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Abstract
Bayesian neural networks (BNNs) have received
more and more attention because they are capable
of modeling epistemic uncertainty which is hard for
conventional neural networks. Markov chain Monte
Carlo (MCMC) methods and variational inference
(VI) are two mainstream methods for Bayesian deep
learning. The former is effective but its storage cost
is prohibitive since it has to save many samples of
neural network parameters. The latter method is
more time and space efficient, however the approx-
imate variational posterior limits its performance.
In this paper, we aim to combine the advantages
of above two methods by distilling MCMC sam-
ples into an approximate variational posterior. On
the basis of an existing distillation technique we
first propose variational Bayesian dark knowledge
method. Moreover, we propose Bayesian dark prior
knowledge, a novel distillation method which con-
siders MCMC posterior as the prior of a variational
BNN. Two proposed methods both not only can re-
duce the space overhead of the teacher model so that
are scalable, but also maintain a distilled posterior
distribution capable of modeling epistemic uncer-
tainty. Experimental results manifest our methods
outperform existing distillation method in terms of
predictive accuracy and uncertainty modeling.

1 Introduction
In the past few years, deep learning has achieved great success
in many fields. However, deep neural networks (DNNs) also
have some drawbacks. DNNs typically need large labeled
datasets to prevent overfitting so are incapable in scarce data
scenarios. Moreover, a more serious problem is DNNs typi-
cally give overconfident predictive distribution even for the
out of distribution (OOD) data they have not seen before [Gal,
2016] and are poorly calibrated [Guo et al., 2017]. For exam-
ple, a high softmax probability does not mean high confidence
in classification. In some scenarios related to human safety,
such as autonomous vehicles and automated disease detection
systems, knowing what the model does not know is crucial to
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preventing undesirable behaviour. To meet this requirement,
we can resort to epistemic uncertainty, which accounts for un-
certainty in the model parameters and can be explained away
given enough data [Kendall and Gal, 2017]. In addition, there
are many machine learning applications which rely on epis-
temic uncertainty to make decision, such as active learning
and deep reinforcement learning [Gal, 2016; Gal et al., 2017;
Depeweg et al., 2017].

Bayesian inference is a principled approach to tackle the
aforementioned overfitting and overconfidence problem in
DNNs. In Bayesian deep learning (BDL) framework, we place
a prior over DNNs’ weights and infer a posterior distribution
over the weights given some data. This type of model is called
as Bayesian neural networks (BNNs) [MacKay, 1992; Hinton
and van Camp, 1993; Neal, 1995]. During test, we obtain
prediction distribution by marginalizing over the posterior
distribution. The uncertainty of parameters, i.e. epistemic
uncertainty results in reasonable uncertainty about prediction.

Recently, with the popularity of deep learning, BNNs
have witnessed a revival. Markov Chain Monte Carlo
(MCMC) [Welling and Teh, 2011; Chen et al., 2014; Ding
et al., 2014] and variational inference (VI) [Graves, 2011;
Blundell et al., 2015; Louizos and Welling, 2016; Louizos
and Welling, 2017] are two most general methods for modern
BNNs inference. In the limit of time, MCMC methods can
generate samples from the true posterior asymptotically and
thus make more accurate prediction. The main drawback of
MCMC methods is the prohibitive storage cost. Since the
posterior distribution is represented by samples of DNN pa-
rameters, we have to save thousands of or even more samples.
For modern DNNs which generally have millions or ten mil-
lions of parameters this approach may be not feasible. In
addition, during test, the time cost is also high because we
should evaluate the model one pass for each sample. In con-
trast, VI methods are more time and space efficient but the
gap between the approximate posterior and the true posterior
degenerates the model performance.

Hinton et al. [2014] have proposed “distillation” training
framework which aims to transfer the knowledge from a cum-
bersome model into a small model which is easier to deploy.
This idea has already been adapted to compress MCMC-based
BNNs. Bayesian Dark Knowledge (BDK) [Balan et al., 2015]
method trains a non-Bayesian student DNN to distill a teacher
BNN which is trained with Stochastic Gradient Langevin Dy-
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namics (SGLD) [Welling and Teh, 2011], a typical MCMC
method for BDL, as the original distillation paper does. How-
ever, the student network is not a BNN so that it loses the
ability of teacher to model epistemic uncertainty as there is no
posterior distribution representing the uncertainty of weights.
It is a non-trivial drawback as epistemic uncertainty estimation
is an important feature of BNNs as above discussed.

To overcome this issue, Wang et al. [2018] have proposed
another method, called Adversarial Posterior Distillation
(APD) with Generative Adversarial Networks (GANs) [Good-
fellow et al., 2014]. They exploit a GAN to directly distill
the SGLD samples into a generator. After training, the gen-
erator is expected to produce samples from SGLD posterior
approximately. It should be noted that APD method has a fatal
disadvantage that as the output dimension of generator and
the input dimension of discriminator are just the number of
the weights in BNNs, with the hidden size set to 100 [Wang
et al., 2018], the number of parameters of the whole model is
two hundred times that of the BNN. The prohibitive storage
cost problem of MCMC methods still exists thus limits its
scalability. Hence we think it is the main drawback of APD as
it partially loses the essential feature of distillation.

In this paper we propose a new distillation framework for
BDL to tackle the drawbacks of BDK and APD simultaneously.
Overall speaking, in our distillation framework, the teacher
network is a BNN trained by a MCMC sampler while the stu-
dent network is also a BNN with the same size as teacher but
is optimized with variational learning. The motivation of such
a design is three-fold: Firstly, as MCMC methods always lead
to accurate posterior approximation, we intend to transfer the
knowledge hidden in the MCMC samples into small models to
get rid of its prohibitive storage cost. Secondly, to enable the
student network to model epistemic uncertainty, BNNs with
an posterior distribution are more appealing than DNNs with
point estimate. Thirdly, training a BNN with variational infer-
ence can only need storage overhead that is several times the
number of network weights, which guarantees the scalability.

Our contributions are as follows: Firstly, to save the storage
overhead of MCMC for BDL, we make the first attempt to
combine VI and MCMC techniques for BDL by distilling the
knowledge in MCMC samples into a variational BNN, from
which we can still draw samples for epistemic uncertainty
prediction. Secondly, we propose variational Bayesian dark
knowledge method on the basis of BDK, as well as a novel
distillation method, named Bayesian dark prior knowledge,
which treats the knowledge in the teacher as prior to constrain
the variational objective of the student. Finally, experimental
results show that proposed methods are scalable and perform
better on both predictive accuracy and uncertainty modeling
than existing distillation methods.

2 Preliminaries: Bayesian Neural Networks
In BNNs, the network weights w are considered as random
variables. Given the training data D = {(xn,yn)}Nn=1, we
need to calculate the posterior distribution of weights with
Bayes rule:

p(w|D) =
p(D|w)p(w)

p(D)
=

p(D|w)p(w)∫
p(D|w)p(w)dw

(1)

where the first term in the numerator p(D|w) =∏N
n=1 p(yn|xn,w) is the likelihood and the second term rep-

resents the prior on the weights. To test an unseen data
x̂, the predictive distribution of the label ŷ is given by
p(ŷ|x̂) = Ep(w|D)[p(ŷ|x̂,w)]. The uncertainty of weights
due to the posterior distribution allows us to model uncertainty
about data samples. However, the Eq (1) is intractable because
of the high-dimensional integral in the denominator, so we
have to resort to approximate methods.

2.1 VI for Bayesian Neural Networks
Variational Bayes is a general approximate method to infer-
ence and learning in Bayesian models. For BNNs, VI finds
a variational approximation to the Bayesian posterior distri-
bution on the weights [Hinton and van Camp, 1993]. Given
a parametric variational posterior q(w|θ) with parameters θ,
VI minimizes the Kullback-Leibler (KL) divergence between
q(w|θ) and p(w|D):

‘
θ? = arg min

θ
KL[q(w|θ)‖p(w|D)]

= arg min
θ

(−Eq(w|θ)[log p(D|w)] + KL[q(w|θ)‖p(w)])

(2)
The final cost function is known as negative evidence lower

bound (ELBO). Bayes by Backprop (BBB) [Blundell et al.,
2015] is a simple but efficient VI method for BDL. By using
reparametrization trick [Kingma and Welling, 2014] BBB can
make unbiased Monte Carlo gradient estimator for the first
term in the negative ELBO:

Eq(w|θ)[log p(D|w)] = Ep(ε)[log p(D|f(θ, ε))]. (3)

BBB further supposes that q(w|θ) is a diagonal Gaussian
distribution and each weight wi is parametrized by a mean µi
and a standard deviation σi which can be reparametrized by:

wi = f(θ, εi) = µi + σi � εi, εi ∼ N (0, 1) (4)

with the standard Gaussian prior, the second KL term in the
negative ELBO can be computed analytically:

KL[q(w|θ)‖p(w)] =
1

2

∑
i

(σ2
i + µ2

i − log σ2
i − 1) (5)

2.2 Stochastic Gradient Langevin Dynamics
SGLD [Welling and Teh, 2011] is a stochastic gradient MCMC
method for scalable Bayesian learning. By injecting a noise
into stochastic gradient descent (SGD) update, the algorithm
can simulate samples from the posterior using Langevin dy-
namics in an MCMC manner. With theoretical guarantee, the
SGLD update can be conducted in a mini-batch manner:

∆wt =
ηt
2

(
∇ log p (wt) +

N

M

M∑
i=1

∇ log p (yti |xti ,wt)

)
+ zt zt ∼ N (0, ηtI)

(6)
where M is the mini-batch size and N is the training data size.
t indexes the mini-batch iterations with gradient step size ηt. If
we use the standard Gaussian prior, the SGLD update is just the
SGD update for a L2 regularized neural network with added
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Gaussian noise zt. SGLD represents the posterior distribution
by Monte Carlo samples: qSGLD(w) = 1

S

∑S
s=1 δ (w −ws)

where S is the number of samples, instead of a parametric
model. At test time, p(ŷ|x̂) = 1

S

∑S
s=1 p(ŷ|x̂,ws). Such an

approximation results in S times storage cost. It is easy to
become infeasible for DNNs with millions of parameters.

3 Methods
In our methods, we regard MCMC sampler as a teacher model
T and distill the knowledge in it into a student variatioanl
BNN S. Compared to the DNN student of BDK [Balan
et al., 2015], our BNN student possesses a posterior dis-
tribution and is therefore suitable for model epistemic un-
certainty. We employ SGLD to draw MCMC samples for
distillation following previous works [Balan et al., 2015;
Wang et al., 2018] and choose BBB [Blundell et al., 2015]
to train student S for the sake of the low storage overhead
and easy implementation. Our framework is also compatible
with extensions to SGLD and more sophisticated VI meth-
ods. We first adapt the negative ELBO in Eq (2) to mini-batch
optimization for student S with reparameterization trick:

L(θ|M) =− 1

M

∑
(x,y)∈M

Ep(ε)[log p(y|x, f(θ, ε))]

+
1

N
KL[q(w|θ)‖p(w)]

(7)

where M is the size of mini-batchM and N is the training
data size. Two proposed methods introduce the knowledge
from teacher through two terms in Eq (7) respectively.

3.1 Variational Bayesian Dark Knowledge
BDK method trains the student S to approximate the predic-
tive distribution of the teacher T and thus the objective is
KL[T (y|x)‖S(y|x, θ)] = −ET (y|x) logS(y|x, θ) + const.
In practice, BDK conducts online learning and the predic-
tive distribution is approximately computed by a single pos-
terior sample of SGLD, i.e. T (y|x) ≈ p(y|x,w′),w′ ∼
qSGLD(w). Inspired by this objective, we replace the likeli-
hood term with an expected KL term:

Ep(ε)
[
KL[T (y|x)‖p(y|x, f(θ, ε))]

]
= −Ep(ε)[Ep(y|x,wt) log p(y|x, f(θ, ε))] + const

(8)

For classification, the inner expectation can be seen as the
cross-entropy loss with the soft label ŷ ∼ p(y|x,w′), the soft-
max distribution predicted by the teacher. For simplicity we
denote Ep(y|x,w′) log p(y|x, f(θ, ε)) by log p(ŷ|x, f(θ, ε)).
Therefore, we obtain an objective conditioned on an SGLD
sample for training student:

L′(θ|M′,w′) =− 1

M

∑
x∈M′

Ep(ε)[log p(ŷ|x, f(θ, ε))]

1

N
KL[q(w|θ)‖p(w)]

(9)

Compared to standard ELBO in Eq (7), the new variational
objective only replaces gold one-hot label with soft label pre-
dicted by the teacher. Therefore we obtain a simple and princi-
pled method for training student BNNs by extending original

BDK method. In order to avoid confusion with BDK, we
name this method Variational BDK (V-BDK).

During training, at iteration t we sample a mini-batch
M = {(xti ,yti)}Mi=1 to obtain a single SGLD sample wt.
To make student generalize better, we generate new data {x′ti}
“near” the training data {xti} by adding slight noise [Hinton
et al., 2014]. The labels of new data are softmax distributions
predicted by the teacher. We optimize student with the noisy
mini-batch and the objective is the revised negative ELBO
L′(θ|M′,wt) in Eq (9). As V-BDK is an online learning al-
gorithm like BDK, we only need to save one SGLD sample
which is space efficient.

3.2 Bayesian Dark Prior Knowledge
Since the teacher and student are both a BNN in our frame-
work, we can carry out the distillation process by matching
two posterior distributions qSGLD(w) and q(w|θ) directly
instead of matching their prediction distributions. A natural
idea is considering teacher’s posterior as the student’s prior to
regularize the variational objective in Eq (7). To make the KL
term easy to compute, we assume that the qSGLD(w) is also
a diagonal Gaussian distribution and then have:

KL[q(w|θ)‖qSGLD(w)] ≈ 1

2

∑
i

(
σ2
i + (µi − µ̂i)2

σ̂2
i

− log
σ2
i

σ̂2
i

−1)

(10)

where µ̂i and σ̂i is the mean and standard deviation of weight
wi. Such approximation about qSGLD(w) leads to computa-
tional simplicity of µ̂i and σ̂i incremental update:

µ̂ti ←
(t− 1)µ̂t−1i + wti

t

σ̂ti ←
( (t− 1)[(σ̂t−1i )2 + (µ̂t−1i − µ̂ti)2] + (wti − µ̂ti)2

t

) 1
2

(11)

where the superscript t indexes the mini-batch iteration and
wt = {wti} is the MCMC sample in current iteration. The
update only depends on the two statistics in history and the
last MCMC sample, therefore is suitable for online learning.
We only need extra storage cost twice the number of net-
work weights. We name this algorithm Bayesian Dark Prior
Knowledge (BDPK) to distinguish it from BDK in terms of
the distillation way. See Algorithm 1 for the full V-BDK and
BDPK algorithms.

A baseline for BDPK is to directly approximate q(w|θ)
with qSGLD(w), i.e. µi = µ̂i, σi = σ̂i. In fact, Pawlowski et
al. [2017] have exploited this idea for outlier detection. We
call this method EVBE (Efficient Variational Bayesian neural
network Ensemble) for short and compare it with proposed
methods. Although it seems that BDPK has a similar idea with
EVBE as they both compute the empirical first and second
moments of MCMC posterior to approximate a variational
posterior, we treat the MCMC posterior as the prior in a varia-
tional inference framework, which is essentially novel. As the
variational posterior in EVBE cannot learn from data directly,
when the posterior is complex and the diagonal Gaussian ap-
proximation is inaccurate, it potentially degenerates. However,
BDPK only treats the diagonal Gaussian as a regularization
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Algorithm 1: Two Proposed Distillation Methods
Input: training set D = {(xn,yn)}Nn=1, mini-batch size M ,

number of iterations T , teacher learning rate ηt,
student learning rate ρt, student optimizer opt,
distillation methods method

1 Initialize teacher’s parameters w0, student’s parameters θ0
2 if method is “BDPK” then
3 Set {µ̂0

i } = 0 and {σ̂0
i } = 0

4 for t = 1 : T do
5 // train teacher T (SGLD step)
6 Sample a mini-batchM = {(xti ,yti)}Mi=1 from D
7 Compute ∆wt according to Eq (6) and run SGLD

update: wt := wt−1 + ∆wt

8 // train student S (Distilling step)
9 if method is “V-BDK” then

10 Sample a mini-batch of new inputM′ = {x′ti} by
adding noise to {xti}

11 Calculate student’s negative ELBO L′(θ|M′,wt)
using Eq (9) with reparameterization sampling in
Eq (4) and KL term in Eq (5)

12 Update student’s parameters:
θt := θt−1 + opt(∇θL′(θ|M′,wt), ρt)

13 if method is “BDPK” then
14 Update {µ̂ti} and {σ̂ti} with Eq (11)
15 Calculate student’s negative ELBO L(θ|M) using

Eq (7) with reparameterization sampling in Eq (4)
and KL term in Eq (10)

16 Update student’s parameters:
θt := θt−1 + opt(∇θL(θ|M), ρt)

and can learn from data through likelihood term, it is relatively
immune to inaccurate diagonal approximation. Empirical re-
sults will show the superiority of BDPK over EVBE.

Clipping Standard Deviation of Prior
In preliminary experiments, we found the training is easy to
fail due to too large KL term. In fact, according to Eq (10),
this phenomenon result from some extremely small σ̂i. We
avoid this problem by clipping σ̂i with a threshold γ when
calculating KL term: σ̂i := max(σ̂i, γ). We regard γ as a
hyperparameter and tune it with validation data.

3.3 Discussion
As mentioned above, BDK [Balan et al., 2015] method can
hardly model epistemic uncertainty as the student is a de-
terministic neural network. Although the training objective
allows the student to simulate the uncertainty of the predic-
tions given by the MCMC samples in an implicit manner, it is
not applicable for scenarios where epistemic uncertainty is re-
quiredIn fact, there are some uncertainty metrics which explic-
itly need the epistemic uncertainty, such as predictive variance
for regression [Gal and Ghahramani, 2016b] and Bayesian Ac-
tive Learning by Disagreement objective (BALD) [Houlsby et
al., 2011] for classification. These metrics regard the disagree-
ment between predictions given by different weight samples as
uncertainty. The essential advantage of proposed methods is
the ability to model epistemic uncertainty compared to BDK.

For the similar purpose with us, APD [Wang et al., 2018]

method also matches teacher’s and student’s posterior distribu-
tions but using adversarial training [Goodfellow et al., 2014].
However, as stated in that paper, the number of parameters of
the generator and discriminator are both 100 times that of the
BNN to be distilled. In addition, due to the GAN training in
each mini-batch, even the online version of APD needs to save
a batch of SGLD samples. Because of the above two factors,
APD method does not really solve the prohibitive storage cost
problem of MCMC methods, which is the main purpose of
distilling MCMC methods. In fact, the BNNs to be distilled
have only about 500k parameters in Wang et al. [2018]. In
contrast, the storage space of both two methods we propose is
only a few times the number of weights of the BNN, thus our
methods are much more scalable than APD.

4 Experiments
To demonstrate the effectiveness of our methods, we conduct
experiments on several datasets, including MNIST, SVHN
and CIFAR10. Besides reporting classification accuracy, we
show a series of evaluations of uncertainty prediction, includ-
ing the uncertainty on OOD datasets as well as adversarial
examples, calibration results and the active learning appli-
cation. The compared baselines include a DNN trained by
SGD, BNNs trained by two BDL methods: SGLD & BBB,
EVBE [Pawlowski et al., 2017] baseline and two previous
distillation methods: BDK [Balan et al., 2015] & APD [Wang
et al., 2018]. In all experiments, we use 1 posterior sample
during training and 100 posterior samples during test when
BBB is employed. We use all SGLD (namely SGLD-all) sam-
ples during training to evalute predictive performance which
reflects the upper bound of distillation models. Considering
that saving and using all SGLD samples are not practical for
downstream applications, we use 100 SGLD samples sampled
from the end of training as another baseline, namely SGLD-
100. Please note SGLD-100 can be regarded as a simple
practical approximation of SGLD-all because it gets rid of
the prohibitive storage cost. An effective distillation method
should outperform it by a remarkable margin.

For MNIST, we select 10k training data for validation. We
use a 2 layer MLP with 400 hidden units and ReLU activa-
tions as in previous work [Blundell et al., 2015; Balan et al.,
2015] and treat notMNIST as OOD data following [Louizos
and Welling, 2017]. This model has about 500k parameters.
For SVHN and CIFAR10, we train the model on the first 5
classes (called SVHN5 and CIFAR5) and the data in the other
5 classes are considered as OOD data. We further select 10%
data from training set for validation. We employ the larger
LeNet architecture following Gal and Ghahramani [2016a]
and Louizos and Welling [2017] and the model has about
5.74M parameters. We reimplement APD method but find
that to make the model fit in an NVIDIA 1080Ti GPU with
11G memory, the hidden size can only be about 30 so that the
accuracy of distilled model is always below 30%. Therefore
we will not include APD for these two datasets and we argue
that this phenomenon verifies the poor scalability of APD.

4.1 Predictive Performance
Table 1 shows classification accuracy of each model on three
datasets. SGLD-all performs best with the ensemble predictive
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MNIST SVHN5 CIFAR5
Methods Accuracy(%) OOD Entropy(Bits) Accuracy(%) OOD Entropy(Bits) Accuracy(%) OOD Entropy(Bits)

SGD 98.338±0.025 0.010±0.005 92.488±0.097 0.159±0.005 73.704±0.141 0.269±0.028
BBB 97.962±0.042 1.088±0.077 93.576±0.050 0.302±0.004 77.692±0.193 0.381±0.030

SGLD-all 98.702±0.012 1.155±0.035 94.220±0.036 0.532±0.004 78.782±0.312 0.600±0.001
SGLD-100 98.292±0.049 0.335±0.030 93.660±0.035 0.260±0.004 76.576±0.111 0.273±0.004

BDK 98.254±0.019 0.296±0.005 93.338±0.071 0.241±0.016 76.784±0.204 0.301±0.004
EVBE 98.466±0.025 1.310±0.016 83.204±0.452 1.251±0.008 44.524±0.380 1.318±0.010

APD-offline∗ 98.232±0.016 – – – – –
APD-online 97.954±0.029 0.662±0.065 – – – –

V-BDK (Proposed) 98.502±0.030 0.532±0.008 93.816±0.053 0.346±0.019 78.572±0.196 0.401±0.015
BDPK (Proposed) 98.630±0.025 0.908±0.020 93.746±0.050 0.379±0.024 78.208±0.108 0.513±0.025

Table 1: Test accuracy on three datasets and the average entropy on corresponding OOD datasets. We report the mean and standard error over 5
runs. ∗ indicates it is not our own implementation therefore without entropy.

Figure 1: Empirical CDF for the entropy of the predictive distributions on three OOD datasets.

distribution from several thousand samples as expected. Both
of our methods can consistently improve student BBB’s per-
formance and outperform other distillation methods, i.e. BDK
and APD. Especially, sometimes our methods can achieve
almost the same accuracy as SGLD-all, such as BDPK on
MNIST and V-BDK on CIFAR5, with only 100 posterior sam-
ples. It is worthy noted V-BDK and BDPK are both better
than SGLD-100 with the same number of posterior samples
during test while BDK and APD are only comparable with
or even worse than SGLD-100. For BDK, we do not have
access to the original implementation and our implementation
is even worse than SGD on MNIST although we try our best
to tune hyperparameters. However, it indeed works better
than SGD on SVHN5 and CIFAR5. For APD, with a larger
thinning interval, we get a slightly better result 98.23% for
offline APD than 98.1% which is reported in [Wang et al.,
2018] while our implementation of online APD performs a
little worse. However, APD is not applicable to large network
as discussed above. In summary, our methods are much more
successful in achieving the purpose of distillation than BDK
and APD. EVBE has a similar performance with our methods
on MNIST, while it degrades sharply on the other two datasets,
which attributes to the complexity of the posterior and the
inaccuracies of diagonal Gaussian approximation when the
DNN is large. Although for the same reason BDPK works
on SVHN5 and CIFAR5 not as well as on MNIST, it can still
succeed in distilling knowledge, which means it is valuable to
treat the MCMC posterior as the prior of variational BNNs.

4.2 Uncertainty on OOD Datasets
We estimate the uncertainty by calculating the entropy of the
predictive distributions on OOD data for each model. The

ideal predictive distribution is uniform. The entropy of the
predictive distribution is used to measure the uncertainty. We
plot the empirical CDF of the entropies in Figure 1 follow-
ing Louizos and Welling [2017] and list the average entropy
over notMNIST in Table 1. CDF curves that are closer to the
bottom right part of the plot are better. We plot the results of
the average entropy in the middle of the five runs in Figure 1.
For SGLD, we plot both SGLD-all and SGLD-100.

As expected, SGD gives the lowest entropy which confirms
conventional DNNs are prone to be overconfident and not good
at modeling uncertainty. SGLD-all still performs best so that
it is meaningful to distill from it. Among distillation methods,
BDK performs worst and is only on par with or even a little
worse than SGLD-100. It seems that in terms of uncertainty
modeling, BDK has little practical value. Conversely, V-BDK,
BDPK perform much better than SGLD-100. We argue that
it is necessary to maintain a posterior distribution for student
to model uncertainty well. In particular, BDPK outperforms
V-BDK by a big margin which shows this novel distillation
method is promising for BDL.

It is worthy noticed that on SVHN5 and CIFAR5, BBB does
not perform as well as on notMNIST and is outperformed by
V-BDK and BDPK. We think such results manifest the ability
of our methods to model uncertainty is transferred from SGLD,
rather than the inherent property of student BBB networks.

4.3 Performance on Adversarial Examples
We also measure the robustness and predictive uncertainty
of models against adversarial examples, which are produced
by taking some existing data and applying a small perturba-
tion to cause misclassification [Szegedy et al., 2014]. We
generate adversarial examples for each trained model using
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Figure 2: Accuracy (solid) vs entropy (dashed) as a function of the adversarial
perturbation on MNIST (left) and SVHN5 (right).

Figure 3: ECE on two datasets over 5 runs. Lower
is better.

Figure 4: MNIST test accuracy as a function of number of acquired
images from the pool set. The final accuracies are in parentheses.

fast gradient sign method (FGSM) [Goodfellow et al., 2015]
and Cleverhans library [Goodfellow et al., 2016] on each test
set. We plot the accuracy and percentage of average entropy
relative to the maximum entropy under different magnitude of
adversarial perturbation in Figure 2. Results on CIFAR5 are
similiar with on SVHN5 and we do not plot due to space limit.
For practical reasons, we only plot the results of SGLD-100.

On MNIST, the accuracy of each model drops rapidly apart
from SGLD and BDPK. We check the gradient w.r.t input data
and find there is less than 3% of the dimension of gradient
non-zero in both models which causes most of the adversarial
perturbation produced by FGSM to be zero. BDPK amazes
us since it makes the student learn to resist the adversarial
examples from SGLD successfully. As for uncertainty, only
BBB predicts well. It is reasonable for SGLD and BDPK to
produce extremely low entropies as the adversarial examples
are almost the same as original test data.

On the other two datasets. apart from SGLD can still resist
the adversarial perturbation, the performances of other models
are close to 0. BDPK fails to learn to resist the adversarial
examples from SGLD. We hypothesis that due to the higher di-
mension and complexity of data, fully factorized approximate
prior is not capable of transferring this characteristic from the
teacher to the student. Nevertheless, our methods are both less
overconfident about the adversarial example than BDK.

4.4 Calibration Results
For classification models, calibration measures the discrepancy
between prediction confidence and accuracy. A well-calibrated
model can give reasonable confidence about prediction. Ex-
pected Calibration Error (ECE) is a common metric to evaluate

the calibration [Guo et al., 2017]. To measure the prediction
uncertainty further, we report ECE on SVHN5 and CIFAR5
in Figure 3. On MNIST all methods obtain a very low ECE
(<0.03) thus we do not display it due to space limit. Fig-
ure 3 shows DNN trained by SGD suffers from miscalibration
while Bayesian methods, SGLD-all and BBB, are both well-
calibrated. V-BDK and BDPK have much better calibration
than BDK, which is on par with SGLD-100 again.

4.5 Active Learning
The performance of active learning (AL) systems heavily de-
pends on the predictive uncertainty over unseen data. Recently
BNNs have achieve good performance for AL [Gal et al., 2017;
Siddhant and Lipton, 2018] attributed to epistemic uncertainty.
We conduct AL experiment on MNIST to demonstrate the
superiority of our methods to predict uncertainty compared to
BDK. For BNNs, acquisition function is selected as BALD
which can exploit epistemic uncertainty and BDK uses Max
Entropy as acquisition function. We select randomly a bal-
anced initial training set of 20 images from MNIST training
set and the rest of data form a pool set. At each iteration we
choose 10 images from pool set with the highest predictive un-
certainty given by models and add them with labels in training
set. We repeat the acquisition process until the training set has
1000 images. We repeat each experiments 3 times and plot
the averaged final results as well as the standard deviation in
Figure 4. Our methods both outperform BDK and achieve a
similar final accuracy with SGLD.

5 Conclusions
In this paper, based on the idea that distilling MCMC sam-
ples into an approximate variational posterior, we propose
two novel distillation methods for variational learning of stu-
dent BNNs. Our methods tackle the prohibitive storage cost
problem of MCMC methods, which is the essential feature
of distillation, meanwhile the student maintains the ability of
teacher to model epistemic uncertainty. Compared to existing
distillation methods, proposed methods have better perfor-
mance on classification accuracy and predictive uncertainty.
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