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Abstract
The performance of clustering depends on an ap-
propriately defined similarity between two items.
When the similarity is measured based on human
perception, human workers are often employed to
estimate a similarity score between items in or-
der to support clustering, leading to a procedure
called crowdsourced clustering. Assuming a mon-
etary reward is paid to a worker for each similarity
score and assuming the similarities between pairs
and workers’ reliability have a large diversity, when
the budget is limited, it is critical to wisely assign
pairs of items to different workers to optimize the
clustering result. We model this budget allocation
problem as a Markov decision process where item
pairs are dynamically assigned to workers based
on the historical similarity scores they provided.
We propose an optimistic knowledge gradient pol-
icy where the assignment of items in each stage is
based on the minimum-weight K-cut defined on
a similarity graph. We provide simulation studies
and real data analysis to demonstrate the perfor-
mance of the proposed method.

1 Introduction
Clustering is one of the most important tasks in unsupervised
machine learning with a wide range of applications. The goal
of clustering is to group similar items together based on an ap-
propriately chosen similarity or dissimilarity (distance) mea-
sure between pairs of items. Popular clustering methods in-
clude connectivity-based clustering [Nocetti et al., 2003],
centroid-based clustering [Zhong, 2005] and distribution-
based clustering [Xu et al., 1998]. When each item can
be represented by a feature vector, a common practice is to
define a similarity/dissimilarity measure (e.g., cosine similar-
ity or Euclidean distance) between pairs of items based on
their feature vectors. However, there exist many scenarios
where such feature vectors either are difficult to construct or
do not well reflect the similarity between items, especially
when the similarity needs to be consistent with human’s per-
ception, e.g., the similarity between paintings, songs, and
videos. In order to facilitate clustering tasks under these sit-
uations, human workers are often employed to exam pairs of

items and manually determine whether each pair is similar
or not. The clustering procedure based on human-provided
similarity judgment is called crowdsourced clustering.

Crowdsourcing is an effective approach to integrate hu-
man’s intelligence by decomposing a main task (e.g. clus-
tering) into many micro tasks (e.g. measuring similarity be-
tween pairs) which can be completed by online workers in
parallel. Crowdsourcing has been successfully utilized in var-
ious tasks, such as clustering [Mazumdar and Saha, 2016;
Luo et al., 2018], classification [Tran-Thanh et al., 2013;
Bragg et al., 2013], ranking [Chen et al., 2013] and entity
resolution [Whang et al., 2013; Vesdapunt et al., 2014].

In spite of its popularity, the information collected from
crowdsourcing can be very noisy because of the different
backgrounds of the workers, especially when each micro task
requires a worker’s subjective decision, e.g., when a worker is
asked to judge whether two pictures are similar or not. More-
over, information provided by careless or unreliable workers
will also have a low quality. Hence, a common strategy in
crowdsourcing is to assign the same micro task to multiple
workers, hoping that the majority of workers are reliable and
different opinions can be integrated into a correct final con-
clusion, e.g. by majority vote (see, e.g., [Tao et al., 2019;
Zhang and Wu, 2018]). However, this strategy significantly
increases the cost of crowdsourcing since a worker will re-
ceive a monetary reward for each completed micro task.
When the owner of the tasks has only a small amount of bud-
get, it is important to dynamically allocate the budget over
micro tasks and workers such that the budget will shift to-
wards more challenging micro tasks and more reliable work-
ers, maximizing the quality of the final output before the
budget runs out. This problem is called the budget allo-
cation problem in crowdsourcing. A few budget allocation
strategies have been developed for classification and ranking
in crowdsourcing [Karger et al., 2011; Chen et al., 2015;
Chen et al., 2016].

In the setting of the crowdsourced clustering problem, a
micro task requires a worker to assign a binary label to each
pair of items, indicating if they are similar or not. In this
case, the two key factors affecting budget allocation are (1)
the similarity between each pair of items and (2) the relia-
bility of each worker. For a pair of highly similar/dissimilar
items, the labels provided by workers are consistent and the
true similarity can be easily estimated with a little budget.
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On the contrary, when the similarity is ambiguous, the la-
bels become inconsistent and thus more workers’ opinions
are needed. However, these two factors are unknown initially
and can only be estimated after collecting some labels from
workers. This motivates us to develop a multi-stage budget
allocation strategy where these two factors are dynamically
estimated based on the labels collected in earlier stages and
used to guide the budget allocation in the remaining stages.

To do so, we model the similarity as a score between zero
and one, and view the clustering problem as the minimum
K-cut problem on a graph where each node is an item and
each edge is weighted by the similarity between the nodes
[Goldschmidt and Hochbaum, 1988]. We first consider the
setting where all workers are fully reliable. In this case, we
introduce a prior distribution for the similarity between each
pair of items. Then we formulate the crowdsourced cluster-
ing problem into a finite-horizon Bayesian Markov decision
process (MDP) [Puterman, 2014] where, in each stage, the
state variables are posterior distributions of similarity scores
given the collected labels, and the action is to select an edge
(a pair of items) and send it to a random worker for labeling.
Because solving a MDP is computationally challenging due
to the curse of dimensionality, effective approximate policies,
such as knowledge gradient (KG) [Gupta and Miescke, 1996;
Frazier et al., 2008] and optimistic knowledge gradient (Opt-
KG) [Chen et al., 2015], have been proposed. Our policy is
related to the Opt-KG policy where the pair is selected based
on the possible reduction of the minimum K-cut value when
the label for the selected pair is returned from workers. After
that, we further extend the model and the policy to the case
where the workers are unreliable and have different reliabil-
ity. In the latter case, the action in each stage is to select not
only the pair but also the worker to label this pair.

The rest of the paper is organized as follows. In Section
2, we first introduce the problem setup and then provide the
Bayesian decision process with reliable workers. In Section
3, we extend the proposed method to the case of unreliable
workers. Section 4 provides the simulation studies with both
reliable and unreliable workers. In Section 5, we present nu-
merical results on real data. Conclusions and further works
are given in Section 6.

2 Bayesian Decision Process with Reliable
Workers

We first investigate the problem under the setting with only
fully responsible workers. Here, being fully reliable means
that the workers judge the similarity between items to the best
of their knowledge. However, due to the subjective nature
of human perception-based similarity, the labels provided by
workers are not necessarily consistent (see Eq. (1) below for
a more precise description on our modeling of fully reliable
workers). We will extend our study to the setting with unreli-
able workers (see Section 3).

Suppose there are N items that need to be grouped into
K clusters based on their pairwise similarity. We model the
true similarity between items i and j (1 ≤ i < j ≤ N )
by a latent similarity parameter θij ∈ [0, 1] and a larger θij
represents a higher similarity between them. Assuming that

the budget for clustering is T , one unit of budget is paid to
a worker for each similarity label he or she provides. We
model the crowdsourced clustering problem as a multi-stage
decision making problem with T stages. In each stage, the
decision maker chooses a pair of items (i, j) and assigns them
to a worker randomly chosen from the crowd to request a
similarity label. We denote by lij the binary similarity label
provided by the worker with lij = 1 if the worker thinks i
and j are similar and with lij = 0 otherwise. Furthermore,
we assume that the number of workers is large enough and θij
equals the proportion of the workers who think items i and j
are similar. In other words, the label lij returned by a random
reliable worker has the following Bernoulli distribution

Pr(lij = 1|θij) = θij , Pr(lij = 0|θij) = 1− θij . (1)
We assume that θij follows a Beta prior Beta(a0ij , b

0
ij) for

1 ≤ i < j ≤ N . Suppose, at stage t, Beta(atij ,b
t
ij) is the

posterior distribution for θij and a pair (it, jt) is assigned to
a random worker who returns a similarity label litjt . Accord-
ing to (1), the posterior distribution of θij will still be a Beta
distribution Beta(at+1

ij , bt+1
ij ) where for 1 ≤ i < j ≤ N ,

(at+1
ij , bt+1

ij ) =


(atij + 1, btij) if (i, j) = (it, jt), litjt = 1;
(atij , b

t
ij + 1) if (i, j) = (it, jt), litjt = 0;

(atij , b
t
ij) if (i, j) 6= (it, jt).

(2)
Next, we will model this crowdsourced labeling process as

a Markov decision process (MDP). To do so, we define the
state variable at stage t by St = {(atij , btij)}1≤i<j≤N . Note
that the conditional distribution of litjt conditioning on St is

Pr(litjt = 1|St) = E(θitjt |St) =
atitjt

atitjt + btitjt
,

Pr(litjt = 0|St) = E(1− θitjt |St) =
btitjt

atitjt + btitjt
.

(3)

After litjt is revealed, St is updated to St+1 and St+1 is dif-
ferent from St only at (aitjt , bitjt) according to (2). Com-
bined with (2), (3) can be viewed as the state transition prob-
ability at state St after a decision (it, jt). This also means
that {St}t≥0 is Markovian because St+1 is fully determined
by St and litjt . Given this property, it suffices to consider a
policy that only depends on St to choose (it, jt). We denote
such a policy by a sequence of mappings (π1, ..., πT ) with
πt(St) ∈ {(i, j)|1 ≤ i < j ≤ N}.

Given the limited budget, a good policy must choose
(it, jt) to collect sufficient information and quickly improve
the quality of clustering. To measure the quality of cluster-
ing, we construct a similarity graph, which is a weighted,
complete, undirected graph G = (V,E, {θij}) where the set
of nodes V is the set of items for clustering, the set of edges
E consists of all pairs of items, and the edge between i and j
is weighted by θij . Given this graph, a classical approach for
clustering the nodes is to partition the graph into K discon-
nected components by removing the edges with as small total
weight as possible. This is known as the minimum-weight
K-cut problem:

MinCut({θij}) , min
{C1,...,CK}

K−1∑
p=1

K∑
q=p+1

∑
i∈Cp
j∈Cq

θij , (4)

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

2045



where {C1, C2, ..., CK} forms a partition of V and θij =
θji if j < i. Since {θij} is unknown, the clustering at
stage t needs to be performed based on E(θij |St) by solving
MinCut({E(θij |St)}). We then use MinCut({E(θij |St)}) to
measure the quality of clustering at stage t with a smaller
value representing better clustering. To obtain a good clus-
tering result after T stages, the budget allocation problem is
then formulated as the following dynamic optimization

min
π1,...,πT

E[MinCut({E(θij |ST )})]. (5)

Problem (5) can be equivalently reformulated as

max
π1,...,πT

−MinCut({E(θij |S0)}) +

T−1∑
t=0

E[R(St, it, jt, litjt)] (6)

where R(St, it, jt, litjt)

, MinCut({E(θij |St)})−MinCut({E(θij |St+1)}) (7)

represents the expected reduction of the total weight of the
minimum K-cut after updating the posterior distribution of
θitjt according to litjt . Note that St+1 depends on litjt .
Eq. (7) can be also interpreted as the expected improvement
of the quality of clustering. Hence, (6) is an MDP where the
stage-wise reward is R(St, it, jt, litjt).

However, (6) is difficult to solve optimally due to the curse
of dimensionality. Therefore, we aim at a computationally
efficient policy with a good performance in practice. A pop-
ular class of online learning policy is the knowledge gradi-
ent (KG) [Gupta and Miescke, 1996; Frazier et al., 2008],
which chooses (it, jt) to maximize E[R(St, it, jt, litjt)|St],
or equivalently, to minimize E[MinCut({E(θij |St+1)})|St].

According to (2) and (3), we have {E(θij |St+1)} =

U t(it, jt, litjt) where U t(it, jt, litjt) , {utij} such that

utij ,

{
(atij + 1)/(atij + btij + 1) if (i, j) = (it, jt);
atij/(a

t
ij + btij) otherwise,

when litjt = 1 and

utij ,

{
atij/(a

t
ij + btij + 1) if (i, j) = (it, jt);

atij/(a
t
ij + btij) otherwise,

when litjt = 0. According to (3), the KG policy can be de-
scribed as

(it, jt) = argmax
i<j

E[R(St, i, j, lij)|St]

= argmin
i<j

E[MinCut({E(θij |St+1)})|St]

= argmin
i<j

(
atijMinCut(U t(i, j, 1))

atij + btij
+
btijMinCut(U t(i, j, 0))

atij + btij

)
.

However, as shown in [Chen et al., 2015] for the crowd-
sourced classification problem, the KG policy is myopic and
may keep labeling a few pairs without exploring others. To
address this issue, [Chen et al., 2015] proposed the opti-
mistic knowledge gradient (Opt-KG) policy which chooses
(it, jt) to maximize the optimistic outcome of stage-wise re-
ward rather than the expected reward. It is shown by [Chen et
al., 2015] that the Opt-KG policy outperformed the KG pol-
icy because it balances exploration and exploitation better.

Algorithm 1 The Opt-KG policy for crowdsourced clustering
with reliable workers
Input: Parameters of prior Beta distributions S0 =
{(a0ij , b0ij)}1≤i<j≤N , the budget T , and the number of
clusters K.

1: for t = 1, ..., T do
2: Compute R+

t (i, j) for 1 ≤ i < j ≤ N based on (7)
and (8).

3: Select the pair of items (it, jt) according to:

Opt-KG: (it, jt) = arg max
i<j

R+
t (i, j),

and send it to a random worker.
4: Acquire the similarity label litjt ∈ {1, 0}.
5: Update St to St+1 according to (2).
6: end for

Output: The K clusters {C1, ..., CK} that solve
MinCut({E(θij |ST )}) defined by (4) and (3).

Motivated by [Chen et al., 2015], we define the optimistic
reward as

R+
t (i, j) , max

l=0,1
R(St, i, j, l) (8)

and propose the Opt-KG policy for crowdsourced clustering
which chooses

(it, jt) = argmax
i<j

R+
t (i, j) = argmin

i<j

(
min
l=0,1

MinCut(U t(i, j, l))
)
,

where the second equality is from (7) and the fact that
MinCut({E(θij |St)}) does not depend on litjt . We formally
state the Opt-KG policy in Algorithm 1.

In practice, we may make the Opt-KG policy more time-
efficient by utilizing the capability of parallel processing of
crowdsourcing. Indeed, in each stage, we can choose the B
pairs with the largestR+

t (i, j) and send them to different ran-
dom workers simultaneously. After receiving the similarity
labels from them all, we update the parameters St+1 for the
posterior distribution of each θij in a way similar to (2).

3 Bayesian Decision Process with Unreliable
Workers

The method proposed in Section 2 requires that all workers
are fully reliable. However, unreliable workers do exist in
practice who provide noisy labels because of, e.g., not com-
paring items carefully. It is critical to accurately assess the
reliability of each worker in an early stage so that items and
budget can flow to more reliable workers. In this section, we
show that this can be done by extending our Opt-KG policy.

We assume that there areW heterogeneous workers and in-
troduce a parameter ρw ∈ [0, 1] to represent thew-th worker’s
reliability. We define ρw as the probability of worker w label-
ing a pair of items in the same way as a randomly selected
fully reliable worker (i.e. labeling to the best of the worker’s
knowledge). Specifically, if we assign a pair (i, j) to worker
w, the label returned, denoted by lijw, has the distribution:

Pr(lijw = 1|θij , ρw) = ρwθij + (1− ρw)(1− θij),
Pr(lijw = 0|θij , ρw) = ρw(1− θij) + (1− ρw)θij .

(9)
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Here, ρw can be also interpreted as the probability that worker
w provides the label by flipping the label from a reliable
worker. When worker w is fully reliable, we have ρw = 1
and (9) reduces to (1), namely, the randomness of labels is
only because of the subjective judgment of worker. Similarly,
ρw = 0.5 means worker w labels the pair randomly.

Similar to θij , we assume that each ρw is independently
drawn from a Beta prior distribution Beta(c0w, d

0
w). Then,

given the similarity label lijw = l ∈ {0, 1}, the posterior
distribution of θij and ρw is

p(θij , ρw|a0ij , b0ij , c0w, d0w, lijw = l) (10)

∼Pr(lijw = l|θij , ρw)Beta(θij |a0ij , b0ij)Beta(ρw|c0w, d0w).

Unfortunately, the posterior joint distribution for θij and ρw
in (10) is no longer the product of Beta distributions. There-
fore, after receiving a new label, we cannot update the poste-
rior distribution as a state variable by updating the parameters
a0ij , b

0
ij , c

0
w, and d0w as in (2). To address this issue, we apply

variational approximation based on the moment matching to
approximate the posterior distributions of θij and ρw as inde-
pendent Beta distributions.

Suppose, at stage t, θij and ρw are independent and their
posterior distributions are Beta(atij , b

t
ij) and Beta(ctw, d

t
w),

respectively. (This is true for t = 0.) Let St =
{(atij , btij)}1≤i<j≤N and Θt = {(ctw, dtw)}1≤w≤W be the
state variables for MDP. After sending (it, jt) to worker wt,
we receive a label litjtwt and approximate the posterior dis-
tributions for θitjt and ρwt as

p(θij , ρw|atij , btij , ctw, dtw, lijw)

∼Pr(lijw|θij , ρw)Beta(θij |atij , btij)Beta(ρw|ctw, dtw)

≈Beta(θij |ãij(l), b̃ij(l))× Beta(ρw|c̃w(l), d̃w(l)), (11)

for (i, j, w) = (it, jt, wt) and l = litjtwt . Here, the parame-
ters ãij(l), b̃ij(l), c̃w(l), and d̃w(l) are defined as the values
that make the distributions of θij and ρw on both sides of
(11) have the same first and second moments, known as the
moment matching technique. In particular, the moments of
the right hand side are functions of ãij(l), b̃ij(l), c̃w(l), and
d̃w(l), while the moments of the left hand side are functions
of atij , b

t
ij , c

t
w, dtw, and lijw, leading to a system of four equa-

tions and four unknown parameters. Hence, ãij(l), b̃ij(l),
c̃w(l), and d̃w(l) can be uniquely solved from that system for
(i, j, w) = (it, jt, wt) according to lijw = l = 1 or 0. For
(i, j, w) 6= (it, jt, wt), the posteriors of θij and ρw are un-
changed.

Applying this approximation in each stage, we are able
to represent the state variables for our MDP as St+1 =
{(at+1

ij , bt+1
ij )}1≤i<j≤N and Θt+1 = {(ct+1

w , dt+1
w )}1≤w≤W

for stage t+ 1, where

(at+1
ij , bt+1

ij ) =

{
(ãij(l), b̃ij(l)) if (i, j) = (it, jt);
(atij , b

t
ij) if (i, j) 6= (it, jt),

(12)
for 1 ≤ i < j ≤ N , and

(ct+1
w , dt+1

w ) =

{
(c̃w(l), d̃w(l)) if w = wt;
(ctw, d

t
w) if w 6= wt,

(13)

Algorithm 2 Bayesian decision process with unreliable
workers based on the Opt-KG policy

Input: Parameters of prior Beta distributions
{a0ij , b0ij}1≤i<j≤N and {c0w, d0w}1≤w≤W , the bud-
get T , the number of clusters K.

1: for t = 1, ..., T do
2: Compute R+

t (i, j, w) for 1 ≤ i < j ≤ N and 1 ≤
w ≤W based on (15) and (16).

3: Select the pair of items (it, jt) and the worker wt ac-
cording to:

Opt-KG: (it, jt, wt) = arg max
i<j,w

R+
t (i, j, w)

and send items (it, jt) to worker wt.
4: Acquire the similarity label litjtwt ∈ {1, 0}.
5: Update St to St+1 according to (12) and update Θt

to Θt+1 according to (13) .
6: end for

Output: The K clusters {C1, ..., CK} that solve
MinCut({E(θij |ST )}) defined by (4) and (3).

for 1 ≤ w ≤W .
Defining a policy as a sequence of mappings (π1, ..., πT )

with πt(St,Θt) ∈ {(i, j, w)|1 ≤ i < j ≤ N, 1 ≤ w ≤ W},
the crowdsourced clustering problem with unreliable workers
can be approximated by the following MDP similar to (6):

max
π1,...,πT

−MinCut({E(θij |S0,Θ0)}) (14)

+

T−1∑
t=0

E[R(St,Θt, it, jt, wt, litjtwt)]

where R(St,Θt, it, jt, wt, litjtwt)

, MinCut({E(θij |St)})−MinCut({E(θij |St+1)}). (15)

Recall (12), (13) and (3). We have {E(θij |St+1)} =

U t(it, jt, wt, litjtwt) , {utij(l)} where l = litjtwt and

utij(l) =

{
ãij(l)/(ãij(l) + b̃ij(l)) if (i, j) = (it, jt);
atij/(a

t
ij + btij) otherwise.

Similar to (8), we define the optimistic reward as

R+
t (i, j, w) , max

l=0,1
R(St,Θt, it, jt, wt, l) (16)

and propose the Opt-KG policy for the setting with unreliable
workers as

(it, jt, wt) = arg max
i<j,w

R+
t (i, j, w)

= arg min
i<j,w

(
min
l=0,1

MinCut(U t(i, j, w, l))
)
,

where the second equality is from (15). We formally state the
Opt-KG policy in Algorithm 2. Similar to Algorithm 1, in
Algorithm 2, we also can choose B different (i, j, w)’s with
the largest R+

t (i, j, w) and receive B labels in each stage in
order to improve the time efficiency.
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(a) Beta(10,1) (b) Beta(4,1) (c) Beta(5,2)

Figure 1: The heat maps of labeling frequencies for different distri-
butions of the similarity within clusters.

4 Simulation Studies
In this section, we conduct the numerical experiments on the
simulated data to show the performance of the proposed bud-
get allocation policies in terms of their (a) labeling frequency
and (b) clustering accuracy. Here, (a) means the distribution
of the budget over item pairs (and workers). To measure (b),
we generate the data in K clusters, denoted by C1, . . . , CK .
And the clustering accuracy is defined as maxσ

∑K
k=1

rkσ(k)
N ,

where rkl is the number of items in Ck assigned to cluster
l and σ : {1, 2, . . . ,K} → {1, 2, . . . ,K} is a permutation
of {1, 2, . . . ,K}. Besides, we also use the normalized mu-
tual information (NMI) score to evaluate the clustering per-
formance. We adopt the uniform prior Beta(1, 1) for each θij
and the prior Beta(4, 1) for each ρw unless otherwise speci-
fied. We utilize the graph partitioning algorithm [Hespanha,
2004] based on spectral factorization to solve the Min-K-Cut
problem. We compare our method (Opt-KG) with the knowl-
edge gradient (KG) and random assignment (Random).

4.1 Simulation with Reliable Workers
In this section, we assume all workers are fully reliable. We
first investigate the labeling frequency. We generate 12 items
that form three clusters {C1, C2, C3}. More specifically, the
first four items are from C1, the next four items are from C2,
and the last four items are from C3. We assume that the to-
tal budget T is 200 and the similarity parameter θij between
items in the same cluster is generated from Beta(as, bs),
and θij between items in different clusters is generated from
Beta(ad, bd), where (ad, bd) = (bs, as). We consider three
settings: (as, bs) = (10, 1), (4, 1), (5, 2). The labeling fre-
quency for each setting is plotted in Figure 1. We note that
each box represents one pair of items and the warmer color
correponds to a higher percentage of the budget spent on la-
beling that pair. According to our setting, the difficulty of
clustering increases from Figure 1(a) to 1(b) or 1(c) because
the expectation of θij within clusters (i.e. as/(as + bs)) be-
come closer to the expectation value of θij between clusters
(i.e. bs/(as + bs)). We can observe from Figure 1 that, when
as and bs are very different (clustering is easy), the labeling
frequency is higher on the pairs from different clusters, and
when as and bs are close (clustering is difficult), the labeling
frequency of the pairs from the same cluster becomes higher.

Next, we investigate the robustness of the proposed method
with the uniform prior distribution for θij by varying the true
generating distribution of θij . Here, we use the same set of
12 items as described above. We plot the clustering accuracy
for different levels of budget T = 10, 20, ..., 200 in Figure 2.
For better visualization, we omit the standard deviation on the

(a) Beta(10,1) (b) Beta(4,1) (c) Beta(5,2)

Figure 2: The clustering accuracies for different distributions of the
similarity within clusters.

(a) Accuracy (b) NMI

Figure 3: The clustering accuracy and NMI by different policies
with reliable workers.

figures as the standard deviations are relatively small. As we
can see, when as and bs become closer, the proposed method
needs more budget to obtain a high clustering accuracy, which
is consistent with the intuition.

Next, we compare the performance of the proposed Opt-
KG policy with the KG policy and the random sampling pol-
icy (select item pairs randomly at every stage). We choose
the simulated data with a larger size and conduct each pol-
icy with a mini-batch of size B = 100 and a total budget of
T = 25. We simulate 30 items in three clusters and gener-
ate θij between the items in the same cluster from Beta(5, 2),
and generate θij between the items in different clusters from
Beta(2, 5). We report the clustering accuracy and NMI ob-
tained by each policy for T = 1, 3, 5, ..., 25 in Figure 3. This
figure shows that our Opt-KG policy increases both perfor-
mance metrics more rapidly as the budget is consumed.

4.2 Simulation with Unreliable Workers
In this section, we consider the simulation studies with
unreliable workers. First, we investigate the sensitivity
of the proposed method to the workers’ reliability. We
fix ten workers with reliability ρ = (ρ1, ρ2, ..., ρ10) =
(0.55, 0.60, ..., 1). We simulate 12 items in 3 clusters and
generate θij within clusters from Beta(4,1) and θij between
clusters from Beta(1,4). We choose the total budget T = 400.
Figure 4 reports the average labeling frequency over these ten
workers, which shows that our policy will detect the reliable
workers and the workers with higher reliability are assigned
with more items to label. Such assignments efficiently in-
crease the performance of clustering and save the budget.

Next, we investigate the robustness of the proposed method
with the prior Beta(4, 1) for ρw by varying the true gen-
erating distribution of ρw. We generate θij and items as
above and consider five workers with ρk generated from
Beta(8,1), Beta(11,2) or Beta(3,1). Figure 5 displays how
the clustering accuracy varies with the level of budget (T =
60, 120, ..., 600) in our Opt-KG policy when using Beta(4, 1)
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Figure 4: The labeling frequency over workers with different relia-
bility.

(a) Beta(8,1) (b) Beta(11,2) (c) Beta(3,1)

Figure 5: Comparison of clustering accuracies using the prior
Beta(4, 1) and the true priors on the reliability parameter.

(a) Accuracy (b) NMI

Figure 6: Performance comparison of clustering accuracy and NMI
under the unreliable workers setting.

as the prior for ρw and when using the true generating distri-
butions of ρw as the prior. As we can see, the prior Beta(4, 1)
leads to a better clustering result than the true distributions.

We compare the performance of the proposed Opt-KG pol-
icy with the KG policy and the random sampling policy with
a total budget of T = 50 and a batch size B = 300. We sim-
ulate 50 items in 5 clusters and generate θij within clusters
from Beta(5, 2) and θij between clusters from Beta(2, 5). We
consider five workers with reliability ρ = (ρ1, ρ2, ..., ρ5) =
(0.70, 0.75, ..., 0.90). We report the clustering accuracy and
NMI obtained by each policy for T = 5, 10, ..., 50 in Figure
6. According to Figure 6, our Opt-KG policy increases the
clustering quality fastest as the budget is consumed.

5 Experiment with Real Data
We compare different policies for clustering four datasets
[Dua and Graff, 2017; Bagnall et al., 2019]: soybean, olive
oil, meat and iris. In each dataset, we calculate the Eu-
clidean distance between each pair of instances and obtain
θij through a linear mapping based on the principle that pairs
of instances with smaller distances have higher similarity. For
instances i and j from the same cluster, θij ranges from 0.7 to
0.9. For instances from different clusters, θij ranges from 0.1
to 0.3. We first consider the reliable workers setting. We gen-
erate the labels from a random worker using (1) with the true
θij . The uniform prior Beta(1,1) is used in the Opt-KG pol-
icy with the total budget T = 10, the batch size B = 200 for
soybean and olive oil and B = 300 for meat and iris. We run

Dataset Policy Reliable workers Unreliable workers
(N,K) T=1 T=4 T=7 T=10 T=1 T=4 T=7 T=10
Soybean Opt-KG 0.47 0.85 0.96 0.98 0.47 0.61 0.83 0.87
(47, 4) KG 0.48 0.71 0.92 0.97 0.46 0.57 0.59 0.68

Random 0.46 0.67 0.87 0.94 0.47 0.59 0.74 0.84
Olive oil Opt-KG 0.39 0.70 0.88 0.92 0.42 0.55 0.75 0.81
(60, 4) KG 0.47 0.60 0.64 0.63 0.41 0.53 0.54 0.63

Random 0.38 0.71 0.82 0.83 0.43 0.58 0.72 0.76
Meat Opt-KG 0.42 0.76 0.92 1.00 0.41 0.77 0.94 0.97

(120, 3) KG 0.41 0.67 0.80 0.90 0.39 0.69 0.69 0.71
Random 0.42 0.71 0.93 0.97 0.42 0.79 0.92 0.91

Iris Opt-KG 0.41 0.76 0.89 0.91 0.69 0.62 0.86 0.96
(150, 3) KG 0.39 0.58 0.63 0.61 0.59 0.64 0.65 0.61

Random 0.37 0.58 0.87 0.89 0.42 0.49 0.75 0.84

Table 1: Performance comparison on four datasets.

each policy 10 times and report the averaged clustering accu-
racies under different budget levels (T = 1, 4, 7, 10) in Table
1. As we can see, our Opt-KG policy has the best perfor-
mance. After only seven stages, the proposed method based
on the Opt-KG policy can attain a high clustering accuracy.

Next, we consider the setting with unreliable workers. We
consider five workers with reliability ρ = (ρ1, ρ2, ..., ρ5) =
(0.70, 0.75, ..., 0.90) and generate labels according to (9).
We choose the uniform prior Beta(1, 1) for θij and choose
Beta(4, 1) as the prior for ρw in the Opt-KG policy with
T = 10, B = 400 for soybean and olive oil and B = 1000
for meat and iris. From Table 1 we can see that the Opt-KG
policy is superior to the KG policy and the random sampling
policy under the setting with unreliable workers.

6 Conclusions
In this paper, we propose an online policy for the budget allo-
cation problem in crowdsourced clustering. We transform the
clustering problem into a graph partition problem based on
the minimum-weightK-cut problem. We introduce the priors
of the similarity parameters for item pairs and workers’ relia-
bility and then model the problem as a Bayesian Markov deci-
sion process. We develop a computationally efficient Opt-KG
policy to approximately solve the MDP for both cases of reli-
able and unreliable workers. The experimental studies show
that the proposed method achieves a good performance.

This paper uses Min-K-Cut function to solve the graph
partition problem. In future work, it will be interesting to
study the budget allocation problem through other graph par-
tition methods. When only one label (or a batch of labels)
is obtained at one stage, how to solve the optimization prob-
lem at the next stage locally and faster is challenging. An-
other interesting extension is to consider the dynamic pricing
strategy. A novel pricing scheme instead of equal cost can
motivate workers to provide labels with higher quality.
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