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Abstract

Answer Set Programming (ASP) is a well-known
formalism for Knowledge Representation and Rea-
soning, successfully employed to solve many Al
problems, also thanks to the availability of efficient
implementations. Traditionally, ASP systems are
based on the ground&solve approach, where the
grounding transforms a general input program into
its propositional counterpart, whose stable models
are then computed by the solver using the CDCL
algorithm. This approach suffers an intrinsic lim-
itation: the grounding of one or few constraints
may be unaffordable from a computational point of
view; a problem known as grounding bottleneck.
In this paper, we develop an innovative approach
for evaluating ASP programs, where some of the
constraints of the input program are not grounded
but automatically translated into propagators of the
CDCL algorithm that work on partial interpreta-
tions. We implemented the new approach on top
of the solver WASP and carried out an experimen-
tal analysis on different benchmarks. Results show
that our approach consistently outperforms state-
of-the-art ASP systems by overcoming the ground-
ing bottleneck.

1 Introduction

Answer Set Programming (ASP) [Brewka et al., 2011] is a
declarative formalism for knowledge representation and rea-
soning based on the stable model semantics [Gelfond and
Lifschitz, 1991]. Efficient implementations of ASP, such as
CLINGO [Gebser et al., 2016] and DLV [Alviano et al., 20171,
are available, which made possible the development of con-
crete applications. In the recent years, ASP has been widely
used for solving several problems in the context of artificial
intelligence, such as game theory [Amendola et al., 2016],
natural language processing [Schiiller, 2016], natural lan-
guage understanding [Cuteri et al., 2019b], robotics [Erdem
and Patoglu, 2018], scheduling [Dodaro and Maratea, 2017],
and more [Erdem et al., 2016]. Therefore, the improve-
ment of ASP systems is an interesting research topic in arti-
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ficial intelligence. Traditional ASP systems are based on the
ground&solve approach [Kaufmann ef al., 2016], in which a
grounder module transforms the input program (containing
variables) in its propositional counterpart, whose stable mod-
els are subsequently computed by the solver module. ASP
solvers implement an extension the Conflict Driven Clause
Learning (CDCL) algorithm [Kaufmann et al., 2016]. Al-
though the ASP implementations based on ground&solve are
known to be effective in many contexts [Erdem et al., 2016],
the traditional approach has an intrinsic limitation. In particu-
lar, there are classes of programs whose evaluation is not fea-
sible because of the combinatorial blowup of the grounding
of some rules. This issue is usually referred to as grounding
bottleneck. In many practical cases the grounding bottleneck
is due to one or few constraints that model the (non) admis-
sibility of problem solutions [Ostrowski and Schaub, 2012;
Calimeri et al., 2016].

In the literature, there are several attempts to solve the
grounding bottleneck problem [Gebser er al., 2018]. Some
of these are based on language extensions that hybridize ASP
with other formalisms (such as constraint programming [Os-
trowski and Schaub, 2012; Balduccini and Lierler, 20171, and
difference logic [Gebser et al., 2016; Susman and Lierler,
2016]) that can be used to express the hard-to-ground con-
straints. Hybrid formalism are efficiently evaluated by cou-
pling an ASP systems with a solver for the other theory, thus
circumventing the grounding bottleneck. There are also ap-
proaches that work on plain ASP, such as lazy grounding tech-
niques, that resulted in several promising systems, such as
GASP [Dal Palu et al., 2009], ASPERIX [Lefévre and Nico-
las, 2009] and ALPHA [Weinzierl, 2017]. The idea of lazy
grounding is to instantiate a rule only when its body is sat-
isfied. In this way, it is possible to prevent the grounding
of rules which are unnecessary during the search of an an-
swer set. Albeit lazy grounding techniques obtained good
preliminary results, their performance is still not competitive
with state-of-the-art systems [Gebser ef al., 2018]. A differ-
ent approach was proposed in [Cuteri et al., 2017], where
problematic constraints are removed from the non-ground in-
put program and the resulting program is provided as input
to a modified version of a CDCL-based able to simulate the
presence of problematic constraints. In [Cuteri et al., 2017]
the authors compared two alternative strategies for extend-
ing ASP solvers based on CDCL, namely lazy instantiation
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and propagators. In the lazy instantiation strategy, the solver
computes a stable model of the program without problem-
atic constraints. If this stable model satisfies also the omitted
constraints, then it is also a stable model of the original pro-
gram. Otherwise, the violated instances of these constraints
are lazily instantiated, and the search continues. The other
strategy relies on an extension of the propagation function by
adding custom propagators, whose role is to perform the in-
ferences of missing constraints during the search. However,
both lazy instantiation and propagators were based on proce-
dures written in a imperative language and that are specific
for the problem at hand. This approach looses the declara-
tive nature of ASP, and is a time consuming task that can be
carried out only by developers expert on system APIs. Re-
cently, Cuteri et al. [Cuteri er al., 2019a] presented a strategy
to translate (or compile) some non-ground constraints into
a dedicated C++ procedure, which is used by the system to
lazily instantiate them in an automatic way. This approach
keeps declarativity of ASP and is effective when the prob-
lematic constraints are likely to be satisfied by a candidate
model (i.e., whenever lazy instantiation is effective cfr. [Cu-
teri et al., 20171). However, a significant number of problems,
especially hard combinatorial problems from ASP competi-
tions [Calimeri et al., 2016] cannot be handled efficiently by
systems relying on lazy instantiation [Cuteri ef al., 2017].

In this paper, we push forward the idea of [Cuteri et al.,
2017; Cuteri et al., 2019al, and we present a novel strategy
for translating (compiling) non-ground constraints into ded-
icated C++ procedures that are used as propagators during
the search of the CDCL algorithm. Differently from [Cuteri
et al., 2019al, propagators operate on partial interpretations
and require radically different algorithms that are more in-
volved than methods on total interpretations. To assess the
performance of our approach, we implemented it on top of
WASP [Alviano et al., 2015] and conducted an experimental
analysis on different benchmarks proposed in the literature.
Results show that our approach outperforms state-of-the-art
ASP systems in all tested scenarios.

2 Preliminaries

2.1 Answer Set Programming
An ASP program 7 is a finite set of rules of the form

hil...|hp :=b1,...,by. where n,m > 0, n+m#£0,
hi,...,h, are atoms and represent the head of the rule, while
b1, ..., by, are literals and represent the body of the rule. We

denote by body(r) the set of literals appearing in the body
of r. In particular, an atom is an expression of the form
p(t1,...,tx), where p is a predicate of arity k and t1, ...,
are terms. Terms are alphanumeric strings and are either vari-
ables or constants. According to Prolog conventions, only
variables start with uppercase letters. A literal is an atom q
or its negation ~a, where ~ denotes the negation as failure.
A literal is said to be positive if it is an atom and negative
if it is the negation of an atom. For an atom a, the comple-
ment is @ = ~a, for a negated atom ~a, the complement is
~a = a. For a literal [, trm(l) denotes the list of terms in [,
and pred(l) is the name of the predicate of I. A rule is called
a constraint if n = 0, and a factif n = 1 and m = 0.

Algorithm 1 ComputeStableModel

Input : A ground program P
Output: A stable model for P or L
1 begin

2 I:=10;

3 I := Propagate(I),

4 if I is inconsistent then

5 r := CreateConstraint(I) ;
6

7

8

9

I := RestoreConsistency(I),

if I is consistent then P := P U {r};
else return 1 ;

else if I total then return I;

10 else
1 I := RestartlfNeeded(1),
12 ‘P := DeleteConstraintslfNeeded(P),
13 | I :=1U ChooselLiteral(1);
4 | goto 3;
Function Propagate([/)
12 =1;

2 for¢{ € Zdo Z:=7 U Propagation(Z, ¢) ;
3 return Z;

An object (atom, rule, etc.) is called ground or proposi-
tional, if it contains no variables. Rules are safe, that is each
variable occurs in a positive literal of the body. Given a pro-
gram T, let the Herbrand Universe U, be the set of all con-
stants appearing in 7 and the Herbrand Base B, be the set
of all possible ground atoms which can be constructed from
the predicate symbols appearing in 7 with the constants of
U,. B denotes B, U B,. Given arule r, gnd(r) denotes the
set of rules obtained by applying all possible substitutions o
from the variables in 7 to elements of U,. For a program T,
the ground instantiation gnd(r) of  is the set | J,. . gnd(r).
Stable models of a program 7 are defined using its ground
instantiation gnd (7). An interpretation I for 7 is a set of lit-
erals. I is total if Va € By, eithera € I or ~a € I and
l €I = [ ¢ I. Given an interpretation I, I denotes the
set of positive literals in I and I~ denotes the set of negative
literals in 1. A ground literal [ is true w.r.t. I if [ € I, other-
wise it is false. A total interpretation [ is a model for 7 if, for
every r € gnd(m), at least one atom in the head of r is true
w.r.t. [ whenever all literals in the body of r are true w.r.t.
1. The reduct of a ground program 7 w.r.t. a model [ is the
ground program 7/, obtained from 7 by (i) deleting all rules
r € m whose negative body is false w.r.t. I and (ii) deleting
the negative body from the remaining rules. An interpretation
I is a stable model of a program 7 if [ is a model of 7, and
there is no .J such that .J is a model of 7/ and J* C It . A
program 7 is coherent if it admits at least one stable model,
incoherent otherwise.

2.2 Classical CDCL Evaluation

The standard solving approach for ASP is instantiation fol-
lowed by a procedure similar to CDCL for SAT with exten-
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sions specific to ASP [Kaufmann et al., 2016]. The basic al-
gorithm ComputeStableModel (IT) for finding a stable model
of program II is shown in Algorithm 2. The Function 1 com-
bines unit propagation (as in SAT) with some additional ASP-
specific propagations, which ensures the model is stable (cf.
[Kaufmann er al., 2016]). The algorithm calls for each ad-
ditional propagator a procedure called Propagation in Func-
tion 1. which takes as input a true literal, and the interpre-
tation, and returns as output the extended interpretation with
literals that are inferred and their reason.

Given a partial interpretation I consisting of literals, and
a set of rules II, unit propagation infers a literal ¢ to be
true if there is a rule » € II such that » can be satisfied
only by I U {¢}. Given the nogood representation C(r) =
{~ai,...,~ap,b1,...,bj,~bjt1,...,~by} of arule r, then
the negation of a literal ¢ € C(r) is unit propagated w.r.t. I
and rule r iff C(r) \ {¢} C I. In the following we refer to
C(r) \ {¢} as the reason for the inference of .

Pairs (¢, reason of ¢) are stored during the execution of
propagation, and will be used to perform conflict resolution,
and more specifically during the UIP computation [Alviano et
al., 2015]. We refer to the list of such pairs as the implication
list. To ensure that models are supported, unit propagation
is performed on the Clark completion of II or alternatively a
support propagator is used [Alviano and Dodaro, 2016].

Example 1 Consider the following ground program 11,

g1 :a <+ ~b
g d < ~c

gz :c< ~d
ge : < a, ~b.

g : b+ ~a
gs:<a, b

ComputeStableModel(I1y) starts with I = 0 and does not
propagate anything in line 3. I is partial and consistent, so
the algorithm continues in line 11. Assume no restart and
no deletion is performed, and assume ChooseLiteral returns
{a}, i.e, I = {a}. Next, Propagate(I) is called which
yields I = {a,b,~b} where ~b comes from unit propaga-
tion on gs and b from unit propagation on gg. I is incon-
sistent and an analysis yields the reason of the conflict, i.e.,
CreateConstraint(I) = {g7} with g7 : < a. Intuitively, the
truth of a leads to an inconsistent interpretation, thus a must
be false. Then, the consistency of I is restored (line 6), i.e.,
I = 0, and g7 is added to 11,. The algorithm again restarts
at line 3 with I = () and propagates I = {~a,b}, where ~a
comes from unit propagation on g7, and b from unit propaga-
tion on go. I is partial and consistent, therefore lines 11-13
are executed. Assume again that no restart and no constraint
deletion happens, and that ChooseLiteral(I) = {c}. There-
fore, the algorithm continues in line 3 with I = {~a,b,c}.
Propagation yields I = {~a,b, ¢, ~d} because ~d is support-
propagated w.r.t. gs and I (or unit-propagated w.r.t. the com-
pletion of g3 and I). 1 is total and consistent, therefore the
algorithm returns I as the first stable model.

3 Constraints as Propagators

In this section we present our strategy for evaluating con-
straints with propagators that are automatically generated
by a compilation-based approach. In the following, we as-
sume w.l.o.g. that the bodies of constraints never contain
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Algorithm 2 CompilePropagateConstraint

Input : A constraint C'
Output: Prints the propagator for C'.

1 begin

2 «lp = 0»

3 «switch pred(l) »

4 forall the ¢ € body(C) do

5 « case “pred(c)’:»

6 CompilePropagateConstraintWithStarter(c,C)
7 « break»

8 «return /;»

two literals with the same predicate name. Algorithms 3-
4 present the pseudo-code of the compiler generating prop-
agators from constraints. To ease readability, we write in
red the code that is produced by the compiler, and in black
the code (e.g., variables and references) that are in the scope
of the compiler. Thus, red lines, written inside the symbols
« and », represent the code that is printed by the compiler,
and black references in gray lines denote the fact that the
compiler is printing the value of such variables. For exam-
ple, «case “pred(C)”» is equivalent to the C++ instruction
printf(“case \"%s\"”,pred(C)). Algorithm 3 takes as
input a non-ground ASP constraint C' and prints the code of
the propagator for C'. It starts by declaring in the propagator
code an empty implication list (line 2) which will be in charge
of accumulating the result of the propagation of a literal [ (the
literal in input to the propagator), which we call starting lit-
eral. Depending on the predicate name of [, the propagator
code must evaluate one of the |body(C')| possible join orders.
To do so, it writes a switch on the predicate name of [, writ-
ing one case for each literal in the constraint. In each case,
it prints a dedicated code that is able to propagate [ calling
algorithm 4. The evaluation is written as a nested join loop,
which is a cascade of for and if blocks.

We now describe what is happening in algorithm 4, which
receives a constraint C' and a literal ¢ € C. First it builds
a substitution o that will be used and updated in the whole
nested join. Initially, o is set to the empty substitution € (line
1). Then, from line 2 to 4 the compiler writes the code that
adds to o a mapping from the variables in ¢ (known at com-
pilation time, thus black in the algorithm) to the constants
in [ (ground literal known at execution time). Recall that
trm(x) returns the list of terms of a literal z. The square
notation, commonly used in C++ programming, denotes the
access of a list to a specific (one-based) index (e.g. if the
list is trm(c) = [X,2,Y], then trm(c)[1] is X). At line 5,
the algorithm reorders the body of C' in a new list B where
negative literals are always at the end of B, and c is not in B.

In the propagator code, u will be the complement of the
literal that is unit propagated, and it is initialized to L to de-
note that it is not known at the beginning. The printing of the
code of the nested join loop starts at line 8. Essentially, at
each iteration ¢ we either print a for loop if B|[i] is positive
and an if statement if it is negative. Each subsequent for or
if is nested inside the previous one. When B[i] is positive,
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the propagator will first collect in the set T; the true literals
that match (read it as has a substitution to) o(B]i]), i.e. the
current body literal B; to which the building substitution o
is applied (line 10). Such true literals are joining the current
substitution, and in case of propagation, will build the reason
of the propagation. Moreover, if the undefined literal is still
L (line 12) it means the join must also collect the undefined
literals that match o(B[i]), line 11. At line 14 the propa-
gator iterates with a variable b; the union of the true literals
and eventually undefined literals just collected. When b; is
undefined, u becomes b; (lines 15 - 16). At this point, o is
extended with the variables of the current body literal Bli],
by mapping them to the constants in b; (line 17), similarly
to what was done before with ¢ and [. On the other hand,
when B[i] is negative (line 20) the compiler iterates over a
negative literal of the constraint. In such case, all variables
have a mapping in o (because of safety condition of ASP and
negative literals are at the end of B). The propagator will de-
termine the ground literal b; = o(B[i]). At this point, the
join can continue either if b; is true, or the undefined w is still
1 and b; is undefined (line 22). In the second case, u will be
set to be equal to b;. Once the compiler completes the writ-
ing of the cascade of nested for and if blocks, and it is in
the most nested block, it can write the code that collects the
successful match of the constraint as an additional pair in the
implication list of the propagator (lines 25-29). The literal !
is always part of the reason R (line 25), and the propagator
will also add to R all the true literals in the join (all b;, be-
side b; = u). The complement of u which is a propagated
literal, together with its reason R are added to the implication
list (29). Finally, from line 30 to line 34, the compiler writes
the code that rolls back sigma to its previous state (at the end
of each block), and eventually sets u back to L in case it is
equal to b; and closes the parenthesis of the nested for and if
blocks. In rough terms, the compiler produces that code of a
procedure that is able to find an instantiation of the constraint
with a single undefined literal to be unit propagated.

3.1 Compilation Example

To better understand what the compiler actually prints, in al-
gorithm 5 we provide an example of a generated propagator
for a small constraint. The compiled constraint C' in the ex-
ampleisb(X), c(X,Y), ~ d(X,1). The input of the prop-
agator is an interpretation / and a starting literal [, and the
output is the implication list containing literals to be propa-
gated with their reasons.

First the propagator switches on the predicate name of the
starting literal [ (line 2). There is a case for each predicate
name appearing in C, i.e., “b”, “c” and “d”. For the sake of
readability we present the single case for predicate name “b”
(lines 4-36). The propagator creates the substitution o, where
the variable X is mapped to the first (and only) constant of
[ (lines 4 and 5). Then the literal « is initialized to | and o
is stored in o so that it can be rolled back at each iteration
of the next loop. Subsequently, the propagator collects all the
true atoms of ¢(X,Y"), where X is first replaced by the con-
stant in [ by the application of o, as well as all the undefined
atoms of ¢(X,Y") analogously. Then, the propagator iterates
over true and undefined atoms at line 12, continuing the join.
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Algorithm 3 CompilePropagateConstraintWithStarter

Input : A constraint C, a literal ¢ € C

Output: Prints an algorithm that is able to perform the
unit propagation of C' starting from a ground
literal whose predicate is the same of ¢

«KT = »

1
2 forallthe k = 1,.. ., |trm(c)| do

3 if rrm(c)[k] is variable then

4 L | «o = aU{trm(c)[k] — trm(l)[k]}»

s B = computeBodyOrdering(C, c)

6« 1= L»

7 forallthei =1,...,|B| do

8 «O; = O»

9 if B[i] is positive then

10 «y = {t € I'" | match(o(B[i]), 1) }»
11 «U; = »

12 «if u= 1»

13 « U; = {p € (B\ I)* | match(a(Bl[i]),p) }»
14 «for b; € (T; U U;) {»

15 « ifb; € ( >

16 « U = ()i»

17 forall the k = 1,. .., [trm(B[i])| do

18 if trm(B[i])[k] is variable then

19 L | «o = aU{trm(B[i])[k] — trm(b;)[k]}»
20 else

2 «b; = o(BJi])»

2 «ifb; eIV (u=_LAb € (B\I)){»
23 « ifu=1LAbe(B\I)»

2 « = by»

25« R={l}»

2 forallthei =1,...,|B|do

7| o« R=RU{bi}»
28 « R=R\{u}»

29 « I, =1, U (u, R)»
30 forall thei = |B|,...,1do

31 « 0 =0

R « ifu = by»

33 « u = L»

34 «}»

For each by in T7 U Uy, the propagator checks whether b; is
undefined and eventually updates u, if no undefined has been
found up to now. Then o is extended by the mappings of
X and Y respectively to the first and second constants in by
(lines 16-17). At this point, in line 18, the propagator handles
the negative literal ~d(X, 1), which becomes a ground literal
b after the substitution with o; and the propagator checks
whether bs is the first undefined (and updates u), or by is true
and a complete substitution is found. In these cases the prop-
agator execution would reach the innermost code (from line
24) where it adds a propagation to the output implication list.
In particular, if w = by, by is the propagated literal and the
reason is R U {b2}, otherwise (u = bs), bo is the propagated
literal and the reason is R U {b1 }. At lines 30 to 32 and 33 to
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36, the propagator restores the state of o and eventually the
undefined literal to L and closes a nested code block.

3.2 Implementation

The implementation follows the execution presented in
pseudo-code in algorithms 3 and 4. The compiler has been
implemented in C++, and its output is also C++ code compli-
ant to the WASP propagator interface, and is loaded in the ASP
solver as a C++ dynamic library. Several optimization have
been implemented, some of them discussed in the following.

Nested loops are made efficient by using proper indexes
on terms, for which we use hash-maps to access matching
ground literals. This is possible since the order of evaluation
is fixed and the predicates extensions can be indexed stati-
cally (index terms are known at compilation time). For ex-
ample, if we evaluate : - a(X,Y), b(Y,Z) with a as starter,
we can benefit from indexing the extension of the predicate
b on the first term (variable Y). By using a predicate-wise
split of the interpretation and indexes, we highly optimize the
propagator code related to interpretation access (e.g. lines
10, 13 and 22 of algorithm4). Moreover, even though, in
the compiler pseudo-code, we assumed that there is no rep-
etition of predicates names, we explicitly handle such cases
in the implementation: basically, we detect when the same
undefined literal is used more than once in the same nested
join. The implementation also supports built-in arithmetic
comparisons, and features a heuristic to employ a smart body
ordering (line 5 of Algorithm 3). At the moment aggre-
gates cannot be compiled. The latest release is available at
https://github.com/wasp-eager/wasp-eager together with the
experiments benchmarks.

4 Experiments

In order to empirically assess the impact of the proposed tech-
nique, we considered several benchmarks used in previous
editions of the ASP Competitions [Calimeri er al., 2016] or
proposed in the literature, namely Incremental Scheduling,
Natural Language Processing (NLP) using three different ob-
jective functions (cardinality, coherence and weighted abduc-
tion), Packing, and Partner Units. All benchmarks contain
at least one constraint whose grounding is expensive from a
computational point of view. We used as reference for the
state-of-the-art the traditional ASP system CLINGO [Gebser
et al., 2016] and the lazy-grounding based ASP system AL-
PHA [Weinzierl, 2017]. Tt is important to observe that some
of the encodings include features that are not currently sup-
ported by ALPHA, e.g., weak constraints. For such bench-
marks, the performance of ALPHA is not reported. Moreover,
we included in the comparison the solver WASP [Alviano et
al., 2015] and the version of WASP implementing the lazy
propagator as described in [Cuteri ef al., 2019a] referred to
as WASP-LAZY. In the following, our implementation is re-
ferred to as WASP-EAGER. All versions of WASP use CLINGO
as grounder (executed with the option -output=smodels).
WASP-LAZY and WASP-EAGER compile as lazy and eager
propagators, respectively, all constraints that do not contain
aggregates in the encodings, and therefore such constraints
are not grounded in advance. Note that compilation is done

only once for each benchmark and its running time is negli-
gible (less than 2 seconds). The experiments were run on an
Intel Xeon CPU E7-8880 v4 @ 2.20GHz, time and memory
were limited to 2 hours and 5 GB, respectively.

An overview of the obtained results is given in Table 1: we
report the number of solved instances, N/A indicates that the

Algorithm 4 Ex. of compiling :- b(X), c¢(X,Y), ~ d(X,1)
Input : An interpretation I and a literal [ to propagate
Output: An implication list

1 ;=10

2 switch pred(l) do

3 case “b”

4 o=c¢

5 oc=0cU{X —trm())[1]}

6 u=_1

7 g1 =0

8 Ty = {t € I'T | match(o(c(X,Y),t))}
9 U, =

10 if u = | then

u | U1 ={pe (B\I)" | match(o(c(X,Y),p)}
12 forall the b; € T3 U U; do

13 {

14 if b1 € Uy then

15 L u = by

16 o =ocU{X — trm(b)[1]}

it o =0 U{Y — trm(b1)[2]}

18 by = o(~d(X,1));

19 09 — O

20 ifboeIV(u=_LAby €(B\I))then
21 {

2 ifu=_LAbye (B\I)then
2 | u =Dy

24 R={l};

25 R=RU{b};

26 R=RU{b};

27 R =R\ {u};

28 I :IZU{(E,R)};

29 g = 02,

30 if u = by then

31 L u=_1

32 | }

33 g =01

34 if u = b; then

35 L u=_1

36 |}

37 c;se “c”

38 s // analogous to previous case
39 B break

40 case “d”

a1 R // analogous to previous case
4 B break

43 | return [;
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Problem # ALPHA CLINGO WASP WASP-LAZY WASP-EAGER
Incr. Sched. 50 N/A 33 29 2 36
NLP (card) 50 N/A 42 44 50 50
NLP (coh) 50 N/A 41 44 50 50

NLP (wa) 50 N/A 42 44 50 50

Packing 50 0 0 0 0 35

Part. Units 47 0 5 0 0 10
Total 297 0 160 158 152 231

Table 1: Number of solved instances for each benchmark.

solver does not support the encoding of the benchmark. As
a first comment, it is possible to observe that WASP-EAGER
outperforms all other tested systems, solving 71, 73, and 79
more instances than CLINGO, WASP, and WASP-LAZY, re-
spectively. Interestingly, WASP-EAGER outperforms the tra-
ditional systems CLINGO and WASP in all benchmarks. In
particular, we observe that CLASP and WASP often exceed the
memory limit in many of the unsolved instances due to the
large number of constraints produced during the grounding
step, whereas WASP-EAGER does not instantiate such con-
straints. This is particularly evident in Packing, where no
instance can be grounded within the allotted memory limit
and therefore the solving step of CLINGO and WASP does not
even start. Concerning WASP-LAZY, we observe that it is
competitive with WASP-EAGER only on NLP as shown also
in [Cuteri et al., 2017]. This behavior can be explained by
the fact that WASP-LAZY lazily instantiates the problematic
constraints whenever they are violated by a stable model can-
didate. In NLP, WASP-LAZY performs a small number of fail-
ing stable model checks (on average less than 100 checks are
required). Instead, in other problems, each stable model con-
tains many violations of constraints, leading the solver to in-
efficient search in harder instances. Finally, we report that
ALPHA solves no instance within the allotted time and mem-
ory. However, ALPHA exceeds the time limit in 22 out of 47
Packing instances, where as CLINGO and WASP exceed the
memory limit for all unsolved instances. This confirms that
lazy grounding systems, like ALPHA, can use less memory
than ground&solve systems, even if in this benchmark AL-
PHA is not competitive with WASP-EAGER.

Concerning solving times, we show aggregated results in
the cactus plot of Figure 1. We recall that in a cactus plot a
line is reported for each combination of tested system; where
instances are ordered by solving time and a point (i, 7) in the
graph represents that the ¢-th instance is solved in j seconds.
It is possible to observe that WASP-EAGER can solve the ma-
jority of the instances (217 out of 231) within 1200 seconds
and it in general scales better than all other tested systems,
solving more instances with lower running times.

5 Related Work

Traditional ASP systems, like CLINGO [Gebser et al.,
2016] and DLV [Alviano et al., 2017], are based on the
ground&solve approach. Grounding is performed using
semi-naive database evaluation techniques [Ullman, 1988]
for avoiding duplicate work during grounding, whereas
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Figure 1: Comparison of all tested systems.

solvers are nowadays based on the CDCL algorithm [Kauf-
mann et al., 2016]. These approaches intrinsically suffer from
the grounding bottleneck. The only alternative to the tra-
ditional approach working on plain ASP is lazy grounding,
as implemented by GASP [Dal Palu et al., 20091, ASPERIX
[Lefevre et al., 2017], and ALPHA [Weinzierl, 2017]. In lazy
grounding a rule is instantiated only when its body is satisfied
in the current assignment of the search process.

Our approach extends traditional systems to avoid the
grounding bottleneck due to constraints, and can be viewed as
a hybrid solution between traditional and lazy grounding sys-
tems. Indeed, given a non-ground input program II and a set
of constraints C' C II, it uses the ground&solve approach on
IT\ C, whereas constraints in C' are not instantiated but sim-
ulated by propagators automatically integrated in the CDCL.
An important difference with lazy grounding is that in our
approach the problematic constrains are never instantiated.

Our strategy is similar in principle with the lazy ap-
proach presented in [Cuteri et al., 2019al. However, con-
straints in C' are not compiled into propagators but they
are instantiated when they are violated by a stable model
of IT \ C. Moreover, the lazy approach works only on to-
tal interpretations, whereas our propagator-based approach
works also on partial interpretations. This has a huge im-
pact on the performance as shown in [Cuteri et al., 2017]
and in our experiments. Notably, our approach needs no
language extension as CASP [Balduccini and Lierler, 2017,
Ostrowski and Schaub, 2012], ASPMT [Bartholomew and
Lee, 2014] and DLVHEX [Red], 2016].

6 Conclusion

In this paper, we presented a novel approach for the automatic
compilation of constraints into propagators and we imple-
mented it on top of the ASP solver WASP. The performance of
our tool has been empirically validated on benchmarks whose
evaluation was not feasible due to the combinatorial blow-
up of the grounding of some constraints. Results show that
our solution outperforms state-of-the-art systems on bench-
marks modeling AI problems. Concerning future work, we
plan to extend our implementation for supporting also other
ASP constructs, such as aggregates.
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