore reducing split-
attempts and shortening the running time. However, when
nmin is too large, the period of split-attempt is prolonged and
it is more likely to miss the optimal splitting time, thereby
inducing long split-delay which makes the tree grow slower
and reduce accuracy. Conversely, small nmin will increase
runtime.

How to make the leaf split reasonably and fast without af-
fecting the operational efficiency of the algorithm is the focus
of this paper. Two main works of this paper are as follows:

1. A mechanism is proposed to incrementally update the
heuristic measure of an attribute in constant time. By
this mechanism, the heuristic measure can be updated
immediately every time a single example arrives, instead
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of being calculated periodically like VFDT.

2. We introduce the candidate attribute set which keeps
track of the top K attributes that are most likely to split.
Only the heuristic measures of attributes in the set are
updated continuously, which further reduces the compu-
tational cost. To cover a wider range of attributes and
make the set indeed save the true top K attributes, we
propose an adaptive candidate set updating mechanism
that dynamically changes candidate attributes when their
performance deteriorates.

We evaluate and verify the algorithm on multiple synthetic
and real datasets. Compared with the existing methods, our
method can effectively reduce split-attempts by 5 to 10 times
on average and even hundreds of times in some data streams,
which greatly reduces the computational cost. What’s more,
we shorten split-delay more stably in both stationary and non-
stationary environments. These make our algorithm run faster
and more accurate.

The rest of this paper is organized as follows: Section 2
introduces the related work. We describe our algorithm and
the corresponding theoretical derivation in Section 3. Section
4 shows the experimental results and analysis. Finally, we
conclude this paper in Section 5.

2 Related Work
Traditional decision tree algorithms are based on batch data,
but [Domingos and Hulten, 2000] proposes VFDT for estab-
lishing decision trees using stream data based on Hoeffding
bound [Hoeffding, 1994]. Suppose we have n independent
observations of real-valued random variable r with range R
and mean r̄. The Hoeffding bound states that the true mean
of the variable r is at least r̄−ε with probability 1−δ, where,

ε =

√
R2ln(1/δ)

2n
(1)

Denote G(Xi) as the heuristic measure of attribute Xi at
the leaf node. Assume that after observing n pieces of data,
Xa and Xb are the attributes with highest and second-highest
G. Let ∆G = G(Xa) − G(Xb) and if ∆G > ε, then the
attribute Xa has a probability of 1− δ as the best attribute of
the current leaf node. Since the calculation of ∆G needs to
be performed on all attributes, VFDT uses the hyperparame-
ter nmin to periodically check if ∆G > ε satisfied. The intro-
duction of nmin effectively improves the runtime of VFDT.
But fixed nmin will also delay the split and affect the perfor-
mance of VFDT.

In recent studies, more and more people focus on acceler-
ating the learning of VFDT, because the Hoeffding bound is
still a conservative measure [Das et al., 2019]. [Manapra-
gada et al., 2018] proposed EFDT (Extremely Fast Decision
Tree) which uses a more loose judgment to speed up the split-
ting of leaves. If ∆G = G(Xa)−G(Xφ) > ε, which means
splitting on the best attribute works better than not splitting,
then EFDT will split attribute Xa at the leaf node. How-
ever, this method requires a periodic check because the best
attributes are prone to change. To accelerate the learning pro-
cess, Mem-ES [Das et al., 2019] abandons the theoretical

Algorithm 1 Online Decision Tree Induction
Input: S: A sequence of examples; G: A heuristic mea-
sure function; X: A set of attributes; δ: One minus the de-
sired probability of choosing the correct attribute at any given
node; τ : The threshold of tie-split; nmin: The period of split-
attempt.
Output: HT : Online decision tree learned from S

1: Initialize HT with a single root node
2: Initialize the statistics for tree growth
3: for each example s in S do
4: Sort s into a leaf l using HT
5: Update the statistics at l for tree growth
6: if the weight of examples at l mod nmin equals 0 then
7: AttemptToSplit(l, G, X, δ, τ )
8: end if
9: end for

10: return HT

guarantee of Hoeffding’s inequality. Based on the principle
of Bag of Little Bootstraps [Kleiner et al., 2012], Mem-ES
employs a sampling method to speed up splitting. But this
method retains some examples at leaves, which lead to large
memory consumption.

Scholars have begun to pay attention to the hyperparam-
eter nmin in the past few years, [Garcı́a-Martı́n, 2017] as-
sumes that the ∆G value calculated for the first time does not
change. As ε in Equation 1 decreases with the number of sam-
ples n increasing, it estimates that at least how many samples
are required to be observed in order to make ε small enough
to satisfy the inequality ∆G > ε. [Losing et al., 2018]
proposes the OSM algorithm, which assumes that G(Xb),
the heuristic measure of the second-best attribute, does not
change, the value of G(Xa) increases as much as possible
as the data arrives. In this case, OSM estimates how many
samples are needed to satisfy the Hoeffding bound, such that
G(Xa)−G(Xb) > ε. Obviously, the value of ∆G or G(Xb)
actually changes dynamically. Although these approaches
may effectively reduce split-attempts, they will increase the
split-delay and have a negative impact on the accuracy of the
algorithm.

Compared with previous algorithms, the algorithm pro-
posed in this paper can use both the historical and the latest
data distribution information, generate fewer split-attempts
and less split-delay, it can also improve the accuracy to a cer-
tain extent. Besides, our algorithm can be well embedded in
the above algorithms such as VFDT, EFDT and so on.

3 Methodology
3.1 Preliminary
Algorithm 1 describes an overview of VFDT. VFDT is first
initialized by a single root node (line: 1). For each example s
in the data stream S, VFDT finds the leaf node l that the ex-
ample s falls into, and then updates the statistics of attributes
in l (lines: 3-5). l will not attempt to split until the weight of
examples observed in l is an integer multiple of nmin.

Function 2 describes the process of split-attempt operation.
The first step is to calculate the heuristic measure of all at-
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Function 2 AttemptToSplit(l, G, X, δ, τ )

1: Xa, Xb are the two attributes with highest Gl
2: Compute ε using equation 1
3: if G(Xa)−G(Xb) > ε or ε < τ then
4: Replace l with an internal node
5: for each branch of the split do
6: Add a new leaf lm and let Xm = X− {Xa}
7: end for
8: end if

tributes, and then find the best attribute Xa and the second-
best attribute Xb (line: 1). The Hoeffding bound is calculated
according to Equation 1. If G(Xa) − G(Xb) > ε or ε < τ ,
the attribute Xa will be used to split the leaf node (lines: 3-
8). When two attributes have very similar G values, if we only
use the condition G(Xa)−G(Xb) > ε, potentially many ex-
amples will be required to split a leaf. VFDT uses condition
ε < τ to determine whether the tie situation occurs. It uses
the current best attribute to split when the tie situation does
occur. The split in this situation is called tie-split. The param-
eter τ essentially specifies the maximum number of examples
that can be accumulated at a leaf.

3.2 Incremental Heuristic Measure
[Sovdat, 2014] proposes the updating formulas of computing
entropy and Gini index for time-changing data streams, and
we further extend it to the heuristic measure calculation of
attributes. Assuming that the current node can be split into
q child nodes using attribute Xi. The data set in the current
node is D, and the number of classes is c, then the following
symbols can be defined:

• n: the total weight of examples in D;

• ni,j : the total weight of examples that would be passed
into the jth child node if the split was made by the at-
tribute Xi;

• ni,j,k: the total weight of examples from the kth class
that would be passed into the jth child node if the split
was made by the attribute Xi.

For the clarity of the explanation, the index i will be ne-
glected, i.e., ni,j ≡ nj , ni,j,k ≡ nj,k.

If VFDT uses information gain as the heuristic measure,
the conditional entropy on the attribute Xi is:

G(D|Xi) = − 1

n

q∑
j=1

c∑
k=1

nj,k log
nj,k
nj

(2)

Theorem 1. For any given example s with weight w and
class m (m ∈ [1, c]), suppose s will be passed into
the rth child node if the split was made by the attribute
Xi, then the new conditional entropy of the attribute Xi

is Ĝ(D|Xi) = 1
n+w (nG(D|Xi) − ∆), where ∆ =

log [( nr

nr+w
)nr (

nr,m+w
nr,m

)nr,m(
nr,m+w
nr+w

)w].

Proof. According to the assumptions of Theorem 1, both nr
and nr,m will increase w, and the values of other parameters

remain unchanged. Then

Ĝ(D|Xi)−
n

n+ w
G(D|Xi)

= − 1

n+ w
(nr,m log

nr,m + w

nr,m
+ w log

nr,m + w

nr + w
)

− 1

n+ w

c∑
k=1

nr,k log
nr

nr + w

= − 1

n+ w
log [(

nr
nr + w

)nr (
nr,m + w

nr,m
)nr,m(

nr,m + w

nr + w
)w]

(3)

This completes the demonstration of Theorem 1.

When VFDT uses Gini index as the heuristic measure, the
term in which does not depend on the attribute, will be ne-
glected since the subject of interest is the difference of the
Gini index for two attributes. Thus the approximate Gini in-
dex of the attribute Xi is:

G(D|Xi) =
1

n

q∑
j=1

c∑
k=1

n2j,k
nj

. (4)

We can prove Theorem 2 in the same way as theorem 1.
Theorem 2. For any given example s with weight w
and class m (m ∈ [1, c]), suppose s will be passed
into the rth child node if the split was made by the at-
tribute Xi, then the new Gini index of the attribute Xi

is Ĝ(D|Xi) = 1
n+w (nG(D|Xi) + ∆), where ∆ =

2wnr,m+w2

nr+w
−

∑c
k=1

w(nr,k)
2

nr(nr+w) .

3.3 Incremental Measure Algorithm Based on
Candidate Attributes (IMAC)

According to Theorem 1 and Theorem 2, when the heuristic
measure is information gain or Gini index, it can be incremen-
tally calculated respectively. Based on this, an incremental
algorithm is proposed, which we call IMAC. The algorithm
is described in Algorithm 3 and Function 4.

IMAC removes the parameter nmin and uses a new param-
eter η instead, which represents the minimum total weight of
examples that a leaf node needs to accumulate. The param-
eter η is used only once throughout the life cycle of the leaf
node, it has the effect of “cold start”.

IMAC maintains a candidate attribute set P in each leaf
node, which stores the top K attributes that are most likely to
split. In our algorithm, K is equal to 10% of the number of
attributes. To avoid too many or too few candidate attributes
are selected, the value of K is limited between 5 to 10. As
long as P is not empty, the heuristic measure of the current
candidate attributes will be incrementally updated according
to Theorem 1 or 2 (lines: 6-8). When the difference between
the heuristic measure of the best attribute and the second-best
attribute in P is greater than the Hoeffding bound, the split-
attempt operation will be executed at the leaf (lines: 10-13).
In function 4, if the split-attempt operation fails, IMAC will
replace P with new top K attributes according to the rank of
current values of the heuristic measure (line: 9).
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Algorithm 3 Online Decision Tree Induction with IMAC
Input: S: A sequence of examples; G: A heuristic measure
function; X: A set of attributes; δ: One minus the desired
probability of choosing the correct attribute at any given code;
τ : The threshold of tie-split; η: The minimum total weight of
examples must be accumulated at a leaf; K: The maximum
size of the candidate attribute set.
Output: HT : Online decision tree learned from S

1: Initialize HT with a single root node
2: Initialize the statistics for tree growth and an empty can-

didate attribute set P
3: for each example s in S do
4: Sort s into a leaf l using HT
5: Update the statistics at l for tree growth
6: if candidate attribute set Pl at l is not empty then
7: for each attribute Xi ∈ Pl do
8: Update the heuristic measure of Xi using Theo-

rem 1 or 2
9: end for

10: Xa, Xb are the two attributes of Pl with highest Gl
11: Compute ε using Equation 1
12: if G(Xa)−G(Xb) > ε or ε < τ then
13: AttemptToSplitWithIMAC(l, G, X, δ, τ , K)
14: end if
15: else if the weight of examples at l is greater than η

then
16: AttemptToSplitWithIMAC(l, G, X, δ, τ , K)
17: end if
18: end for
19: return HT

3.4 Adaptive Switching Mechanism for Candidate
Attributes

Theoretically, the result based on theorem 1 or theorem 2
should be accurate. However, the following situations may
occur, resulting in an inaccurate result:
• In some improved algorithms based on VFDT, to speed

up the processing of numerical attributes, it is assumed
that the distribution of the values of a numerical at-
tribute follows a normal distribution, and only the mean
and variance of numerical attributes are stored in a leaf
node [Gama et al., 2004]. When calculating the heuristic
measure of a numerical attribute, the optimal split-point
of the attribute needs to be considered additionally. At
a given split-point, the approximate weight greater than
or less than the split-point is estimated by the normal
distribution. While in the incremental method of IMAC,
the weight is calculated accurately at a given split-point.
The difference between the incremental method and the
approximation method on a numerical attribute will lead
to a large deviation finally.
• The candidate attribute set P may not have captured the

true split attribute. On the one hand, due to the small
amount of data at the beginning, the difference of the
heuristic measure between the true best attribute and
other attributes is not obvious, and even the true best
attribute may be smaller. If P is initialized at this time

Function 4 AttemptToSplitWithIMAC(l, G, X, δ, τ , K)

1: Xa, Xb are the two attributes with highest Gl
2: Compute ε using Equation 1
3: if G(Xa)−G(Xb) > ε or ε < τ then
4: Replace l with an internal node
5: for each branch of the split do
6: Add a new leaf lm with empty Pm and let Xm =

X− {Xa}
7: end for
8: else
9: Replace Pl with new top K attributes according to the

rank of Gl
10: end if

point, the true best attribute may not be included. On the
other hand, if concept drift occurs, the data distribution
can change over time [Schlimmer and Granger, 1986;
Widmer and Kubat, 1996]. Thus the best attribute may
change at different stages, which is difficult to capture.
For numerical attributes, even if the best attribute does
not change, the optimal split-point may be different at
different stages by calculating the data weight approxi-
mately.

To solve these problems, we give the following rules:
Illegal Attribute. Assume Xa is the attribute with high-

est G. For any other attribute Xi, Xi is said to be illegal if
G(Xa) −G(Xi) > ε. We believe that there is sufficient evi-
dence to show that Xa is better than Xi, Xi will not be con-
sidered anymore and should be added into the illegal attribute
set I.

Potential Attribute. AssumeXa is the attribute with high-
est G. For any other attribute Xi, Xi is said to be potential
if G(Xa) − G(Xi) ≤ ε and Xi is not in the candidate set P,
then Xi should be added into the potential attribute set M.

A hyperparameter µ is used to check the candidate set P
every µ examples. Assume Xp is the worst attribute with
lowest G in P, and Xs is the best attribute with highest G
in M. Since the attribute information in M is not updated
incrementally in time, the latest value of the heuristic measure
of Xs needs to be recalculated. The one with the larger G of
the two attributes will be added to P and the other will be
added to I (according to the rule of illegal attribute) or M
(according to the rule of potential attribute).

Space and Time Complexity Analysis
If c is the number of classes, d is the number of attributes and
each nominal attribute can have at most v values, then VFDT
maintains the statistics of all attributes at each leaf in O(dvc)
memory. Since IMAC introduces P to save the incremental
information of top K candidate attributes, it requires extra
O(Kvc)(K < d) memory. M and I only store the names and
lastestG values of attributes, the memory required isO(d). In
conclusion, the total required memory of each leaf in IMAC
is still O(dvc).

The time to calculate the heuristic measure of all attributes
in VFDT is O(dvc). Assume that the total weight of the data
observed at a leaf is n, nv (nv = n/nmin) split-attempts are
required on average in VFDT, and ni split-attempts are re-

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1275



Dataset #Samples #Feat #Class Type Stationarity

SEAg 5M 3 2 artificial No
LEDg 1M 24 10 artificial No
AGRg 10M 9 2 artificial No
RBF 2M 200 15 artificial Yes
RTG 10M 400 25 artificial Yes
Covertype 581K 54 7 real No
KDD99 4.9M 41 23 real No
MNIST8M 8.1M 784 10 real Yes

Table 1: Datasets information.

quired in IMAC. Thus the time complexity of split-attempts
is O(nvdvc) in VFDT. Except for split-attempt operation in
IMAC, P needs to be checked periodically in O(ncKvc)
(nc = n/µ) time, the information of candidate attributes
are updated incrementally in O(nK) time. Thus the time
of split-attempt and the time of additional operations intro-
duced in IMAC is O(nidvc + ncKvc + nK). If ni

nv
<

1− Knmin

µd − Knmin

dvc , IMAC will faster than VFDT. We define
a new function ϕ = 1− Knmin

µd − Knmin

dvc . ϕ is an increasing
function with d, v and c as arguments. From this, we know
that, in large-scale and complex data flow scenarios, IMAC is
very likely to be faster than VFDT. In Section 4, IMAC usu-
ally reduces split-attempts by about 10 times compared with
VFDT, and sometimes even hundreds of times. In industrial
scenarios, data is usually very complex, with hundreds of at-
tributes, and some attributes may have hundreds of different
state values. IMAC is more suitable for these complex sce-
narios.

4 Experiment
4.1 Experimental Setup
Environment
All algorithms and experiments are implemented on the Mas-
sive Online Analysis (MOA) platform [Bifet et al., 2010],
which is one of the most popular open-source frameworks
for data stream mining. Our optimizations can also be inte-
grated on other platforms (i.e., STREAMDM C++ [Bifet et
al., 2017], Scikit-Multiflow [Montiel et al., 2018]). Our code
is available at GitHub1. All experiments are conducted on a
standard server with 36 cores and 125GB memory. We eval-
uate the performance of three methods in this paper:
• The standard VFDT with periodic split-attempts.
• The current best algorithm OSM, which predicts the in-

terval of split-attempts in VFDT and has the best perfor-
mance optimization effect [Losing et al., 2018].
• The algorithm IMAC in this paper, which determines the

potential split timing in VFDT with incremental infor-
mation.

VFDT with default parameters (nmin = 200, τ = 0.05,
δ = 1e−7), uses the majority class in leaves for classification
and information gain as the heuristic measure. Since nmin

1https://github.com/yearsj/IMAC

is 200, to compare with VFDT and OSM at the same level,
parameter µ and η in IMAC are both set to 200.

Datasets
We use large streams consisting of well known real-world and
synthetic datasets. Table 1 shows detailed information.
Synthetic data. Synthetic data (SEA [Street and Kim,
2001], LED [Breiman et al., 1984], AGR [Agrawal et al.,
1993], RTG [Domingos and Hulten, 2000], RBF) are all gen-
erated using the API proposed by MOA. The name’s subscript
of synthetic data with concept drift is marked with g (i.e.,
LEDg).
Covertype. The forest covertype data set represents forest
cover type for 30 x 30 meter cells obtained from the US Forest
Service Region 2 Resource Information System (RIS) data.
KDD99. KDD99 dataset corresponds to a cyber-attack de-
tection problem (i.e., attack or common access), an inherent
streaming scenario since instances are sequentially presented
as a time series.
MNIST8M. MNIST8M is the augmentation of original
MNIST [LeCun et al., 1998] database by using pseudo-
random deformations and translations [Loosli et al., 2007].

4.2 Results and Discussion
Split-delay equals to the difference between the actual split-
time tl and the true minimum split-time t̂l at a leaf l:

∆l = tl − t̂l (5)

The value of t̂l can be obtained by a reference tree that sets
parameter nmin to 1 [Losing et al., 2018]. The average split-
delay will be evaluated in our experiments. Reducing split-
delay usually requires more split-attempts and reducing split-
attempts usually introduces a larger split-delay. It is difficult
to reduce split-attempts and split-delay at the same time.

A comprehensive evaluation result of the three algorithms
lists in table 2. Since nmin is 200, the split-delay generated
by VFDT is usually around 100 (half of nmin), whether it is
in stationary or non-stationary streams.

By comparison to VFDT, although OSM usually reduces
split-attempts by 2 to 8 times, the performance of split-delay
is particularly unstable. OSM can maintain roughly the same
split-delay in some streams, but introduces a huge split-delay
in others, sometimes even more than 10 times (for example,
RBF, Covertype and KDD99). The reason is that OSM pre-
dicts the interval of the split-attempt base on the assumption
that the current best attribute will not change. This may not
be realistic because the best attribute may change drastically
especially in non-stationary streams. What’s more, a larger
split-delay makes the tree grow slower, which usually de-
creases the accuracy of the tree (for example, the split-delay
of AGRg is beyond 600, results in 1% reduction in accuracy
compared with VFDT).

Compared with VFDT, IMAC has a great effect on reduc-
ing split-attempts and substantially reduces it by more than
10 times in most cases and even 100 times sometimes. Even
compared with OSM, IMAC can reduce split-attempts by
more than 4 times normally. Although fewer split-attempts
are used, less split-delay is introduced, which makes IMAC
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Datasets #Attempts Average delay Total Time (s) Accuracy (%)
VFDT OSM IMAC VFDT OSM IMAC VFDT OSM IMAC VFDT OSM IMAC

SEAg 25436 18172 3414 96.95 96.95 21.74 6.64 6.60 10.07 89.20 89.23 89.26
LEDg 4999 2652 186 113.80 102.87 6.70 2.20 1.86 2.79 31.05 31.03 32.09
AGRg 33229 20496 9688 98.62 686.59 79.53 21.01 21.07 26.19 85.74 84.61 86.20
RBF 10008 1649 105 121.00 9149.00 55.00 76.11 33.97 31.70 56.24 55.58 56.32
RTG 35949 9565 2499 100.34 272.26 45.84 285.56 212.47 151.99 83.57 83.69 83.84
Covertype 2853 1237 492 99.43 1051.36 392.27 2.83 2.10 3.23 69.76 68.66 70.23
KDD99 4231 105 113 102.50 50553.50 0.50 9.80 8.44 9.75 99.25 99.03 99.27
MNIST8M 40436 11885 527 68.40 107.80 54.20 638.69 442.83 316.15 58.03 57.98 57.98

Table 2: A comprehensive evaluation of VFDT, OSM and IMAC, including split-attempts, the average of split-delay, total time and accuracy.
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Figure 1: As the increase of #attribute and #examples, the variation
of total-time and attempt-time on different algorithms in RTG. All

time values are processed by logarithmic base 2.

grow faster and more accurate than VFDT and OSM under
the same conditions in most circumstances. By calculating of
candidate attributes incrementally, IMAC combines the his-
torical distribution and the latest distribution to judge poten-
tial split-time, so that the split-delay is more stable. How-
ever, Covertype is excluded, whose delay reached 392.27 for
P fails to capture the true best attribute so that the attribute is
not considered when judging the potential split-time.

We only evaluate the running time of the online decision
tree, excluding the time of reading and parsing data stream.
When the size of stream data is very small (in VFDT, the to-
tal runtime is less than 30s in this experiment result), OSM is
optimal for speeding up running time, while IMAC is slightly
slower than VFDT because of additional operations (incre-
mental calculation and candidate attributes switching). Al-
though IMAC can reduce the split-attempts to a small extent,
the effect of optimizing this operation is limited since the to-
tal time consumption of split-attempts is very small in these

streams. Even if IMAC runs a little longer, the extra time
is trivial (for example, in KDD99, IMAC is only 1s slower
than OSM). While for large data streams, the speedup of the
running time of IMAC is best. Compared with the time of ad-
ditional operations, the time of split-attempts that IMAC re-
duces has a greater impact. For example, IMAC is 320s faster
than VFDT and 120s faster than OSM in MNIST8M. Figure 1
shows the impact of the number of attributes and the number
of examples on the optimization of runtime. Attempt-time is
the time of split-attempts, and the additional operations used
to reduce split-attempts in IMAC are also included. As the
increase of attributes or examples, the attempt-time of VFDT
and OSM shows a steeper rise, while IMAC rises to a certain
level and almost stabilizes. Ideally, to ensure that leaves split
in time, the split-delay should be equal to 0. Since IMAC gen-
erates less split-delay in most cases, it will make the tree grow
a little deeper. The deeper trees will lead to a little longer
training time and memory estimate time in IMAC so that the
total runtime optimization is not obvious as attempt-time. It
is also a reasonable phenomenon caused by accelerated split-
ting.

5 Conclusion

In this paper, we further improved the performance of VFDT
by replacing its periodic split-attempt mechanism. We cal-
culated the heuristic measure incrementally and applied it to
determine the potential split-time on candidate attributes. To
make the candidate set to cover a wider range, we also pro-
posed a dynamic candidate set switching mechanism. We
conducted a comprehensive experiment on multiple synthetic
datasets and real datasets. Compared with state-of-the-art
algorithms, IMAC can not only reduce split-delay but also
significantly reduce split-attempts, which makes IMAC run
faster and more accurate. Moreover, we verified that IMAC
is more efficient in large-scale data streams.
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