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Abstract

Next Point-of-Interest (POI) recommendation
plays an important role in location-based services.
State-of-the-art methods learn the POlI-level se-
quential patterns in the user’s check-in sequence
but ignore the subsequence patterns that often
represent the socio-economic activities or coher-
ence of preference of the users. However, it is
challenging to integrate the semantic subsequences
due to the difficulty to predefine the granularity
of the complex but meaningful subsequences.
In this paper, we propose Adaptive Sequence
Partitioner with Power-law Attention (ASPPA) to
automatically identify each semantic subsequence
of POIs and discover their sequential patterns.
Our model adopts a state-based stacked recurrent
neural network to hierarchically learn the latent
structures of the user’s check-in sequence. We
also design a power-law attention mechanism to
integrate the domain knowledge in spatial and
temporal contexts. Extensive experiments on two
real-world datasets demonstrate the effectiveness
of our model.

1 Introduction

With the rapid growth of Location-Based Social Networks
(LBSNs), such as Yelp and Foursquare, point-of-interest
(POI) recommendation has attracted wide attention from both
academia and industry [Zhang and Wang, 2015; Yin et al.,
2016; Wang et al., 2018]. As a natural extension of general
POI recommendation, next POI recommendation aims at pre-
dicting the POIs that are most likely to be visited next given
the user’s check-in history. Compared with the general POI
recommendation, next POI recommendation focuses more on
exploiting user movement patterns hidden in the historical
check-in sequence.

Next POI recommendation has attracted great research in-
terest recently. Early studies model the influence of previ-
ously visited POIs on future ones in a static manner. They
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Figure 1: An example of the user’s check-in sequence. (a) Different
colors represent different functional zones of the city. (b) represents
the POI-level sequential pattern. (c) shows check-in subsequences
divided by the functional zones.

regard each POI sequence as a Markov chain [Cheng et al.,
2013; Feng ef al., 2015; He et al., 2016; Zhao et al., 2016]
and then integrate the sequential patterns in terms of tran-
sition probability between POIs to the conventional matrix
factorization models. Recent studies adopt recurrent neural
network (RNN) based models to keep track of the sequen-
tial dependencies [Kong and Wu, 2018; Liu er al., 2016;
Zhao et al., 2019]. However, such sequential dependencies
cannot fully account for human mobility [Cho et al., 2011;
Kong and Wu, 2018]. The user’s check-in behaviors may be
influenced by a subsequence of previously visited POIs as a
whole rather than single POIs, which is beyond POI-level se-
quential patterns. Figure 1 shows the subsequence pattern of
the user’s check-in sequence. Modern cities consist of func-
tional zones such as residential areas, business districts, and
educational areas, etc. It is quite possible that people’s move-
ment patterns sometimes only exist among functional zones
rather than single POIs. Besides, their movements within a
specific zone could not show any sequential pattern. Thus,
the check-in subsequence generated within a functional zone
should be treated as a whole to represent the semantics or
function of the corresponding geographical region. More-
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over, such subsequences are not limited to the functional
zones. Actually, they can result from different factors in re-
ality. For example, a subsequence may be generated because
all the POIs in the subsequence match the user’s personal in-
terests. The set of POIs in the subsequence will perform as a
whole when influencing the user’s future visit.

Nevertheless, discovering and integrating subsequence-
level sequential patterns for the next POI recommendation
is challenging. The reason is that it is extremely difficult
and even impossible to predefine the length or granularity
of effective and meaningful subsequence (i.e., semantic sub-
sequence) due to their variety and complexity [Cho er al.,
2011]. In fact, these semantic subsequences have different
granularities or lengths. In order to exploit and integrate such
multi-granularity sequential patterns in the next POI recom-
mendation, we need to automatically analyze the underly-
ing structures and identify each semantic subsequence in the
user’s check-in sequence.

In this paper, we aim to automatically detect and iden-
tify each semantic subsequence of POIs and discover their
sequential patterns (i.e., sequential dependencies among se-
mantic subsequences). To this end, we propose a novel model
Adaptive Sequence Partitioner (ASP). Specifically, we de-
sign a hierarchical framework to automatically learn the latent
structures of the user’s check-in sequence, which is similar to
the latent topic discovery from texts [Blei et al., 2003], but
much more challenging due to the consideration of POI or-
der structure. Technically, we adopt a stacked recurrent neu-
ral network to hierarchically learn the representations from
the check-in sequence. In this design, the higher layer learns
from the lower in order to perform an abstraction with a larger
level of granularity. In order to automatically identify the
partition of each layer, we introduce the boundary detector
into the RNN cell and adopt the state-based methods to de-
tect boundaries in the input sequence. In this way, succes-
sive cells with the same state will formalize a segment and
be updated in a lower frequency, while the higher layers can
iteratively learn from the lower and formalize the larger seg-
ment. As a result, the latent structure can be well captured
into the segments with different levels of granularity. In order
to aggregate the structures from different stacked layers, we
further introduce the layer-wise attention to learn the align-
ment for each layer.

However, the intrinsic sparsity of the user’s check-in se-
quence may become the bottleneck of our proposed ASP
and lead to overfitting. This is because LBSN data has a
low sampling rate in both space and time compared with
GPS trajectories [Wang er al., 2016; Lv et al., 2018]. We
need to incorporate domain knowledge to alleviate the is-
sue of data sparsity in order to leverage the power of deep
neural networks. To this end, we propose to integrate the
domain knowledge in both spatial and temporal contexts
(i.e., the spatial and temporal effects on the user’s check-in
behaviors) and develop a novel Power-law Attention (PA)
mechanism with fewer parameters to replace the conven-
tional vanilla attention mechanism. Specifically, we adopt
the power-law decay towards the distance and exponential
decay towards the time interval into the standard attention
alignments among all the representations of outputs. In
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this way, PA could express the model that is equivalent to
the real-world average willingness-to-visit [Cho et al., 2011;
Yuan et al., 2013] under power law.

To sum up, the main contributions of our research are sum-
marized as follows:

* We design and develop a novel recommendation frame-
work ASPPA to identify the semantic subsequences of
POIs and discover their sequential patterns. Specifically,
this model can learn the latent structures by automati-
cally partitioning the POI sequence without handcrafted
features.

e We propose a Power-law Attention mechanism to inte-
grate the domain knowledge in both spatial and tempo-
ral contexts for the user’s check-in sequence. Our design
alleviates the data sparsity and largely reduces down the
number of parameters.

* We conduct extensive experiments to evaluate our
framework on two widely used real-world datasets. The
results show that our model is effective and outperform
state-of-the-art techniques.

2 Related Work

POI recommendation has attracted intensive attention due to
a wide range of potential applications. Most existing stud-
ies focus on how to model user preferences for POIs with the
awareness of the joint effect of rich contexts [Liu er al., 2017].
Some recent studies utilize neural network based approaches
for POI recommendation [Yin et al., 2017]. Yang et al. [2017]
regard user-user and POI-POI graph as the semi-supervised
labels and adopt a multi-layer feed-forward network to con-
duct collaborative filtering.

The next POI recommendation is an emerging task and has
attracted great research interest. Zhao et al. [2016] build a
pairwise tensor factorization framework with user-POI, POI-
time, and POI-POI interactions. He et al. [2016] explore the
latent pattern-level preference for each user and propose a
tensor-based latent model to capture the successive check-
in behavior. Feng et al. [2015] develop a pairwise metric
embedding algorithm to jointly model the sequential infor-
mation and individual preference. Liu et al. [2016] intro-
duce time-specific and distance-specific transition matrix in
RNN to model local temporal and spatial contexts. Kong et
al. [2018] and Zhao et al. [2019] integrate spatial and tem-
poral gating mechanism into LSTM units to incorporate the
necessary information for prediction. Chang et al. [2018] pro-
vide a better pre-trained POI embedding model to capture the
characteristics of POIs and improve existing POI recommen-
dation models. Wang et al. [2020] develop a next POI rec-
ommendation system for mobile devices. Although previous
studies exploit the sequential patterns in the user’s check-in
sequence, they only focus on POI-level and ignore the se-
quential dependency among semantic subsequences. Kong et
al. [2018] explore the area of interest that the user visits, but
they need to manually predefine the user’s visit sessions. Our
ASPPA can detect the semantic subsequences of POIs and
further discover their sequential patterns to improve the next
POI recommendation.
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Adaptive Sequence Partitioner
Figure 2: Architecture of ASPPA model
3 Proposed Model

In this section, we introduce the details of our Adaptive
Sequence Partitioner with Power-law Attention (ASPPA)
model. Our model identifies the semantic subsequences of
POIs and integrates the domain knowledge in spatial and
temporal context. To this end, we design an attention-based
stacked RNN architecture. As shown in Figure 2, the model
consists of two components, i.e., Adaptive Sequence Parti-
tioner (ASP) and Power-law Attention (PA). Next, we give
the problem statement and then introduce each component.

3.1 Problem Statement

Let U be the set of users and L be the set of POIs. For each
user u, her check-in history (in chronology order) is denoted
as V, = {(l}*,7) | t = 1,2,...}, where each tuple (I}, 7¢) is
the ¢™ visit of user u € U, with POI [ € £ and time stamp
7¢. The problem of next POI recommendation is to predict
the POIs for user u at the next time step, i.e., for each user we
learn a personalized ranking function f,, : V — 2 that maps
the user’s check-in history to a probability distribution for the
target POI set

fu=Pr(y € L|Vy,u) (1)

The output is the top-k ranked POIs according to the pre-
dicted probabilities.

3.2 Adaptive Sequence Partitioner

We propose the Adaptive Sequence Partitioner (ASP) to learn
the latent structures of the user’s check-in sequence. In order
to capture the sequential patterns of semantic subsequences,
we need to learn hierarchically from the check-in sequence,
which is similar to the latent topic discovery from texts [Blei
et al., 2003]. Thus ASP is designed to be a stacked RNN ar-
chitecture [Hihi and Bengio, 1995]. As shown in Figure 2,
lower layer is served as the input of the upper layer. It trans-
fers the state output h as well as the boundary detector z. If
the input boundaries can form the partition and control the
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update of the sequence, we can learn the subsequence infor-
mation in each layer and the sequential patterns among these
POI subsequences can also be learned from the hierarchy of
the model. We will show in the following parts.

Gating Mechanism. In ASP, the subsequence is identified
through the partition of each layer. Inspired by [Chung et al.,
20171, ASP adopts a binary boundary detector z to control the
pattern of cell update. Specifically, for ¢ layer, ASP has the
input, forget, output gates (if, f{, of), cell proposal & and

the pre-activation of boundary detector z¢, which are obtained

g
‘ o
t
0| YN ¥4 4 2+1 £—1 ¥4 -1 14
of | =|o| (W{hi_1+2 W/ h 1 +2 "W/ h{ " +b")
~[ ¢
C¢
2t o

(@)

where 3¢, ff,0f,éf € RVr, 2 € R. o is the logistic sigmoid
function. ¢ is the hyperbolic tangent function. W/ (i > 0)
is the linear transition matrix from layer i to layer j. h! is
the hidden output for layer ¢ at time ¢. For the top layer, we
do not include the output from upper layers. For the bottom
layer, h? is the POI embeddings x;. The input boundaries
2? = 1 make sure that all the inputs are valid.

Figure 3 compares the gating mechanism between LSTM
and ASP. We can see that ASP integrates the information
from upper and lower layers with a stacked RNN architec-
ture. The gate values are generated the same as LSTM with
the previous hidden state hf_l, the upper layer hfﬂ and the

lower layer hffl which are controlled by the boundary de-
tectors z. The boundary detector z is learned through pre-
activation z and served as the outputs of this time step. We
will show it in the follow parts.

Cell Update. The cell state c of ASP is updated according
to the gates. In order to transfer the cell information in a
stable way as well as to form the partition, we identify the
recurrent generalization in different depths [Krueger et al.,
2017]. Specifically, the cell state updates in three different
ways according to the combination of boundary detectors

UPDATE, z{_; =0A 2zt =1
COPY, zf_, =0Az"1 =0
FLUSH, z{_;, =1

0 0 YR
fiOci1+4OC¢
e Vi
Ct = § Ci—1
0 =l
1, ©Cy

3

where © denotes the element-wise product. UPDATE opera-

tion is the same as LSTM. The current cell state ¢; is updated
with the previous cell state ¢;_; and cell proposal ¢; after the
trade-off from forget gate f; and input gate ¢; respectively.
Following the idea of Krueger et al. [2017], we incorporate
COPY operation that selects some RNN cells to hold as the
previous time steps. However, rather than randomly selection
to alleviate the issue of over-fitting, the COPY operation is
learned to generate a more coalesce granularity. Furthermore,
in order to learn the new geographical region the user begins
to visit, we also generate the FLUSH operation to clear the
cell state and only preserve the information of this time step.
The FLUSH can start a new semantic subsequence.
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Figure 3: Cell comparison between LSTM and ASP. We only show the UPDATE cell state of ASP for simplicity.

Then the final output of the cell < h, z{ > is obtained by

ne_ Jhi COPY ¢ J1 iz >05 5
! o ® p(cf) otherwise 0 otherwise

where h{ gets updated the same as LSTM except when the
cell state is COPY to transfer the state from the last time step.
Boundary proposal 2/ is projected to {0, 1} with step function
in order to generate a binary boundary.

With ASP, the check-in sequence [hf, ..., h%] is hierar-
chically projected to semantic spaces. Since the stacked
layers in ASP capture different granularities, the sequence
composition should be determined by all of them. There-
fore we propose the layer-wise attention mechanism o
o (fveThf) to get the combined output. The layer-wise atten-
tion learns the weights of each layer by aggregating all the
time steps until now. So we can provide a uniform align-
ment for each time step by considering the overall effect of
the entire sequence. Then we aggregate the hidden states
h; = ReLU (Wh Yoo a?hf) to get the output of each time
step.

3.3 Power-law Attention Mechanism

We propose the Power-law Attention (PA) mechanism to inte-
grate spatial and temporal contexts of each check-in into our
model. We first introduce spatio-temporal bias

boy = f(Vo,vt) = =AAot — kIndo,: (5)

where v,,v; € {(l;,7;)} are the check-in points, A,; =
To — T¢ 1s the time interval, d, = D(l,, ;) is the geograph-
ical distance, A and k are the time and distance decays, re-
spectively. We also ensure that it has a negative effect on the
bias. With this bias, the weight score is defined as

scoret(fz, v) = 'quS(Wafzt +b)+ b;yt (6)

where b is the output state of ASP. Then we can calculate
the attention vector

exp (scoret(fz, v))
>, exp (scorei(ﬁ, v))

ar =

(7
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Now we consider the user’s real-world check-in behavior.
Previous studies indicate that the spatial items obey the First
Law of Geography [Tobler, 1970], which shows the user’s
willingness-to-visit w on a pair of POIs. It can be formulated
as a power-law distribution

wij = a- D(l, ;)" ®)

where a and k are parameters of the power law, D(l;,[;) is

the geographical distance of POl /; and [;. It has been widely
used in POI recommendation problems [Yuan et al., 2013;
Cho et al.,2011].

Inspired by the First Law of Geography, we can extend
the geographical distribution w to the spatio-temporal will-
ingness

Wo,t = Qo,t * d;f (9)

where a,; is obtained by
G01=g(hi, Do) =exp (v 6(Wahi+b) ) exp(-AAu) (10)

This coefficient is the non-linear transformation of the
user’s current state h; with the exponential decay towards
time interval A, ;. In this way, the user’s willingness incorpo-
rates both the spatial and temporal effects. It obeys the power
law towards the distance, which is the same as the First Law
of Geography. Furthermore, the coefficient considers the rep-
resentation of current POI as well as the time interval.

With above settings, the attention weight «; in Equation 7
is equivalent to the average spatio-temporal willingness w, ¢
because of the following formula transformation

Qo,t * d;? Wo,t

= — = (1D
> i Goyi - do,liC 22 Woii

Then the dynamic representation of the user’s check-in his-
tory can be represented by h = Ethl athy, which shows
that PA actually learns the user power-law willingness to visit
the POIs under spatial and temporal contexts when it assigns
the attention weights towards different time steps. This can
effectively integrate the influence from different time steps.

The output layer of ASPPA consists of two fully connected
layers and a drop-out layer. In order to control the negative
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samples for each training case and optimize the ranking met-
ric for downstream parameter learning, we solve the follow-

ing objective function
|£]

T=3 > (yilog(Pr(gi=1]Vu,u))

QeQi=1 (12)
) N
+(1 —yi)log (1 = Pr(g; = 1| Vu,u))) + 5H®H2

where Q is the query set, © denotes all the model parameters,
M is the weight decay coefficient of the L2 norm regulariza-
tion posed on all trainable parameters.

4 Experiments

4.1 Experiment Setup

Dataset

We evaluate our proposed techniques on two real-world
LBSN datasets, namely Gowalla and Foursquare, which have
been widely used by previous studies on next POI recom-
mendation [Feng et al., 2015; Zhao et al., 2019]. Gowalla'
dataset includes the world-wide check-in data from Febru-
ary 2009 to October 2010. Foursquare® dataset includes
check-in data from April 2012 to September 2013 within
the United States (except Alaska and Hawaii). We filter out
those users with fewer than 10 check-in POIs and POIs with
fewer than 10 visitors as previous studies [Feng et al., 2015;
Zhao et al., 2019] did.

In order to simulate the real-world next POI recommenda-
tion scenario, we rank the check-in history of each user in
ascending order of the time step and split the dataset D into
ptrain . pualidation . ptest a5 8:1:] according to previous
studies [Liu et al., 2016; Chang et al., 2018].

Evaluation Metrics

To evaluate the performance of ASPPA, we employ Hits@Qk
and M RR. For each test case, we recommend the POIs with
top-k highest scores among all possible candidates in £. If
the POI in the recommended list is actually visited by the
user, the value of hit@QFk of a test case is 1; otherwise it is 0.

The overall HitsQk is defined as HitsQk = m};f;‘@:ﬁ where

#hitQk is the number of hits in the test set and ||D***?|| de-
notes the number of test cases. MRR is the average recipro-
cal rank of positive examples. This metric reflects the overall
ranking ability of the model.

Comparison Methods

We compare our ASPPA with following methods for next POI
recommendation.

* MF: Most Frequented Location Model is a statistical based
model. It calculates the POI distribution of a user based on
the statistics of her previous check-ins. It captures the cyclical
check-in habit of the user. This is a widely-adopted baseline
method in some real-world LBSN services [Cho et al., 2011].
» PRME: Personalized Ranking Metric Embedding [Feng et
al., 2015] develops a pair-wise metric embedding method to
capture the interaction between the candidate and previous
POIs.

"http://snap.stanford.edu/data/loc-gowalla.html

Zhttps://sites.google.com/site/yangdinggi/home/foursquare-
dataset
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* PRME-G: PRME-G [Feng et al., 2015] embeds users and
POIs into the geographical context space. It extends the met-
ric similarity scores under the real-world spatial influence.

e« LSTM: Long Short-Term Memory [Hochreiter and
Schmidhuber, 1997] is a widely used neural network to pre-
dict future behavioral trajectories. Compared with conven-
tional RNN model, LSTM models the short-term and long-
term sequential patterns by the gating mechanisms.

e Time-LSTM: Time-LSTM [Zhu et al., 2017] is a state-of-
the-art variant of LSTM model in recommender systems. The
authors develop three versions of Time-LSTM in the paper
and we adopt the third version because it achieves the best
performance on our datasets. Time-LSTM improves the mod-
eling of sequential patterns by explicitly capturing the multi-
ple time structures in the check-in sequence.

« ST-RNN: Spatial Temporal Recurrent Neural Network [Liu
et al., 2016] adopts RNN to model the user’s previous check-
in sequence. It captures spatial and temporal contexts with
time and distance transition matrix.

e STGN: Spatio-temporal Gated Network [Zhao et al.,
2019] achieves the state-of-the-art performance in the prob-
lem of next POI recommendation. It extends the LSTM gat-
ing mechanism with the spatial and temporal gates to capture
the user’s space and time preference.

Implementation and Training

In ASPPA, we adopt three ASP layers with the dimension
of hidden states N}, in order to keep balance of the model
effectiveness and efficiency. For consistency, we apply the
dimension N, of the output vector and the dimension N, of
the attention projection vector the same as Nj. The dimen-
sion of POI embeddings is N.. We also embed the weekday
w € [0,6] and hour h € [0, 23] of the query time and con-
catenate with the user’s check-in history h. Besides, in order
to determine the time and distance decay A and k, we apply
the grid search over {0.0001,0.001,0.01,0.1,1}. The fol-
lowing experimental results of ASPPA are based on the best
tuning performance on the validation set (A = £ = 0.001,
N, = 128, Ny, = 256, learning rate 0.01 and dropout 0.5 for
both datasets).

In the training procedure, we leverage the mini-batch SGD
algorithm. Specifically, we set the batch size to 1024 ac-
cording to device capacity. Note that the step function of zf
in Equation 4 is not differentiable, we manually apply the
unchanged gradient when calculating gradients. We adopt
Xavier initialization to initialize the weights of our network.
For the implementation of comparison methods, we obtain
the source code from the authors and report the best results
after tuning all the hyper-parameters on the validation set.

4.2 Results and Discussion

Overall Performance

We evaluate the top-k recommendation performance
(HitsQFk) and overall ranking ability (MRR) in Table 1. All
differences between our model and others are statistically
significant (p < 0.01). We can see that our model consis-
tently and significantly outperforms all compared models.
Take Gowalla dataset as an example. When we score all
the 32510 POIs and recommend the highest scored POI to
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Datasets Metrics MF PRME PRME-G LSTM Time-LSTM ST-RNN STGN | ASPPA
Hit@1 7.19 8.23 8.68 10.73 10.98 10.51 10.95 12.12

Hit@5 | 11.63 12.33 13.13 15.39 17.06 18.57 19.47 23.63

Gowalla Hit@10 | 12.59 16.07 16.56 19.87 19.90 22.40 23.67 29.47
Hit@20 | 13.05 17.60 17.97 22.59 25.38 25.17 29.15 35.73

MRR 9.12 10.41 10.97 12.97 13.66 14.37 15.47 18.07

Hit@1 9.55 12.43 12.89 10.84 13.67 13.20 13.98 15.10

Hit@5 | 13.90 14.94 15.17 14.48 19.34 18.69 20.00 27.96

Foursquare Hit@10 | 14.34  19.53 20.17 20.64 23.08 23.89 25.92 33.71
Hit@20 | 14.44  20.56 22.94 23.68 25.47 28.26 29.39 39.50

MRR 11.01  14.06 14.52 13.01 16.05 16.23 17.10 21.45

Table 1: Recommendation results w.r.t. Gowalla and Foursquare datasets. The results are reported in percentage (%).

the user, 12.12% of the test cases in D! are predicted
correctly. When we recommend the top-20 highest scored
POIs, 35.73% of the test cases have the user’s actually
visited POI in the recommended list. In addition, we have
the following observations based on the experimental results.

Firstly, the excess performance of MF compared with other
baselines shows the prediction ability beyond periodic habit.
ASPPA makes significant improvement compared with MF as
k increases. This shows that ASPPA can capture more sub-
tle temporal dynamics to make a longer candidate list while
the periodical guess of MF only works for the most frequent
check-ins.

Secondly, the overall performance of all models on
Foursquare is slightly better than that on Gowalla. The reason
is that locations in Foursquare are limited in the United States.
So the underlying movement patterns for users in Foursquare
datasets are more uniform, where MF also shows a better pe-
riodic performance in Foursquare. Even Foursquare dataset
is more sparse than Gowalla with more users but less user-
POI interactions, each model still benefits from the uniform
pattern in a limited manner. The superiority of our proposed
ASPPA is more obvious in Foursquare, showing that ASPPA
can learn more from sparse data compared with other alterna-
tives. This is because ASPPA can capture the semantic sub-
sequence patterns and incorporates the domain knowledge in
both spatial and temporal contexts.

Thirdly, the RNN based models (LSTM, Time-LSTM, ST-
RNN, STGN, ASPPA) achieve better performance than the
metric embedding ones. The sequential recommendation can
not only capture the neighboring constraints as the metric em-
bedding models but also learn the user’s sequential patterns.
This would lead to better potential performance gain when
a large number of sequential user interactions are available
in real world scenarios. Since learning from the user’s se-
quential patterns is the key to improve the sequential recom-
mendation, ASPPA recognizes the latent structure to identify
the sequential pattern among semantic subsequences beyond
POl-level sequential patterns and further improves the overall
performance.

Ablation Analysis

We conduct ablation tests with two variants that remove one
component at a time. The first variant, ASPPA-PA removes
the hierarchical framework and boundary detectors of each
cell, which is equivalent to the power-law attention based
LSTM model. The second variant, ASPPA-ASP replaces the

0.41E3 AsppPA-PA 0.4]Z3 AsPPA-PA
7 =2 Asppa-AsP “*| =3 ASPPA-ASP
0.3 == ASPPA 0,3 . ASPPA
2 e
= 0.2 = 0.2
T T
0.1 0.1
00775 10 20 0075 10 20
k k
(a) Gowalla (b) Foursquare

Figure 4: Hits@k on different parts of our model

power-law attention with vanilla attention by regarding the
spatio-temporal bias b/, , in Equation 6 as the normal bias
variable. Due to the space limitation, we only show the
HitQF on both datasets. And regarding MRR we achieve
results with similar trends. Figure 4 shows that the perfor-
mance gain on Gowalla dataset of adopting subsequence in-
formation is more than 25% for all the metrics and while that
in Foursquare is 35%. It demonstrates that recognizing se-
mantic subsequences with multi-granularity latent structure
is necessary for improving next POI recommendation.

5 Conclusion

In this work, we propose a novel model ASPPA for the prob-
lem of next POI recommendation. We adopt a stacked re-
current neural network framework Adaptive Sequence Par-
titioner to identify the sequential patterns among semantic
subsequences by automatically learning the latent structure
in the user’s check-in sequence. To alleviate the data sparsity,
we propose the Power-law Attention mechanism to integrate
the domain knowledge in both spatial and temporal contexts.
The experimental results on two real-world datasets show that
our proposed framework is effective and significantly outper-
forms state-of-the-art methods.
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