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Abstract
We consider the problem of estimating a sparse
Gaussian Graphical Model with a special graph topo-
logical structure and more than a million variables.
Most previous scalable estimators still contain ex-
pensive calculation steps (e.g., matrix inversion or
Hessian matrix calculation) and become infeasible
in high-dimensional scenarios, where p (number
of variables) is larger than n (number of samples).
To overcome this challenge, we propose a novel
method, called Fast and Scalable Inverse Covariance
Estimator by Thresholding (FST). FST first obtains
a graph structure by applying a generalized thresh-
old to the sample covariance matrix. Then, it solves
multiple block-wise subproblems via element-wise
thresholding. By using matrix thresholding instead
of matrix inversion as the computational bottle-
neck, FST reduces its computational complexity
to a much lower order of magnitude (O(p2)). We
show that FST obtains the same sharp convergence
rate O(

√
(log max{p, n}/n) as other state-of-the-

art methods. We validate the method empirically,
on multiple simulated datasets and one real-world
dataset, and show that FST is two times faster than
the four baselines while achieving a lower error rate
under both Frobenius-norm and max-norm.

1 Introduction
Understanding and quantifying variable graphs from large-
scale samples is a demanding analytical task in bioinformatics
and neuroscience [Carvalho et al., 2008; Ideker and Krogan,
2012; Shimamura et al., 2007; Van De Vijver et al., 2002].
For instance, the connectivity between neurons across dif-
ferent areas form a variable graph and determine how the
brain integrates information across different sensory systems.
Thus, understanding the connectivity of neural systems, both
in coarse-grained and fine-grained scale, is an important but
lofty research goal. In practical applications, a variable graph
normally has two characteristics: 1). The number of graph

variables is very large. For instance, functional magnetic reso-
nance imaging (fMRI) datasets shared by openfMRI [Tso et
al., 2018] include data samples with 163, 840 pixels (i.e., neu-
rons). If a variable represents a neuron, we need to consider
163, 840 variables during graph inference. 2). The graph has
special topological structure, i.e., the inner-cluster is dense
but inter-cluster is sparse. For instance, connectivity between
neurons within one area is dense, while the connectivity across
different areas is relatively sparse. 3). Usually, a graph has
K neuron clusters and K is quite large. For example, [Perin
et al., 2013] shows that a graph with 6000 neurons can have
around 400 neuron clusters.

Sparse Gaussian Graphical Model (sGGM) [Lauritzen,
1996; Yuan and Lin, 2007] provides a promising way to model
a large variable graph from massive data. Specifically, sGGM
considers a data matrix X containing n samples sampled from
a p-dimensional multivariate Gaussian distribution N (0,Σ∗)
with zero mean and an unknown covariance matrix Σ∗. Fur-
thermore, the inverse covariance matrix Ω∗ = [Σ∗]−1 (also
known as the precision matrix) denotes a partial correlation of
variables in a multivariate Gaussian distribution. This means
that Ω∗ij = 0 if and only if the i-th and j-th variables are condi-
tionally independent over a large system of variables. sGGM
is currently experiencing a resurgence, particularly when con-
sidering a variable graph with two or more characteristics.

Most existing approaches [Friedman et al., 2008; Hsieh
et al., 2014; Hsieh et al., 2013; Banerjee et al., 2008;
Yang et al., 2014b; Yang et al., 2014a] focus on develop-
ing an efficient algorithm that estimates Ω∗ when the number
of variables increases. Several works [Friedman et al., 2008;
Hsieh et al., 2014; Hsieh et al., 2013; Banerjee et al., 2008]
that propose this methodology are categorized as `1-norm
regularization methods. For instance, QUIC [Hsieh et al.,
2014] solves an `1-regularization maximum likelihood prob-
lem to recover a sparse precision matrix. Because the `1-
norm is non-differentiable, QUIC employs a second order
approximation to obtain the Newton direction. Although
QUIC uses a quadratic optimization method, it still itera-
tively computes the Newton direction. This step is pro-
hibitive for a large number of variables or a small num-
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ber of regularized parameters. To overcome iterative New-
ton direction calculations, other studies [Yang et al., 2014b;
Yang et al., 2014a] propose an elementary estimator (EE)
using well-defined and closed-form backward mapping func-
tions to rapidly compute the desired sparse structure in a high-
dimensional setting. However, EE still has the cubic time cost
in the matrix inversion step. Therefore, estimating a graph
with millions of variables is nevertheless infeasible. In ad-
dition, many `1-norm methods estimate the graphical model
directly. None of them consider leveraging the topological
graph structure to improve efficiency.

Recently, a new study [Zhang et al., 2018] proposed an
RGL method to leverage a graph’s topological structure,
obtained via thresholding functions [Rothman et al., 2009;
Sojoudi, 2016; Mazumder and Hastie, 2012a], to improve
precision matrix estimation. RGL transforms the optimiza-
tion problem into a maximum determinant matrix completion
(MDMC) problem by using the (actual) sparsity of the pre-
cision matrix, which is obtained by applying thresholding
functions. Thus, it uses a conjugate gradient Newton method
to solve the MDMC problem. The authors empirically show
that this method achieves an approximately 6 × 10−17 opti-
mality gap, whereas QUIC achieves a gap of 4 × 10−4. By
restricting the structure of the sparsity, obtained by thresh-
olding, RGL improves the accuracy of the precision matrix
estimation, when compared to QUIC. However, to our best
knowledge, applying a graph’s topological structure to speed
up estimation is still missing in the current literature.

In this paper, we propose a novel method, called Fast and
Scalable Inverse Covariance Estimator by Thresholding (FST),
that uses a graph’s topological structure, generated by thresh-
olding functions, to speed up sGGM estimation (see Fig. 1).
Therefore, this study makes following contributions:

• Fast computation: FST estimates sGGM by solving sev-
eral sub-problems, independently, to dramatically reduce
the computational complexity to O(p2). See Section 4.1

• Accurate solution: We theoretically show
that our method obtains a convergence rate
O(
√

(log max{p, n})/n) . This is the same sharp
convergence rate as the state-of-the-art method, but with
a significantly lower computational cost. See Section 5.

• Feasibility for social graph structure: FST is feasible
for a general sparse topological structure, social graph.
Moreover, the time complexity is theoretically proved to
be lower for estimating a social graph. See Section 3.2.

• Evaluation: We performs FST on several simulated
datasets and one real world dataset. We empirically find
that FST is, at least, 2 times faster than the 4 provided
baselines, while having a lower error rate under both the
Frobenius-norm and max-norm. See Section 6.

We let Σ denote the covariance, and Σ̂ the sample covari-
ance. For a matrix X , the (i, j) − th entry is denoted by
Xij . Let ||X||F denote the Frobenius-norm of X and ||X||max
the element-wise max-norm of X . || · ||1,off and || · ||∞,off
are off-diagonal element-wise `1 norm and `∞ norm respec-
tively. || · ||op is the spectral norm. For convenience, we
use M = diag(M1,M2, ...,Mk) to imply that matrix M is a

block diagonal matrix composed of k submatrices {Mi}1≤i≤k.
We also introduce some graph theory notations sufficient for
this paper. Let G = (V,E) denote an undirected graph. Sup-
pose graph G = ∪kl=1(Vl, El) can be decomposed into k
connected components, where (Vl, El) represents the l − th
connected component Gl. We say {Vl}1≤l≤k is the vertex-
partition generated by graph G.

2 Background
2.1 Sparse Gaussian Graphical Model (sGGM)
A classical formulation that estimates a sGGM is the graphical
lasso (GLasso) method [Friedman et al., 2008]. GLasso solves
the maximum likelihood estimation problem

arg min
Ω>0

− log det(Ω) + tr(ΩΣ̂) + λ||Ω||1, (1)

where the `1-regularization obtains a sparse graphical structure.
GLasso derives ideas of coordinate descent procedure of Lasso
to solve Eq. (1) efficiently. A number of variations, based
on GLasso, are also proposed. Because the `1-norm is non-
differentiable, QUIC [Hsieh et al., 2014] applies a second-
order approximation to solve this `1-regularization maximum
likelihood problem.

2.2 Elementary Estimator for sGGM
Previous sparse graphical model estimators [Friedman et al.,
2008; Cai et al., 2011; Hsieh et al., 2014] cannot handle large-
scale problems because of their high computational cost. To
improve the computational cost, [Yang et al., 2014b] propose
a family of simple and fast estimators called Elementary Esti-
mators (EE) of the following form

arg min
θ

R(θ) s.t. R∗(θ − θ̂n) ≤ λ, (2)

whereR(·) is a regularized function,R∗(·) is the dual norm
of R(·) that R∗(v) = supu6=0

<u,v>
R(u) , λ is the regularization

parameter and θ̂n is the backward mapping function. The back-
ward mapping function is a sufficient statistic for θ, whereas
θ̂n needs to be carefully constructed, well-defined and closed-
form to obtain a fast computation. The formulation, defined
by Eq. (2), must find a solution that abides by the structure
enforced byR(·).

In particular, [Yang et al., 2014b] use EEs to estimate sG-
GMs. In an sGGM, the backward mapping function should be
θ̂n = Σ̂−1, where Σ̂ is the sample covariance matrix. However,
Σ̂ is non-invertible in high-dimensional settings where p� n.
The motivation of this novel method is to overcome the rank-
deficient problem of Σ̂. The method carefully constructs a
backward mapping function proxy using the general thresh-
old function θ̂n = [Tν(Σ̂)]−1, which is both closed-form and
well-defined in high-dimensional settings. Here, Tν(·) is an
instance of generalized thresholding function (explained in
Section 2.3) with threshold ν. Eq. (2) is transformed to

arg min
Ω

||Ω||1,off s.t. ||Ω− [Tν(Σ̂)]−1||∞,off ≤ λ,

(3)
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Generalized Thresholding  Decompose Problem
 induce sparsity

L1, sGGM 

     Proposed :
          FST

Elementary Estimator  Thresholding Based Solution

Figure 1: Basic idea of FST. On the one hand, in FST, an arbitrary instance of generalized thresholding function is used to recover the true
graph topological structure. For a graphical model with a social graph topological structure (see Section 3.2), the sparsity is obtained and the
original problem can be decomposed into independent subproblems. On the other hand, the elementary estimator is used for solving each
subproblem with a closed-form solution.

which has the closed-form solution

Ω̂ = Sλ([Tν(Σ̂)]−1), (4)

where Sλ(z) = sign(z)max{|z| − λ, 0} is a soft-thresholding
operator with threshold λ. Therefore, using EEs with an
sGGM is a thresholding-based method; thus, its computation
is extremely fast.

2.3 Generalized Thresholding Function for
Estimating Graph Structure

[Rothman et al., 2009] propose a family of generalized thresh-
olding functions. They also show that they could excavate the
sparsity of a true graph structure via generalized thresholding.
Thus, utilizing the true sparsity obtained by thresholding, we
can uncover a graph’s topological structure.

[Rothman et al., 2009] prove that Tν(Σ̂) excludes all the
true-zero elements of the true covariance Σ∗, where Tν(Σ̂) is
a generalized thresholding function. Therefore, if Σ∗ is the
covariance of a Gaussian distribution, we have that

if Σ∗ij = 0 then Tν(Σ̂)ij = 0 (5)

for a sufficiently large constantM and ν = M
√

( log p
n ) where

probability approaches 1.
If we assume that an edge skeleton, which is defined by

Tν(Σ̂), encodes a graph Gν , then we can always assume
that Gν can be decomposed to at least one connected com-
ponent. In a real-world scenario, the graph Gν contains
several connected components (i.e., K is large), namely

Gν =
K⋃
i

(V νi , E
ν
i ), where K � 1. Therefore, we can decom-

pose Gν into K connected components and split the entries of
Tν(Σ̂) into K subsets accordingly.

3 Method
3.1 Propose Method: Fast and Scalable Inverse

Covariance Estimator by Thresholding
As mentioned in Section 2.3, a Gν graph can be decomposed
into K components. Thus, the entries of Tν(Σ̂) can be split
into a specific number of subsets. One subset of entries is
irrelevant to the other subsets. Without loss of generality, we

can permute the order of variables and rearrange Tν(Σ̂) to a
block diagonal matrix.

Tν(Σ̂) = diag(Tν(Σ̂)1, Tν(Σ̂)2, ..., Tν(Σ̂)K), (6)

which is similar to Gν if we assume there is a graph G
encoded by the real precision matrix Ω∗. The operator diag is
used to construct a block diagonal matrix given data of each
diagonal submatrix. Ideally,G can be decomposed into several
connected components, where the number of components is

also K. Therefore, G =
K⋃
i

(Vi, Ei) and Ω∗ are also block

diagonal after permutation.

Ω∗ = diag(Ω∗1,Ω
∗
2, ...,Ω

∗
K). (7)

Lemma 1 in appendix proves that, for a proper ν, a general-
ized thresholding function exactly induces all theK connected
components of true graph G. Moreover, the support sets of
Tν(Σ̂)i and Ω∗i are the same. After decomposing Tν(Σ̂) and
splitting variables into K subsets via thresholding, we are
able to estimate Ω∗ by estimating K diagonal blocks, i.e. K
sub-problems.

Therefore, we propose our FST method, which estimats Ω
through solving the following formulation for the i−th sub-
problem:

arg min
Ωi

||Ωi||1 s.t. ||Ωi − [Tν(Σ̂)i]
−1||∞ < λ, (8)

where 1 ≤ i ≤ K. In Section 5, we theoretically show that
FST achieves the same sharp convergence rate as state-of-the-
art methods. Notably, Eq. (8) has a closed-form solution

Ω̂i = Sλ(Tν(Σ̂)−1
i ), (9)

where Sλ(·) is a soft-thresholding function with threshold λ.
Notice that if Tν(·) is an off-diagonal thresholding function,
then each submatrix Tν(Σ̂)i is invertible. Having solved the
i−th sub-problem for all 1 ≤ i ≤ K, we can combine these
K sub-solutions to determine the final estimate

Ω̂ = diag( Ω̂1 , ... , Ω̂i , ... , Ω̂K ). (10)

Therefore, we can obtain the solution of FST via the fol-
lowing four steps: 1) Calculate the sample covariance matrix
Σ̂ given n samples with p variables; 2) Apply the general-
ized thresholding function Tν(·) to Σ̂; 3) Find K connected
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Algorithm 1 FST

1: Input: Threshold ν, regularized parameter λ, sample
covariance matrix Σ̂ ∈ Rp×p

2: Σ̂′ ← Tν(Σ̂); permute Σ̂′ to make it block diagonal;
3: K ← number of diagonal blocks in Σ̂′

4: for k = 1 to K do
5: Ω̂k = Sλ((Σ̂′k)−1)
6: end for
7: Output: Estimated precision matrix Ω̂

components of Tν(Σ̂) and permute the columns (rows) of the
resulting matrix to block diagonal form; 4) Find the inverse of
each diagonal block Tν(Σ̂)i and then determine Sλ(Tν(Σ̂)−1

i )
for all 1 ≤ i ≤ K. The pseudocode of FST is shown in Al-
gorithm 1 and the analysis of the computation complexity is
proposed in Section 4.1.

3.2 Social Graph Topological Structure
In real-world applications, various kinds of topological struc-
tures (and their graphs) can be detected via thresholding. As
shown above, FST can use the structure of a graph to speed
up the estimation. FST can be utilized in a general situation;
for example, where the real graph structure is in the form of
a social-network. In a social network graph, the connectiv-
ity between nodes within a single community can be dense.
While the connectivity across different communities can be
extremely sparse. By formalizing the process, any case can
be reduced to a 2 × 2 symmetric block matrix. Two diag-
onal blocks denote relationships within a single community
and two non-diagonal blocks represent relationships between
communities.

For convenience, let Ti denote Tν(Σ̂)i. The solution of the
i−th problem has the form(

Ω̂
(11)
i Ω̂

(12)
i

Ω̂
(21)
i Ω̂

(22)
i

)
=

(
T

(11)
i T

(12)
i

T
(21)
i T

(22)
i

)−1

,

where T (11)
i , T (22)

i are dense and T
(12)
i = [T

(21)
i ]T is ex-

tremely sparse. After applying a slight abuse of notation, we
let I12 represent the indices of a non-zero element in T (12)

i

and let sparse((T
(12)
i )e | e ∈ I12) represents a sparse matrix

T
(12)
i . Let I ′ = I12 ∩ I21, generally |I ′| and |I12|, be small,

as in real-world applications, so that we can solve each part of
Ω̂i through

Ω̂
(11)
i = [T

(11)
i − sparse([T

(12)
i ]e · [(T (22)

i )−1]e · [T (21)
i ]e)]

−1,

Ω̂
(22)
i = [T

(22)
i − sparse([T

(21)
i ]e · [(T (11)

i )−1]e · [T (12)
i ]e)]

−1

(11)
for each e ∈ I ′, and

Ω̂
(12)
i = sparse([(Ti)

−1
11 ]e · [(Ti)12]e · [(Ω̂i)11]e | e ∈ I12),

Ω̂
(21)
i = sparse([(Ti)

−1
22 ]e · [(Ti)21]e · [(Ω̂i)22]e | e ∈ I21).

(12)
Suppose T (11)

i ∈ Rm×m, T (22)
i ∈ Rn×n and |I12| = s,

then computation complexity of calculating Ω̂i is

O(m3 + n3 +m2 + n2 + (m+ n)(s+ s2) + smn)

= O(m3 + n3)� O((m+ n)3).
(13)

Normally, s has a value between 10 to 100. Because we aim to
estimate problems with millions of variables, the value of m
and n can be 1000 to 10000. Hence, we can easily assume that
s� min{m,n}. Therefore, Eq. (13) holds and apparently, it
is computationally more efficient than directly calculating the
inversion of Tν(Σ̂)i, which has O((m+n)3) time complexity.

The remaining challenge of estimating the graph’s structure
is to extract the network structure on the thresholded matrix,
then each connected component can be dealt with separately.
[Newman, 2004] propose GN-algorithm to find community
structures within a network and the computational complexity
is shown to be at least O(a2) for a sparse graph, where a is
the number of edges. Because for a sparse graph, the number
of edges a is much less, compared with a dense graph contain-
ing almost p2 edges, the time cost of extracting the network
structure can be negligible in solving FST.

4 Discussion
4.1 Computational Complexity
First of all, sample covariance Σ̂ can be computed rapidly with
sufficient threads by the virtue of multi-threading computation.
Besides, this procedure is inevitable for every estimator, so we
omit this procedure in our discussions of complexity.
Time complexity. The time complexity of FST contains
mainly two parts. One is the element-wise thresholding Tν(· ),
which costs O(p2) time. Another major part is solving K sub-
problems, which has O(

∑K
i=1 |V νi |3) time complexity. Fur-

thermore, as shown in equation (13), as long as Tν(Σ̂)i has a
sparse pattern, the specific solving procedure is able to save
more time. In real-world applications, the number of con-
nected components K can be very large, hence, the number
of variables in each block |V νi | � p. In a word, the time cost
of our method is dominated by thresholding time, which is
O(p2). Additionally, except for obtaining the connected com-
ponents, all the other steps are non-iterative and full of matrix
calculations. Therefore, with sufficient number of threads, the
computational bottleneck becomes the part of obtaining con-
nected components, which has O(|Eν |+ p) time complexity.
This is linear to p because Tν(Σ̂) is sparse hence the edge
number |Eν | is linear to p. Additionally, notice that although
our model has two tuning parameters while others have only
one, the pre-parameter-tuning procedure of FST can be fast
accomplished due to its efficiency, thus, has limited effects
over solving process.
Memory complexity. Notice that when solving the i−th
subproblem, we need to read a |V νi | × |V νi | matrix into mem-
ory. So totally O(maxi{|V νi |}2) storage space is sufficient
for solving K independent subproblems. The bottleneck of
memory cost arises when obtaining the connected components,
because we need to read into the whole Tν(Σ̂) (i.e. the ad-
jacent matrix). So at most O(K × maxi{|V νi |}2) memory
spaces are allocated in this step. In summary, the memory
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Method FST QUIC BIGQUIC EE
Time Complexity O(p2) O(T × p3) O((p+ |B|)hTTouter)

1 O(p3)

Table 1: Time complexity of FST vs. baselines. 2

complexity of our model is O(K ×maxi{|V νi |}2), which is
much less than O(p2) due to the sparsity.

4.2 Connecting to the Previous Study

Chow-Liu tree algorithm is a method proposed for esti-
mating a special graphical structure, tree structure, hence,
less general than FST and is not suitable for inverse co-
variance estimation tasks. [Mazumder and Hastie, 2012b;
Witten et al., 2011] are two thresholding-based inverse covari-
ance estimator. Although they also use thresholding function
to detect the graph structure like us, they mainly have two
disadvantages compared with our method: 1) They only prove
that their methods are feasible for cluster graph. However,
we prove that FST is applicable for a more general structure,
social-graph structure. 2) After separating the graph into sev-
eral connected components, these two methods use GLasso
to estimate each component in an iterative manner. On the
contrary, FST uses EE, which has a closed-form solution, to
estimate each component rapidly.

Furthermore, many methods are proposed for models with
large number of data. [Hsieh et al., 2013] propose an iterative
method, BIGQUIC, to estimate an sGGM with one million
variables. Carefully exploiting the underlying structure of the
problem, BIGQUIC solves the system via a block-coordinate
descent Newton method. Furthermore, BIGQUIC partitions
the Newton direction into several blocks and uses the memory
cache to speed up updating them. The computation complexity
of BIGQUIC is dominated by O((p+ |B|)hTTouter), in which
|B| is the number of boundary nodes, h is the number of
non-zero elements in the t-th generation hypothesized solution
Ω̂(t), T is the average number of Conjugate Gradient iterations
and Touter is the number of calculations within a block. At first,
h is the number of non-zero elements in a p× p matrix, whose
value might be larger than p. Therefore, the time complexity
of BIGQUIC is larger than the O(p2) time complexity of
FST. Second, the choice of cluster scheme that BIGQUIC
uses largely influences the performance. A bad partition of
variables causes a lot of “cache misses”. The difficulty of
choosing a cluster scheme makes BIGQUIC more difficult to
implement than FST.

Moreover, SQUIC [Bollhöfer and Schenk, 2016], PR-
SQUIC [Eftekhari et al., 2018], and HP-CONCORD [Koanan-
takool et al., 2017] are proposed recently to estimate sGGMs
with massive variables. SQUIC and PR-SQUIC first constructs
the sparse form of the sample covariance and then achieves
fast estimations with the help of matrix sparsity and parallel
computation. HP-CONCORD, on the other hand, obtains high
speedups based on distributed environments. In Section 6, we
take BIGQUIC among above scalable methods to compare
with FST.

5 Theoretical Analysis
In this section, we provide the theoretical analysis of error
bound in FST. The proof is based on [Rothman et al., 2009]
and inspired by [Mazumder and Hastie, 2012a]. First, we
propose some lemmas which are useful in our proof.
Lemma 1 (Vertex-partition consistency). For a sufficient

large M , if ν = M
√

( log p
n ), thresholded covariance Tν(Σ̂)

can find out vertex-partition induced by Ω∗. Which is if Tν(Σ̂)
encodes a graph Gν = ∪Kν

i (V νi , E
ν
i ) and Ω∗ encodes a

graph G = ∪Ki (Vi, Ei), for a sufficient ν, we have K = Kν

and
Vi = V νi for all 1 ≤ i ≤ K (14)

Proof. As G has K connected components,

G = ∪Ki (Vi, Ei)

vertices are splitted into K clusters {Vi}1≤i≤K so that for
∀a ∈ Vi, b ∈ Vj and i 6= j, we have Ω∗ab = 0. Therefore,
reordering variables of Ω∗, we can make it block diagonal

Ω∗ = diag(Ω∗1,Ω
∗
2, ...,Ω

∗
K)

in which variables of Ω∗i is Vi for all 1 ≤ i ≤ K. Based on the
fact that inversion of a block diagonal matrix can be obtained
from inversing each diagonal block of it,we have

Σ = diag(Σ1,Σ2, ...,ΣK)

= diag((Ω∗1)−1, (Ω∗2)−1, ..., (Ω∗K)−1)
(15)

On the other hand, [Rothman et al., 2009] proves that if
for the true covariance matrix Σij = 0, then Tν(Σ̂)ij = 0

with probability tending to 1 if ν = M
√

( log p
n ) for a suf-

ficient large M . Assuming Tν(Σ̂) encodes a graph Gν =
∪Kν

i (V νi , E
ν
i ) and the true covariance Σ encodes a graph

G′ = ∪K′i (V ′i , E
′
i). Because thresholding can remove all

the zero element of Σ, it is reasonable to expect that for a
proper ν, Gν has the same vertex-partition induced by G′,
which is Kν = K ′ and

V νi = V ′i for all 1 ≤ i ≤ Kν (16)

Though G 6= G′, they have the same vertex-partition so that
Tν(Σ̂) obtains vertex-partition of graph G, which is Kν = K
and

V νi = Vi for all 1 ≤ i ≤ K (17)

Lemma 2. (Theorem 1 in [Bickel et al., 2008])
Let δ be maxij |[X

TX
n ]ij − Σij |. Suppose threshold ν ≤ 2δ,

then the spectral norm of error is bounded as

||Tν(Σ̂)− Σ||op ≤ 5ν1−qc0(p) + 3ν−qc0(p)δ (18)
0|B| is the number of boundary nodes, h is the number of non-

zero elements in the t-th generation optimized solution Ωt and Touter
is the number of sweeps within a block. See details in [Hsieh et al.,
2013]

1Here, T denotes for the number of iterations.
2Here, T denotes for the number of iterations.
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p
Frobenius-norm Max-norm

FST (EE) GLasso (QUIC) BIGQUIC FST (EE) GLasso (QUIC) BIGQUIC
1000 22.278 40.448 81.258 0.5201 0.624 1.881
2500 28.676 64.465 132.991 0.4128 0.606 2.036
5000 43.558 91.568 168.579 0.444 0.606 1.877

10000 45.288 128.381 ∗ 0.302 0.588 ∗

Table 2: The Frobenius norm and max norm error of solutions of FST, and baselines on simulated datasets varying p and fix n = 2p and
K = 20. Each block is generated through the random model. “*” means BIGQUIC can’t get the solution in 30 minutes.

Lemma 3. (Theorem 3 in [Ravikumar et al., 2011])
Let A be the event that

||X
TX

n
− Σ||∞ ≤ 8(maxiΣii)

√
10τ log p′

n

in which p′ = max{n, p} and τ is any constant greater than
2. Suppose the matrix X is i.i.d sampled from Σ-Gaussian
ensemble with n ≤ 40 maxi Σii. Then the event A occurs
with probability at least 1− 4/p′τ−2.

Furthermore, the following conditions need to satisfied to
get a desired sharp error bound.

(C-Sparsity) The real precision matrix Ω∗ has exactly D
non-zero elements.

(C-MinInf) The real precision matrix Ω∗ has a bounded
operator norm such that ||Ω∗||2 =

∑
w 6=0∈Rp

||Ω∗w||∞
||w||∞ ≤ k1,

where k1 is a constant.

(C-Sparse) The real covariance matrix Σ satisfies the fol-
lowing condition: for some positive constant D, Σii < D
for all diagonal entries and for some 0 ≤ q < 1 and

c0(p), max
i

p∑
j=1

|Σij |q ≤ c0(p). We additionally require

||Σw||∞
||w||∞ ≥ k2 where k2 is a constant.

Now we can provide the error bound of our FST.

Theorem 1 (Error bound). The real precision matrix Ω∗

has k non-zero off-diagonal elements and all the condi-

tions are held. a := 16(maxi Σii)
√

10τ , ν := a
√

log p′

n

and for p′ := max{n, p}. For a sufficient large threshold,

λ := 4k1a
k2

√
log p′

n , as long as n > c3 log p′, the estimation Ω̂

satisfies

||Ω̂− Ω∗||F ≤ 16k1a

k2

√
D log p′

n
, (19)

with probability at least 1− c1exp(−c2 log p′). c1, c2, and c3
are constants.

Proof. For a certain 1 ≤ i ≤ K, let ∆ = Ω̂i − Ω∗i be the esti-
mation error. Choose λ to satisfy λ ≥ ||Ω∗i − [Tν(Σ̂)i]

−1||∞,
we have

||∆||∞ = ||Ω̂i − [Tν(Σ̂)i]
−1 + [Tν(Σ̂)i]

−1 − Ω∗i ||∞
≤ ||Ω̂i − [Tν(Σ̂)i]

−1||∞ + ||Ω∗i − [Tν(Σ̂)i]
−1||∞

≤ 2λ

(20)

Then we can decompose Ω∗i into two parts: Ω∗i,z contains
all the zero elements and Ω∗i,nz contains other non-zero ele-
ments. Let ∆z represents Ω̂i,z − Ω∗i,z in which entries of Ω̂i,z
corresponding to indices of Ω∗i,z . We have

||Ω∗i ||1 =||Ω∗i ||1 + ||∆z||1 − ||∆z||1
=||Ω∗i + ∆z||1 − ||∆z||1
=||Ω∗i + ∆z + ∆nz −∆nz||1 − ||∆z||1
≤||Ω∗i + ∆z + ∆nz||1 + ||∆nz||1 − ||∆z||1
=||Ω∗i + ∆||1 + ||∆nz||1 − ||∆z||1

(21)

where the second equality holds by the fact that Ω∗i,z = 0 and
the first inequality satisfied by triangle inequality of `1-norm.
Since Ω̂i is the optimal solution of the i−th subproblem of
FST, we have ||Ω̂i||1 ≤ ||Ω∗i ||1. Combining this with (21), we
have

0 ≤ ||∆nz||1 − ||∆z||1 (22)
Now we are able to prove the bound of Frobenius-norm of

∆,
||∆||2F ≤||∆||1||∆||∞

≤||∆||∞(||∆z||1 + ||∆nz||1)

≤2||∆||∞||∆nz||1
≤4λ
√
D||∆nz||F

(23)

where the first inequality holds by Holder’s inequality and the
third inequality is satisfied by (22). The last inequality holds
by (20) and the fact that ||∆nz||1 ≤

√
D||∆nz||F (AM-GM

inequality), in which D is a constant relevant to the dimension
of ∆. Noticed that ||∆nz||F ≤ ||∆||F , we obtain ||∆||F ≤
4λ
√
D.

Finally, we are going to prove which λ can satisfy a desired
error bound. We need to choose a λ no less than ||Ω∗i −
[Tν(Σ̂)i]

−1||∞ and we have

||Ω∗i − [Tν(Σ̂)i]
−1||∞ = ||[Tν(Σ̂)i]

−1(Tν(Σ̂)iΩ
∗
i − I)||∞

≤ ||[Tν(Σ̂)i]
−1||op||Tν(Σ̂)iΩ

∗
i − I||∞

= ||[Tν(Σ̂)i]
−1||op||Ω∗i (Tν(Σ̂)i − Σ∗i )||∞

≤ ||[Tν(Σ̂)i]
−1||op||Ω∗i ||op||Tν(Σ̂)i − Σ∗i ||∞

(24)
For any w,

||Tν(Σ̂)iw||∞ =||Tν(Σ̂)iw − Σiw + Σiw||∞
≥||Σw||∞||w(Tν(Σ̂)i − Σi)||∞
≥k2||w||∞ − ||w(Tν(Σ̂)i − Σi)||∞
≥(k2 − ||Tν(Σ̂)i − Σi||op)||w||∞

(25)
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in which the second inequality from the bottom uses (C-
SparseΣ). From Lemma (2), we have

||Tν(Σ̂)i − Σi||op ≤ c1(
log p′

n
)(1−q)/2c0(p)

where c1 is a constant only related to τ and maxiΣii.
Hence as long as n satisfies the equation above, we have

||Tν(Σ̂)i − Σi||op ≤ k2
2 and conclude that ||Tν(Σ̂)iw||∞ ≥

k2
2 ||w||∞, which implies ||[Tν(Σ̂)i]

−1||op ≤ 2
k2

. Also as

||Tν(Σ̂)i−Σi||∞ ≤ ||Tν(Σ̂)i− Σ̂i||∞+ ||Σ̂i−Σi||∞, by (C-
Thresh) and lemma (3), we can confirm that ||Tν(Σ̂)i−Σi||∞
is bounded by 2ν. Finally because of (C-MinInfΣ), we have
||Ω∗i ||op ≤ k1. Combining all these, we obtain

λ =
4νk1

k2
(26)

Substituting λ in Eq. (23), we obtain the Frobenius norm of
estimation error bound.

6 Experiment
We first propose some experimental setups of our integral
empirical comparisons of FST and the baselines.

Experiment environment. Our experiment environment is
a Linux server with E5-2630 v4 CPU and 64GB memories.
All experiments are run using single core.

Baselines. We compare FST with 1) BIGQUIC, 2) GLasso,
3) QUIC, 4) EE,.

Accuracy evaluation metrics. We use the Frobenius-norm
and element-wise max-norm for evaluating the estimation,
which are ||Ω̂− Ω∗||F and ||Ω̂− Ω∗||max respectively.

Three models to generate blocks. We generate each sub-
matrix (Ω∗i )1≤i≤K using the following three methods. 1)
Random block: Ω∗i = B + δUl. Bij = 0.7|i−j| · I{mod(|i−
j|, c) == 0}. Ul is the noise matrix generated by p i.i.d. stan-
dard normal distributed variables and δ is a positive constant;
2) Circular block: Ω∗i encodes a circular graph with the weight
of each edge is 0.7; 3) Grid block: Ω∗i encodes a grid graph
with the weight of each edge is 0.1.

Simulated datasets generating. We generate samples us-
ing the simulated precision matrix. Each block of the precision
matrix can be any one of three graph models mentioned above.
Samples are drawn from a multivariate Gaussian distribution
N (0, [Ω∗]−1).

Tuning parameters selection. The tuning parameters of all
the methods are selected through 5-fold cross-validation pro-
cedure. For FST, we select λ from {0.1, 0.2, · · · , 1.0} and ν
from {0.1, 0.2 · · · , 1.0}.
Other configurations. Without special description, the
Tν(·) we used in the following is the hard-thresholding. More-
over, when generating the block-diagonal precision matrix,
each block has the same number of variables. After generating
Ω∗, we need to reshuffle the order of variables.

n
Frobenius-norm Max-norm

FST (EE) GLasso (QUIC) FST (EE) GLasso (QUIC)
1500 42.192 71.011 0.602 0.636
2000 49.785 70.808 0.611 0.627
3000 27.194 70.320 0.610 0.636

Table 3: Accuracy comparison of FST and GLasso in high-
dimensional settings where p = 3000. The number of connected
components is K = 20 and all these components are random graphs.

p
FST BIGQUIC EE

1 thread 32 threads 32 threads speedups 32 thread speedups
106 197 hours 11.8 hours 24 hours 2× 114 hours 9.6×

Table 4: Time cost of FST, EE and BIGQUIC in single-threading and
32-threading environments on datasets with p = 106, n = 104, and
K = 40. Each block is generated via the random model.

6.1 Experiment I: Comparison of Performance on
Simulated Data

First, we apply FST and four baselines on synthetic data gener-
ated through varying p from {1000, 2500, 5000, 10000}, and
fixing n = 2p and K = 20. All the methods are implemented
with single thread in this experiment. Figure 2 implies that
FST obtains significant computing time reduction compared to
four provided baselines across all three data models. When p
is large, FST is 2 ∼ 4 times faster than EE and is consistently
10 times around faster than GLasso, QUIC and BIGQUIC. The
black dashed line in the figure indicates that GLasso, QUIC,
and BIGQUIC are not able to obtain desired solutions in half
an hour while FST needs much less time. The comparison
of accuracy is also provided. Notice that GLasso and QUIC
have the same solution and the solution of EE is the same as
that in FST. Therefore, we only exhibit Frobenius-norm and
max-norm of GLasso, FST and BIGQUIC. Table 2 shows that
FST obtains the least Frobenius- and max-norm.

Moreover, we test the efficiency of FST in high-dimensional
settings. In this experiment, we generate simulated datasets
with p = 3000 and varies n from {1500, 2000, 3000}, each
graph of which contains K = 20 random graphs. Notice that
because the results reported in Table 2 indicate that BIGQUIC
obtains worse solution than other methods, we omit BIGQUIC
in this high-dimensional experiment and only compare the
solution of FST with it of GLasso (or QUIC). In Table 3, it
shows that FST obtains lower Frobenius-norm and max-norm
under every conditions, denoting that FST outperforms other
baselines in high-dimensional settings.

Furthermore, we evaluate our method on simulated datasets
with millions of variables. Since other methods are infeasible
for problems with a large number of variables, we only com-
pare FST with EE and BIGQUIC using p = 106, n = 104 and
K = 40. We omit the computational cost for swapping blocks
in and out of disks since the memory use in this experiment is
relatively large. Table 4 shows that FST needs no more than
12 hours to finish running while BIGQUIC needs 24 hours
using 32 threads.
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Figure 2: (A-C) Time cost of FST v.s. baselines on simulated datasets that generated with the corresponding model. The data are generated
varying p, n = 2p, and K = 20. The vertical dashed line suggests that the corresponding method cannot get the solution in 30 minutes.

p
Time cost on fMRI datasets using 40 threads

FST EE GLasso
20480 207.2 secs 382.5 secs > 60 mins
28672 794.4 secs 1131.5 secs > 60 mins
36864 973.4 secs 1696.6 secs > 60 mins

Table 5: Time costs of FST, EE and GLasso on the SocialBrain [Tso
et al., 2018] fMRI dataset. FST is implemented with 40 threads. The
datasets contains three tasks with different p and n = 120 for all.

6.2 Experiment II: Precision Matrix Estimation on
Real-World fMRI Data

We also evaluate FST and baselines for estimating precision
matrices on a real-world fMRI dataset: SocialBrain [Tso et
al., 2018]. This dataset is used to understand how the hu-
man brain processes social information. SocialBrain includes
120 samples, which are obtained through blood-oxygen-level-
dependent imaging (BOLD) on 20480, 28672, 36864 voxels
(i.e., variables). Like simulated experiments, all the tuning
parameters are selected through 5-fold cross-validation. Ta-
ble 5 shows that FST outperforms the other two baselines
by using 40 cores (for this dataset). The estimated precision
matrix is showed in Fig. 2 in the appendix. Results show that
FST is able to obtain the graph’s topological structure from
fMRI datasets. Though the number of variables is less than
one million, we show that our method is much faster than
state-of-the-art ones.

7 Conclusion

This paper proposes FST, a scalable sparse Gaussian graphical
model estimator with massive variables. By applying gen-
eralized thresholding to the sample covariance matrix, FST
induces the true graphical topological structure and utilizes
it to speed up estimation. Specifically, FST demonstrates
its excellence by analyzing various topological graph struc-
tures, including cluster and social graphs. Theoretical anal-
ysis shows that FST obtains the same sharp convergence
rate, O(

√
(log max{p, n}/n), as most state-of-the-art meth-

ods while dramatically reducing the computational complexity
to O(p2). Empirical experiments are used to validate that FST
is faster than the baseline when achieving a lower error rate
under both the Frobenius-norm and max-norm.
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