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Abstract
Visually-grounded embodied language learning
models have recently shown to be effective at learn-
ing multiple multimodal tasks such as following nav-
igational instructions and answering questions. In
this paper, we address two key limitations of these
models, (a) the inability to transfer the grounded
knowledge across different tasks and (b) the inabil-
ity to transfer to new words and concepts not seen
during training using only a few examples. We pro-
pose a multitask model which facilitates knowledge
transfer across tasks by disentangling the knowledge
of words and visual attributes in the intermediate
representations. We create scenarios and datasets
to quantify cross-task knowledge transfer and show
that the proposed model outperforms a range of
baselines in simulated 3D environments. We also
show that this disentanglement of representations
makes our model modular and interpretable which
allows for transfer to instructions containing new
concepts.∗

1 Introduction
Humans learn language by interacting with a dynamic per-
ceptual environment, grounding words into visual entities
and motor actions [Smith and Gasser, 2005; Barsalou, 2008].
In recent years, there has been an increased focus on train-
ing embodied agents capable of visually-grounded language
learning. These include multimodal tasks involving one-way
communication, such as mapping navigational instructions to
actions [MacMahon et al., 2006; Chen and Mooney, 2011;
Artzi and Zettlemoyer, 2013; Mei et al., 2016; Misra et
al., 2018]; and tasks involving two-way communication
such as embodied question answering [Gordon et al., 2018;
Das et al., 2018] and embodied dialogue [de Vries et al., 2018].
Other studies have shown that grounded semantic goal naviga-
tion agents can be effective at exploiting the compositionality
of language to generalize to unseen instructions with an un-
seen composition of semantic attributes [Hermann et al., 2017;
Chaplot et al., 2018], or an unseen composition of steps in a
multi-step instruction [Oh et al., 2017].
∗Webpage: https://devendrachaplot.github.io/projects/EMML

However, current grounded language learning models have
certain limitations. Firstly, these models are typically trained
only for a single multimodal task and lack the ability to transfer
grounded knowledge of ‘concepts’† across tasks. For example,
if an agent learns to follow the instruction ‘Go to the red torch’
and answer the question ‘What color is the pillar?’, then ide-
ally it should also understand ‘Go to the red pillar’ and ‘What
color is the torch?’ without additional training. Training mul-
titask grounded-language models can also improve training
sample efficiency, as these multimodal tasks share many com-
mon learning challenges including perception, grounding, and
navigation.

The second limitation is the inability of trained models to
quickly transfer to tasks involving unseen concepts. For exam-
ple, consider a household instruction-following robot trained
on an existing set of objects. We would like the robot to follow
instructions involving a new object ‘lamp’ that has been added
to the house. Existing models would need to be trained with
the new object, which typically requires thousands of samples
and can also lead to catastrophic forgetting of known objects.
Even if the models were given some labeled samples to de-
tect the new objects, they would require additional training to
learn to combine existing grounded knowledge with the new
concept (e.g., ‘blue lamp’ if ‘blue’ is already known).

In this paper, we train a multimodal multitask learning
model for two tasks: Semantic Goal Navigation, where the
agent is given a language instruction to navigate to a goal
location, and Embodied Question Answering, where the agent
is asked a question and it can navigate in the environment to
gather information to answer the question (see Figure 1). We
make the following contributions in this paper:

First, we define a cross-task knowledge transfer evaluation
criterion to test the ability of multimodal multi-task models
to transfer knowledge of concepts across tasks. We show that
several prior single-task models, when trained on both tasks,
fail to achieve cross-task knowledge transfer. This is because
the visual grounding of words is often implicitly learned as
a by-product of end-to-end training of the underlying task,
which leads to the entanglement of knowledge of concepts in
the learnt representations. We propose a novel Dual-Attention

†In this paper, we refer to the knowledge of a word and its ground-
ing in the visual world as the knowledge of a concept (for example,
concept ‘torch’ involves word ‘torch’ and how torch looks visually).

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

2442

https://devendrachaplot.github.io/projects/EMML


Figure 1: Examples of embodied
multimodal tasks, following instruc-
tions and answering questions.

Task Train Set Test Set

SGN Instructions not containing ‘red’ & ‘pillar’: Instructions containing ‘red’ or ‘pillar’:
‘Go to the blue object’ ‘Go to the red pillar’
‘Go to the torch’ ‘Go to the tall red object’

EQA Questions not containing ‘blue’ & ‘torch’: Questions containing ‘blue’ or ‘torch’:
‘Which object is red in color?’ ‘Which object is blue in color?’
‘What color is the tall pillar?’ ‘What color is the torch?’

Table 1: Table showing training and test sets for both the tasks, Semantic Goal Navigation (SGN) and
Embodied Question Answering (EQA). The test set consists of unseen instructions and questions. The
dataset evaluates a model for cross-task knowledge transfer the embodied multimodal tasks.

model which learns task-invariant disentangled visual and
textual representations and explicitly aligns them with each
other. We create datasets and simulation scenarios for testing
cross-task knowledge transfer and show an absolute improve-
ment of 43-61% on instructions and 5-26% for questions over
baselines (Section 5.1).

Second, the disentanglement and explicit alignment of rep-
resentations makes our model modular and interpretable. We
show that this allows us to transfer the model to handle instruc-
tions involving unseen concepts by incorporating the output of
object detectors. We also show that our model is able to com-
bine the knowledge of existing concepts with a new concept
without any additional policy training (Section 5.4).

Finally, we show that the modularity and interpretability of
our model also allow us to use trainable neural modules [An-
dreas et al., 2016] to handle relational tasks involving negation
and spatial relationships and also tackle relational instructions
involving new concepts (Section 5.3).

2 Related Work
A lot of early work on visual instruction-following in the
embodied space such as in robotics applications [Tellex et al.,
2011; Matuszek et al., 2012; Hemachandra et al., 2015; Misra
et al., 2016] and on mapping natural language instructions
to actions [MacMahon et al., 2006; Chen and Mooney, 2011;
Artzi and Zettlemoyer, 2013; Mei et al., 2016] required hand-
designed symbolic representations. Recently, there have been
efforts on learning to follow navigational instructions from
raw visual observations [Anderson et al., 2018; Misra et al.,
2018; Chen et al., 2019; Blukis et al., 2018]. Some previous
works have studied the language learning aspect of instruction-
following in a more controlled setting, and show that grounded
language learning agents are able to learn spatial and logical
reasoning and exploit the compositionality of language to
generalize to new instructions [Oh et al., 2017; Chaplot et al.,
2018; Hermann et al., 2017]

Question Answering in the embodied space has been com-
paratively less-studied with recent work studying QA which
requires exploration, navigation, and interaction with objects
in the environment [Gordon et al., 2018; Das et al., 2018]. In
contrast to the prior work which tackles a single grounding
task, we tackle both instruction-following and question answer-
ing in the embodied space and study the ability to transfer the
knowledge of concepts across the tasks and tackle instructions
with new concepts.

3 Problem Formulation
Consider an autonomous agent interacting with an episodic
environment as shown in Figure 1. At the beginning of each
episode, the agent receives a textual input T specifying a task.
T could be an instruction to navigate to a target object or
a question querying some visual detail of objects in the en-
vironment. At each time step t, the agent observes a state
st = (It, T ) where It is the first-person (egocentric) view of
the environment, and takes an action at, which could be a navi-
gational action or an answer action. The agent’s objective is to
learn a policy π(at|st) which leads to successful completion
of the task specified by T .
Environments. We adapt the ViZDoom-based [Kempka et al.,
2016] language grounding environment proposed by Chaplot
et al. [2018] for embodied multitask learning. It consists of
a single room with 5 objects. The objects are randomized in
each episode based on the textual input. We use two difficulty
settings: Easy: The candidate objects are in the field of view of
the agent at the beginning of the episode. Hard: The candidate
objects and the agent are dropped at random locations and
the objects may or may not be in the agent’s field of view in
the initial configuration. The agent must explore the map to
view all objects. The agent can take 4 actions: 3 navigational
actions (forward, left, right) and 1 answer action. When the
agent takes the answer action, the answer with the maximum
probability in the output answer distribution is used.
Datasets. We use the set of objects and attributes from Chap-
lot et al. [2018] and create a dataset which includes instruc-
tions and questions about object types, colors, relative sizes
(tall/short) and superlative sizes (smallest/largest). We create
train-test splits for both instructions and questions datasets to
explicitly test a multitask model’s ability to transfer the knowl-
edge of concepts across different tasks. Each instruction in the
test set contains a word that is never seen in any instruction in
the training set but is seen in some questions in the training
set. Similarly, each question in the test set contains a word
never seen in any training set question. Table 1 illustrates the
train-test split of instructions and questions.

4 Proposed Method
In this section, we describe our proposed architecture (illus-
trated in Figure 2). At the start of each episode, the agent
receives a textual input T (an instruction or a question) spec-
ifying the task. At each time step t, the agent observes
an egocentric image It which is passed through a convolu-
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Figure 2: Overview of our proposed architecture, described in detail in Section 4.

tional neural network [LeCun et al., 1995] with ReLU activa-
tions [Glorot et al., 2011] to produce the image representation
xI = f(It; θconv) ∈ RV×H×W , where θconv denotes the pa-
rameters of the convolutional network, V is the number of
feature maps in the convolutional network output which is
by design set equal to the vocabulary size (of the union of
the instructions and questions training sets), and H and W
are the height and width of each feature map. We use two
representations for the textual input T : (1) the bag-of-words
representation denoted by xBoW ∈ 0, 1V and (2) a sentence
representation xsent = f(T ; θsent) ∈ RV , which is computed
by passing the words in T through a Gated Recurrent Unit
(GRU) [Cho et al., 2014] network followed by a linear layer.
Here, θsent denotes the parameters of the GRU network and the
linear layer with ReLU activations. Next, the Dual-Attention
unit fDA combines the image representation with the text rep-
resentations to get the complete state representation xS and
answer prediction xAns:

xS, xAns = fDA(xI , xBoW, xsent) (1)

Finally, xS and xAns, along with a time step embedding and
a task indicator variable (for whether the task is SGN or EQA),
are passed to the policy module to produce an action.

4.1 Dual-Attention Unit
The Dual-Attention unit uses two types of attention mech-
anisms, Gated-Attention fGA and Spatial-Attention fSA, to
align representations in different modalities and tasks.
Gated-Attention (GA). The GA unit [Chaplot et al., 2018]
attends to the different channels in the image representation
based on the text representation. For example, if the textual in-
put is the instruction ‘Go to the red pillar’, then the GA unit can
learn to attend to channels which detect red things and pillars.
Specifically, the GA unit takes as input a 3-dimensional tensor
image representation yI ∈ Rd×H×W and a text representation
yT ∈ Rd, and outputs a 3-dimensional tensor z ∈ Rd×H×W .
Note that the dimension of yT is equal to the number of fea-
ture maps and the size of the first dimension of yI . In the
GA unit, each element of yT is expanded to a H ×W ma-
trix, resulting in a 3-dimensional tensor MyT

∈ Rd×H×W ,
whose (i, j, k)th element is given by MyT

[i, j, k] = yT [i].
This matrix is multiplied element-wise with the image repre-
sentation: z = fGA(yI , yT ) = MyT

� yI , where � denotes
the Hadamard product.
Spatial-Attention (SA). We propose an SA unit which is anal-
ogous to the Gated-Attention unit except that it attends to dif-

ferent pixels in the image representation rather than the chan-
nels. For example, if the textual input is the question ‘Which
object is blue in color?’, then we would like to spatially attend
to the parts of the image which contain a blue object in order
to recognize the type of the blue object. The Spatial-Attention
unit takes as input a 3-dimensional tensor image representa-
tion yI ∈ Rd×H×W and a 2-dimensional spatial attention map
yS ∈ RH×W , and outputs a tensor z ∈ Rd×H×W . Note that
the height and width of the spatial attention map are equal
to the height and width of the image representation. In the
spatial-attention unit, each element of the spatial attention map
is expanded to a d dimensional vector. This again results in
a 3-dimensional tensor MyS

∈ Rd×H×W , whose (i, j, k)th

element is given by: MyS
[i, j, k] = yS [j, k]. Just like in the

Gated-Attention unit, this matrix is multiplied element-wise
with the image representation: z = fSA(yI , yS) =MyS

� yI .
Dual-Attention. We now describe the operations in the Dual-
Attention unit shown in Figure 3, as well as motivate the
intuitions behind each operation. Given xI , xBoW, and xsent,
the Dual-Attention unit first computes a Gated-Attention over
xI using xBoW:

xGA1 = fGA(xI , xBoW) ∈ RV×H×W (2)

Intuitively, this GA unit grounds each word in the vocabulary
with a feature map in the image representation. A particu-
lar feature map is activated if and only if the corresponding
word occurs in the textual input. Thus, the feature maps in
the convolutional output learn to detect different objects and
attributes, and words in the textual input specify which objects
and attributes are relevant to the current task. The Gated-
Attention using BoW representation attends to feature maps
detecting corresponding objects and attributes, and masks all
other feature maps. We use the BoW representation for the
first GA unit as it explicitly aligns the words in textual input
irrespective of whether it is a question or an instruction.

Next, the output of the GA unit xGA1 is converted to a spatial
attention map by summing over all channels followed by a
softmax over H ×W elements:

xspat = σ

(
V∑
i

xGA1[i, :, :]

)
∈ RH×W (3)

where the softmax σ(z)j = exp(zj)/
∑

k exp(zk) ensures
that the attention map is spatially normalized. Summation
of xGA1 along the depth dimension gives a spatial attention
map which has high activations at spatial locations where
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Figure 3: Architecture of the Dual-Attention unit with example intermediate representations and operations.

relevant objects or attributes are detected. ReLU activations
in the convolutional feature maps makes all elements positive,
ensuring that the summation aggregates the activations of
relevant feature maps.
xspat and xI are then passed through a SA unit:

xSA = fSA(xI , xspat) ∈ RV×H×W (4)
The SA unit outputs all attributes present at the locations
where relevant objects and attributes are detected. This is es-
pecially helpful for question answering, where a single Gated-
Attention may not be sufficient. For example, if the textual
input is ‘Which color is the pillar?’, then the model needs
to attend not only to feature maps detecting pillars (done by
the Gated-Attention), but also to other attributes at the spatial
locations where pillars are seen in order to predict their color.
xSA is then passed through another GA unit with the

sentence-level text representation:

xGA2 = fGA(xSA, xsent) ∈ RV×H×W (5)
This second GA unit enables the model to attend to different
types of attributes based on the question. For instance, if
the question is asking about the color (‘Which color is the
pillar?’), then the model needs to attend to the feature maps
corresponding to colors; or if the question is asking about the
object type (‘Which object is green in color?’), then the model
needs to attend to the feature maps corresponding to object
types. The sentence embedding xsent can learn to attend to
multiple channels based on the textual input and mask the rest.

Next, the output is transformed to answer prediction by
again doing a summation and softmax but this time summing
over the height and width instead of the channels:

xAns = σ

H,W∑
j,k

xGA2[:, j, k]

 ∈ RV (6)

Summation of xGA2 along each feature map aggregates the
activations for relevant attributes spatially. Again, ReLU acti-
vations for sentence embedding ensure aggregation of activa-
tions for each attribute or word. The answer space is identical
to the textual input space RV .

Finally, the Dual-Attention unit fDA outputs the answer
prediction xAns and the flattened spatial attention map xS =
vec(xspat), where vec(·) denotes the flattening operation.

Policy Module. The policy module takes as input the state
representation xS from the Dual-Attention unit, a time step
embedding t, and a task indicator variable I (for whether the
task is SGN or EQA). The inputs are concatenated then passed
through a linear layer, then a recurrent GRU layer, then linear
layers to estimate the policy function π(at | It, T ) and the
value function V (It, T ).

All above operations are differentiable, making the entire
architecture trainable end-to-end. Note that all attention mech-
anisms in the Dual-Attention unit only modulate the input
image representation, i.e., mask or amplify specific feature
maps or pixels. This ensures that there is an explicit alignment
between the words in the textual input, the feature maps in the
image representation, and the words in the answer space. This
forces the convolutional network to encode all the information
required with respect to a certain word in the corresponding
output channel. For example, to predict ‘red’ as the answer,
the model must detect red objects in the corresponding fea-
ture map. This explicit task-invariant alignment between con-
volutional feature maps and words in the input and answer
space facilitates grounding and allows for cross-task knowl-
edge transfer. As shown in the results later, this also makes
our model modular and allows easy addition of objects and
attributes to a trained model.

Optimization. The entire model is trained to predict both
navigational actions and answers jointly. The policy is trained
using Proximal Policy Optimization (PPO) [Schulman et al.,
2017]. For training the answer predictions, we use a super-
vised cross-entropy loss.

Auxiliary Task. As mentioned earlier, the feature maps in the
convolutional output are expected to detect different objects
and attributes. We add a spatial auxiliary task (trained with
cross-entropy loss) to detect the object or attribute in the con-
volutional output channels corresponding to the word in the
bag-of-words representation.
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Easy Hard
No Aux Aux No Aux Aux

Train Test Train Test Train Test Train Test
Model MT SGN EQA MT SGN EQA MT SGN EQA MT SGN EQA

Text only 0.33 0.20 0.33 0.31 0.20 0.33 0.36 0.20 0.33 0.36 0.20 0.33
Image only 0.41 0.20 0.09 0.40 0.21 0.08 0.36 0.16 0.08 0.36 0.15 0.08
Concat 0.97 0.33 0.21 0.99 0.31 0.19 0.57 0.20 0.26 0.71 0.39 0.22
GA 0.97 0.27 0.18 0.99 0.35 0.24 0.44 0.18 0.11 0.71 0.22 0.24
FiLM 0.97 0.24 0.11 0.99 0.34 0.12 0.52 0.12 0.03 0.55 0.25 0.15
PACMAN 0.66 0.26 0.12 0.79 0.33 0.10 0.56 0.29 0.33 0.54 0.11 0.27

Dual-Attention 0.99 0.86 0.53 0.99 0.96 0.58 0.85 0.86 0.38 0.90 0.82 0.59

Table 2: Accuracy of all models for both Easy & Hard difficulties. ‘MT’ stands for multi-task.

5 Experiments & Results
Jointly learning semantic goal navigation and embodied ques-
tion answering essentially involves a fusion of textual and
visual modalities. While prior methods are designed for a
single task, we adapt several baselines for our environment
and tasks by using their multimodal fusion techniques. We use
two naive baselines, Image only and Text only; two baselines
based on prior semantic goal navigation models, Concat (used
by [Hermann et al., 2017; Misra et al., 2017]) and Gated-
Attention (GA) [Chaplot et al., 2018]; and two baselines
based on Question Answering models, FiLM [Perez et al.,
2018] and PACMAN [Das et al., 2018]. For fair comparison,
we replace the proposed Dual-Attention unit with multimodal
fusion techniques in the baselines and keep everything else
identical to the proposed model. We will open-source the
code for the training environment, datasets, and model im-
plementation including all hyper-parameter details to support
reproducbility and future work in this direction.

5.1 Results
We train all models for 10 million frames in the Easy setting
and 50 million frames in the Hard setting. We use a +1 reward
for reaching the correct object in SGN episodes and predicting
the correct answer in EQA episodes. We use a small negative
reward of -0.001 per time step to encourage shorter paths to
the target and answering questions as soon as possible. We
also use distance-based reward shaping for SGN episodes,
where the agent receives a small reward proportional to the
decrease in distance to the target. In the next subsection, we
evaluate the performance of the proposed model without the
reward shaping. SGN episodes end when the agent reaches
any object, and EQA episodes end when the agent predicts
any answer. All episodes have a maximum length of 210 time
steps. We train all models with and without the auxiliary tasks
using identical reward functions.

All models are trained jointly for both the tasks and tested
on each task separately. In Table 2, we report the perfor-
mance of all models for both Easy and Hard settings. The
Dual-Attention (DA) model and many baselines achieve 99%
accuracy during training in the Easy-Aux setting; however,
the test performance of all the baselines is considerably lower
than that of the DA model (see Table 2 (left)). Performance
of all the baselines is worse than the ‘Text only’ model on the
EQA test set, although the training accuracy is higher. This in-

No Aux Aux
Model SGN EQA SGN EQA

w/o SA 0.20 0.16 0.20 0.15
w/o GA1 0.14 0.25 0.16 0.38
w/o GA2 0.80 0.33 0.97 0.15
w/o Task Indicator 0.79 0.47 0.96 0.56
w/o Reward Shaping 0.82 0.49 0.93 0.51
DA Single-Task 0.63 0.31 0.91 0.34
DA Multi-Task 0.86 0.53 0.96 0.58

Table 3: Accuracy of all the ablation models on SGN and EQA test
sets for the Easy setting.

dicates that baselines tend to overfit on the training set and fail
to generalize to questions which contain words never seen in
training questions. As expected, using spatial auxiliary tasks
improves performance of all models. Even without auxiliary
tasks, the DA model achieves a test accuracy 86% (SGN) and
53% (EQA), compared to the best baseline performance of
33% (SGN & EQA).

For the Hard setting, the DA model achieves a higher train-
ing (90% vs 71% with Aux) as well as test performance (82%
vs. 39% for SGN, 59% vs. 33% for EQA with Aux) than
the baselines (see Table 2 (right)). These results confirm the
hypothesis that prior models, which are designed for a single
task, lack the ability to align the words in both the tasks and
transfer knowledge across tasks.

5.2 Ablation tests
We perform several ablation tests to analyze the contribution
of each component in the Dual-Attention unit: without Spatial-
Attention (w/o SA), without the first Gated-Attention with
xBoW (w/o GA1), and without the second Gated-Attention
with xsent (w/o GA2). We also try removing the task indicator
variable (w/o Indicator Variable), removing reward shaping
(w/o Reward Shaping), and training the proposed model on
a single task, SGN or EQA (DA Single-Task).

In Table 3, we report the test performance of all ablation
models. The results indicate that SA and GA1 contribute the
most to the performance of the full Dual-Attention model.
GA2 is critical for performance on EQA but not SGN (see
Table 3). This is expected as GA2 is designed to attend to
different objects and attributes based on the question and is
used mainly for answer prediction. It is not critical for SGN
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Figure 4: Outputs for relations ‘not’, ‘left of’, and ‘right of’ learned
by the relational modules.

as the spatial attention map consists of locations of relevant
objects, which is sufficient for navigating to the correct object.

We observe that reward shaping and indicator variable help
with learning speed, but have little effect on the final perfor-
mance (see Table 3). DA models trained only on single tasks
work well on SGN, especially with auxiliary tasks, because the
auxiliary task for single task models includes object detection
labels corresponding to the words in the test set.

5.3 Handling Relational Tasks
The instructions and questions considered so far contained a
single target object. We propose a simple extension to our
model to handle relational tasks, such as ‘Which object is to
the left of the torch?’, where the agent is required to attend to
the region left of the torch, not the torch itself.

We consider three relational operations: ‘left of’, ‘right of’
and ‘not’. We add questions and instructions with all objects
and attributes using these relational operations to the exist-
ing dataset and perform experiments in the Easy-Aux setting.
We assume that the knowledge of relational words, and the
words they modify, are given. We train a separate module
corresponding to each relational operation, and apply it to the
convolutional output of the words that are modified. For exam-
ple, for the above question, we apply the module for relation
‘left of’ to the convolutional output channel corresponding to
the word ‘torch’. Each relational module is a trainable convo-
lutional network which preserves the size of the input. The
rest of the operations are identical to the Dual-Attention Unit.
The relational modules are learned end-to-end without any
additional supervision.

In Figure 4, we show convolutional outputs of the relational
modules learned by our model. While the original DA model
achieves test performance of 0.48 (SGN) and 0.44 (EQA), this
simple extension achieves 0.97 (SGN) and 0.64 (EQA).

5.4 Transfer To New Concepts
Suppose that the user wants the agent to follow instructions
about a new object such as ‘pillar’ or a new attribute such as
‘red’ which the agent has never seen during training. Prior
SGN models [Chaplot et al., 2018; Hermann et al., 2017;
Yu et al., 2018] cannot handle instructions containing a new
concept. In contrast, our model can be used for handling such
instructions by using an object detector for each new concept.
In order to test this, we train the DA model in the Easy setting

Instruction Acc

Go to the red object 0.99
Go to the <color name> pillar. 1.00
Go to the red <object name> 1.00
Go to the largest/smallest red object 0.95
Go to the tall/short red pillar 0.99
Go to the red pillar 0.99

Go to the <color name> object that is not a pillar 0.91
Go to the <object name> that is left of the red object 0.96
Go to the red object that is right of the pillar 0.95

Table 4: The performance of a trained policy appended with object
detectors on instructions containing unseen words (‘red’ and ‘pillar’).

on the training set for only instructions. We use auxiliary
tasks but only for words in the vocabulary of the instructions
training set. After training the policy, we test the agents on
instructions containing test concept words ‘red’ and ‘pillar’,
which the agent has never seen in textual input during training
and never received any supervision about how this attribute or
object looks visually.

For transferring the policy, we assume access to two object
detectors for ‘red’ and ‘pillar’ separately. We append the object
detections for the new concepts to the image representation
xI . We also append the words ‘red’ and ‘pillar’ to the bag-
of-words representation in the same order such that they are
aligned with the appended feature maps.

The results in Table 4 show that this policy generalizes well
to different types of instructions with unseen concepts, includ-
ing: combining knowledge of existing attributes with a new
object, or knowledge of existing objects with a new attribute;
and composing a new attribute with a new object. The results
shown in the lower part of Table 4 indicate that the model
also generalizes well to relational instructions containing new
concepts. This means that given an object detector for a new
object ‘pillar’, the model can (without any additional train-
ing) detect and differentiate between green and blue pillars, or
between tall and short pillars; and understand left of/right of
pillar. The model can also combine ‘pillar’ with another new
attribute ‘red’ to detect red pillars and understand relational in-
structions involving both red objects and pillars. This suggests
that a trained policy can be scaled to more objects provided
the complexity of navigation remains consistent.

6 Conclusion
We proposed a Dual-Attention model for visually-grounded
multitask learning which uses Gated- and Spatial-Attention to
disentangle attributes in feature representations and align them
with the answer space. We show that the proposed model is
able to transfer the knowledge of concepts across tasks and
outperforms the baselines on both Semantic Goal Navigation
and Embodied Question Answering by a considerable margin.
We showed that disentangled and interpretablew representa-
tions make our model modular and allow for easy addition of
new objects or attributes to a trained model. For future work,
the model can potentially be extended to transferring knowl-
edge across different domains by using modular interpretable
representations of objects which are domain-invariant.
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