
Closing the Generalization Gap of Adaptive Gradient Methods in Training
Deep Neural Networks

Jinghui Chen1 , Dongruo Zhou1 , Yiqi Tang2 , Ziyan Yang3 , Yuan Cao1 and Quanquan Gu1

1University of California, Los Angeles
2Ohio State University
3University of Virginia

{jhchen, drzhou, yuancao, qgu}@cs.ucla.edu, tang.1466@osu.edu, zy3cx@virginia.edu

Abstract
Adaptive gradient methods, which adopt histori-
cal gradient information to automatically adjust the
learning rate, despite the nice property of fast con-
vergence, have been observed to generalize worse
than stochastic gradient descent (SGD) with mo-
mentum in training deep neural networks. This
leaves how to close the generalization gap of adap-
tive gradient methods an open problem. In this
work, we show that adaptive gradient methods such
as Adam, Amsgrad, are sometimes “over adapted”.
We design a new algorithm, called Partially adap-
tive momentum estimation method, which unifies
the Adam/Amsgrad with SGD by introducing a par-
tial adaptive parameter p, to achieve the best from
both worlds. We also prove the convergence rate
of our proposed algorithm to a stationary point in
the stochastic nonconvex optimization setting. Ex-
periments on standard benchmarks show that our
proposed algorithm can maintain fast convergence
rate as Adam/Amsgrad while generalizing as well
as SGD in training deep neural networks. These re-
sults would suggest practitioners pick up adaptive
gradient methods once again for faster training of
deep neural networks.

1 Introduction
Stochastic gradient descent (SGD) is now one of the most
dominant approaches for training deep neural networks
[Goodfellow et al., 2016]. In each iteration, SGD only per-
forms one parameter update on a mini-batch of training ex-
amples. SGD is simple and has been proved to be efficient,
especially for tasks on large datasets. In recent years, adaptive
variants of SGD have emerged and shown their successes for
their convenient automatic learning rate adjustment mecha-
nism. Adagrad [Duchi et al., 2011] is probably the first along
this line of research, and significantly outperforms vanilla
SGD in the sparse gradient scenario. Despite the first suc-
cess, Adagrad was later found to demonstrate degraded per-
formance especially in cases where the loss function is non-
convex or the gradient is dense. Many variants of Adagrad,
such as RMSprop [Hinton et al., 2012], Adam [Kingma and
Ba, 2015], Adadelta [Zeiler, 2012], Nadam [Dozat, 2016],

were then proposed to address these challenges by adopting
exponential moving average rather than the arithmetic aver-
age used in Adagrad. This change largely mitigates the rapid
decay of learning rate in Adagrad and hence makes this fam-
ily of algorithms, especially Adam, particularly popular on
various tasks. Recently, it has also been observed [Reddi
et al., 2018] that Adam does not converge in some settings
where rarely encountered large gradient information quickly
dies out due to the “short momery” problem of exponential
moving average. To address this issue, Amsgrad [Reddi et al.,
2018] has been proposed to keep an extra “long term mem-
ory” variable to preserve the past gradient information and to
correct the potential convergence issue in Adam. There are
also some other variants of adaptive gradient method such as
SC-Adagrad / SC-RMSprop [Mukkamala and Hein, 2017],
which derives logarithmic regret bounds for strongly convex
functions.

On the other hand, people recently found that for largely
over-parameterized neural networks, e.g., more complex
modern convolutional neural network (CNN) architectures
such as VGGNet [He et al., 2016], ResNet [He et al., 2016],
Wide ResNet [Zagoruyko and Komodakis, 2016], DenseNet
[Huang et al., 2017], training with Adam or its variants typ-
ically generalizes worse than SGD with momentum, even
when the training performance is better. In particular, peo-
ple found that carefully-tuned SGD, combined with proper
momentum, weight decay and appropriate learning rate de-
cay schedules, can significantly outperform adaptive gradi-
ent algorithms eventually [Wilson et al., 2017]. As a result,
many recent studies train their models with SGD-Momentum
[He et al., 2016; Zagoruyko and Komodakis, 2016; Huang et
al., 2017; Simonyan and Zisserman, 2014; Ren et al., 2015;
Xie et al., 2017; Howard et al., 2017] despite that adaptive
gradient algorithms usually converge faster. Different from
SGD, which adopts a universal learning rate for all coordi-
nates, the effective learning rate of adaptive gradient methods,
i.e., the universal base learning rate divided by the second or-
der moment term, is different for different coordinates. Due
to the normalization of the second order moment, some coor-
dinates will have very large effective learning rates. To allevi-
ate this problem, one usually chooses a smaller base learning
rate for adaptive gradient methods than SGD with momen-
tum. This makes the learning rate decay schedule less effec-
tive when applied to adaptive gradient methods, since a much

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3267

smaller base learning rate will lead to diminishing effective
learning rate for most coordinates after several rounds of de-
cay. We refer to the above phenomenon as the “small learning
rate dilemma” (see more details in Section 3).

With all these observations, a natural question is:
Can we take the best from both Adam and SGD-

Momentum, i.e., design an algorithm that not only enjoys the
fast convergence rate as Adam, but also generalizes as well
as SGD-Momentum?

In this paper, we answer this question affirmatively. We
close the generalization gap of adaptive gradient methods
by proposing a new algorithm, called partially adaptive
momentum estimation (Padam) method, which unifies
Adam/Amsgrad with SGD-Momentum to achieve the best
of both worlds, by a partially adaptive parameter. The in-
tuition behind our algorithm is: by controlling the degree of
adaptiveness, the base learning rate in Padam does not need
to be as small as other adaptive gradient methods. There-
fore, it can maintain a larger learning rate while prevent-
ing the gradient explosion. We note that there exist several
studies [Zaheer et al., 2018; Loshchilov and Hutter, 2019;
Luo et al., 2019] that also attempted to address the same re-
search question. In detail, Yogi [Zaheer et al., 2018] stud-
ied the effect of adaptive denominator constant ε and mini-
batch size in the convergence of adaptive gradient meth-
ods. AdamW [Loshchilov and Hutter, 2019] proposed to fix
the weight decay regularization in Adam by decoupling the
weight decay from the gradient update and this improves the
generalization performance of Adam. AdaBound [Luo et al.,
2019] applies dynamic bound of learning rate on Adam and
make them smoothly converge to a constant final step size as
in SGD. Our algorithm is very different from Yogi, AdamW
and AdaBound. Padam is built upon a simple modification
of Adam without extra complicated algorithmic design and it
comes with a rigorous convergence guarantee in the noncon-
vex stochastic optimization setting.

We highlight the main contributions of our work as fol-
lows:
• We propose a novel and simple algorithm Padam with a

partially adaptive parameter, which resolves the “small learn-
ing rate dilemma” for adaptive gradient methods and allows
for faster convergence, hence closing the gap of generaliza-
tion.
• We provide a convergence guarantee for Padam in non-

convex optimization. Specifically, we prove that the conver-
gence rate of Padam to a stationary point for stochastic non-
convex optimization is

O

(
d1/2

T 3/4−s/2 +
d

T

)
, (1.1)

where s characterizes the growth rate of the cumula-
tive stochastic gradient g1:T,i = [g1,i, g2,i, . . . , gT,i]

>

(g1, . . . ,gT are the stochastic gradients) and 0 ≤ s ≤ 1/2.
When the stochastic gradients are sparse, i.e., s < 1/2, (1.1)
is strictly better than the convergence rate of SGD in terms of
the rate of T .
• We also provide thorough experiments about our pro-

posed Padam method on training modern deep neural archi-
tectures. We empirically show that Padam achieves the fastest

convergence speed while generalizing as well as SGD with
momentum. These results suggest that practitioners should
pick up adaptive gradient methods once again for faster train-
ing of deep neural networks.
• Last but not least, compared with the recent work on

adaptive gradient methods, such as Yogi [Zaheer et al., 2018],
AdamW [Loshchilov and Hutter, 2019], AdaBound [Luo et
al., 2019], our proposed Padam achieves better generalization
performance than these methods in our experiments.

1.1 Additional Related Work
Here we review additional related work that is not covered
before. [Zhang et al., 2017] proposed a normalized direction-
preserving Adam (ND-Adam), which changes the adaptive
terms from individual dimensions to the whole gradient vec-
tor. [Keskar and Socher, 2017] proposed to improve the gen-
eralization performance by switching from Adam to SGD.
On the other hand, despite the great successes of adaptive
gradient methods for training deep neural networks, the con-
vergence guarantees for these algorithms are still understud-
ied. Most convergence analyses of adaptive gradient meth-
ods are restricted to online convex optimization [Duchi et al.,
2011; Kingma and Ba, 2015; Mukkamala and Hein, 2017;
Reddi et al., 2018]. A few recent attempts have been made to
analyze adaptive gradient methods for stochastic nonconvex
optimization. More specifically, [Basu et al., 2018] proved
the convergence rate of RMSProp and Adam when using de-
terministic gradient rather than stochastic gradient. [Li and
Orabona, 2018] analyzed convergence rate of AdaGrad un-
der both convex and nonconvex settings but did not con-
sider more complicated Adam-type algorithms. [Ward et
al., 2018] also proved the convergence rate of AdaGrad un-
der both convex and nonconvex settings without considering
the effect of stochastic momentum. [Chen et al., 2018] pro-
vided a convergence analysis for a class of Adam-type algo-
rithms for nonconvex optimization. [Zou and Shen, 2018]
analyzed the convergence rate of AdaHB and AdaNAG, two
modified version of AdaGrad with the use of momentum.
[Liu et al., 2019] proposed Optimistic Adagrad and showed
its convergence in non-convex non-concave min-max opti-
mization. However, none of these results are directly ap-
plicable to Padam. Our convergence analysis in Section 4
is quite general and implies the convergence rate of AMS-
Grad for nonconvex optimization. In terms of learning
rate decay schedule, [Wu et al., 2018] studied the learn-
ing rate schedule via short-horizon bias. [Xu et al., 2016;
Davis et al., 2019] analyzed the convergence of stochastic al-
gorithms with geometric learning rate decay. [Ge et al., 2019]
studied the learning rate schedule for quadratic functions.

The remainder of this paper is organized as follows: in Sec-
tion 2, we briefly review existing adaptive gradient methods.
We present our proposed algorithm in Section 3, and the main
theory in Section 4. In Section 5, we compare the proposed
algorithm with existing algorithms on modern neural network
architectures on benchmark datasets. Finally, we conclude
this paper and point out the future work in Section 6.
Notation: Scalars are denoted by lower case letters, vec-
tors by lower case bold face letters, and matrices by upper
case bold face letters. For a vector x ∈ Rd, we denote

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3268

the `2 norm of x by ‖x‖2 =
√∑d

i=1 x
2
i , the `∞ norm

of x by ‖x‖∞ = maxdi=1 |xi|. For a sequence of vectors
{xj}tj=1, we denote by xj,i the i-th element in xj . We also
denote x1:t,i = [x1,i, . . . , xt,i]

>. With slight abuse of nota-
tion, for two vectors a and b, we denote a2 as the element-
wise square, ap as the element-wise power operation, a/b as
the element-wise division and max(a,b) as the element-wise
maximum. We denote by diag(a) a diagonal matrix with di-
agonal entries a1, . . . , ad. Given two sequences {an} and
{bn}, we write an = O(bn) if there exists a positive constant
C such that an ≤ Cbn and an = o(bn) if an/bn → 0 as
n→∞. Notation Õ(·) hides logarithmic factors.

2 Review of Adaptive Gradient Methods
Various adaptive gradient methods have been proposed in or-
der to achieve better performance on various stochastic op-
timization tasks. Adagrad [Duchi et al., 2011] is among the
first methods with adaptive learning rate for each individual
dimension, which motivates the research on adaptive gradi-
ent methods in the machine learning community. In detail,
Adagrad1 adopts the following update form:

xt+1 = xt − αt
gt√
vt
, where vt =

1

t

t∑
j=1

g2
j ,

where gt stands for the stochastic gradient ∇ft(xt), and
αt = α/

√
t is the step size. In this paper, we call αt base

learning rate, which is the same for all coordinates of xt, and
we call αt/

√
vt,i effective learning rate for the i-th coordinate

of xt, which varies across the coordinates. Adagrad is proved
to enjoy a huge gain in terms of convergence especially in
sparse gradient situations. Empirical studies also show a per-
formance gain even for non-sparse gradient settings. RM-
Sprop [Hinton et al., 2012] follows the idea of adaptive learn-
ing rate and it changes the arithmetic averages used for vt in
Adagrad to exponential moving averages. Even though RM-
Sprop is an empirical method with no theoretical guarantee,
the outstanding empirical performance of RMSprop raised
people’s interests in exponential moving average variants of
Adagrad. Adam [Kingma and Ba, 2015]2 is the most popular
exponential moving average variant of Adagrad. It combines
the idea of RMSprop and momentum acceleration, and takes
the following update form:

xt+1 = xt − αt
mt√
vt

where

mt = β1mt−1 + (1− β1)gt,vt = β2vt−1 + (1− β2)g2
t .

Adam also requires αt = α/
√
t for the sake of convergence

analysis. In practice, any decaying step size or even con-
stant step size works well for Adam. Note that if we choose
β1 = 0, Adam basically reduces to RMSprop. [Reddi et al.,

1The formula is equivalent to the one from the original paper
[Duchi et al., 2011] after simple manipulations.

2Here for simplicity and consistency, we ignore the bias correc-
tion step in the original paper of Adam. Yet adding the bias correc-
tion step will not affect the argument in the paper.

Algorithm 1 Partially adaptive momentum estimation
method (Padam)

input: initial point x1 ∈ X ; step sizes {αt}; adaptive pa-
rameters β1, β2, p ∈ (0, 1/2]
set m0 = 0, v0 = 0, v̂0 = 0
for t = 1, . . . , T do
gt = ∇f(xt, ξt)
mt = β1mt−1 + (1− β1)gt
vt = β2vt−1 + (1− β2)g2

t
v̂t = max(v̂t−1,vt)
xt+1 = xt − αt ·mt/v̂

p
t

end for
Output: Choose xout from {xt}, 2 ≤ t ≤ T with proba-
bility αt−1/

(∑T−1
i=1 αi)

2018] identified a non-convergence issue in Adam. Specifi-
cally, Adam does not collect long-term memory of past gra-
dients and therefore the effective learning rate could be in-
creasing in some cases. They proposed a modified algorithm
namely Amsgrad. More specifically, Amsgrad adopts an ad-
ditional step to ensure the decay of the effective learning rate
αt/
√
v̂t, and its key update formula is as follows:

xt+1 = xt − αt
mt√
v̂t
, where v̂t = max(v̂t−1,vt),

mt and vt are the same as Adam. By introducing the v̂t term,
[Reddi et al., 2018] corrected some mistakes in the original
proof of Adam and proved an O(1/

√
T) convergence rate

of Amsgrad for convex optimization. Note that all the the-
oretical guarantees on adaptive gradient methods (Adagrad,
Adam, Amsgrad) are only proved for convex functions.

3 The Proposed Algorithm
In this section, we propose a new algorithm for bridging the
generalization gap for adaptive gradient methods. Specifi-
cally, we introduce a partial adaptive parameter p to control
the level of adaptiveness of the optimization procedure. The
proposed algorithm is displayed in Algorithm 1.

In Algorithm 1, gt denotes the stochastic gradient and v̂t
can be seen as a moving average over the second order mo-
ment of the stochastic gradients. As we can see from Al-
gorithm 1, the key difference between Padam and Amsgrad
[Reddi et al., 2018] is that: while mt is still the momentum
as in Adam/Amsgrad, it is now “partially adapted” by the sec-
ond order moment. We call p ∈ [0, 1/2] the partially adap-
tive parameter. Note that 1/2 is the largest possible value for
p and a larger p will result in non-convergence in the proof
(see the proof details in the supplementary materials). When
p → 0, Algorithm 1 reduces to SGD with momentum3 and
when p = 1/2, Algorithm 1 is exactly Amsgrad. Therefore,
Padam indeed unifies Amsgrad and SGD with momentum.

With the notations defined above, we are able to formally
explain the “small learning rate dilemma”. In order to make

3The only difference between Padam with p = 0 and SGD-
Momentum is an extra constant factor (1−β1), which can be moved
into the learning rate such that the update rules for these two algo-
rithms are identical.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3269

things clear, we first emphasize the relationship between
adaptiveness and learning rate decay. We refer the actual
learning rate applied to mt as the effective learning rate, i.e.,
αt/v̂

p
t . Now suppose that a learning rate decay schedule

is applied to αt. If p is large, then at early stages, the ef-
fective learning rate αt/v̂

p
t,i could be fairly large for certain

coordinates with small v̂t,i value4. To prevent those coordi-
nates from overshooting we need to enforce a smaller αt, and
therefore the base learning rate must be set small [Keskar and
Socher, 2017; Wilson et al., 2017]. As a result, after several
rounds of decaying, the learning rates of the adaptive gradi-
ent methods are too small to make any significant progress in
the training process5. We call this phenomenon “small learn-
ing rate dilemma”. It is also easy to see that the larger p is,
the more severe “small learning rate dilemma” is. This sug-
gests that intuitively, we should consider using Padam with a
proper adaptive parameter p, and choosing p < 1/2 can po-
tentially make Padam suffer less from the “small learning rate
dilemma” than Amsgrad, which justifies the range of p in Al-
gorithm 1. We will show in our experiments (Section 5) that
Padam with p < 1/2 can adopt an equally large base learning
rate as SGD with momentum.

Note that even though in Algorithm 1, the choice of αt
covers different choices of learning rate decay schedule, the
main focus of this paper is not about finding the best learning
rate decay schedule, but designing a new algorithm to control
the adaptiveness for better empirical generalization result. In
other words, our focus is not on αt, but on v̂t. For this reason,
we simply fix the learning rate decay schedule for all methods
in the experiments to provide a fair comparison for different
methods.

Figure 1 shows the comparison of test error performances
under the different partial adaptive parameter p for ResNet
on both CIFAR-10 and CIFAR-100 datasets. We can ob-
serve that a larger p will lead to fast convergence at early
stages and worse generalization performance later, while a
smaller p behaves more like SGD with momentum: slow in
early stages but finally catch up. With a proper choice of p
(e.g., 1/8 in this case), Padam can obtain the best of both
worlds. Note that besides Algorithm 1, our partially adap-
tive idea can also be applied to other adaptive gradient meth-
ods such as Adagrad, Adadelta, RMSprop, AdaMax [Kingma
and Ba, 2015]. For the sake of conciseness, we do not list the
partially adaptive versions for other adaptive gradient meth-
ods here. We also would like to comment that Padam is to-
tally different from the p-norm generalized version of Adam
in [Kingma and Ba, 2015], which induces AdaMax method
when p → ∞. In their case, p-norm is used to general-
ize 2-norm of their current and past gradients while keeping
the scale of adaptation unchanged. In sharp contrast, we in-
tentionally change (reduce) the scale of the adaptive term in

4The coordinate v̂t,i’s are much less than 1 for most commonly
used network architectures.

5This does not mean the learning rate decay schedule weakens
adaptive gradient method. On the contrary, applying the learning
rate decay schedule still gives performance boost to the adaptive
gradient methods in general but this performance boost is not as sig-
nificant as SGD + momentum.

Padam to get better generalization performance.

4 Convergence Analysis of the Proposed
Algorithm

In this section, we establish the convergence theory of Algo-
rithm 1 in the stochastic nonconvex optimization setting, i.e.,
we aim at solving the following stochastic nonconvex opti-
mization problem

min
x∈Rd

f(x) := Eξ
[
f(x; ξ)

]
,

where ξ is a random variable satisfying certain distribution,
f(x; ξ) : Rd → R is a L-smooth nonconvex function. In the
stochastic setting, one cannot directly access the full gradient
of f(x). Instead, one can only get unbiased estimators of the
gradient of f(x), which is ∇f(x; ξ). This setting has been
studied in [Ghadimi and Lan, 2013; Ghadimi and Lan, 2016].
We first introduce the following assumptions.
Assumption 4.1 (Bounded Gradient). f(x) = Eξf(x; ξ) has
G∞-bounded stochastic gradient. That is, for any ξ, we as-
sume that ‖∇f(x; ξ)‖∞ ≤ G∞.

It is worth mentioning that Assumption 4.1 is slightly
weaker than the `2-boundedness assumption ‖∇f(x; ξ)‖2 ≤
G2 used in [Reddi et al., 2016; Chen et al., 2018]. Since
‖∇f(x; ξ)‖∞ ≤ ‖∇f(x; ξ)‖2 ≤

√
d‖∇f(x; ξ)‖∞, the `2-

boundedness assumption implies Assumption 4.1 withG∞ =
G2. Meanwhile, G∞ will be tighter than G2 by a factor of√
d when each coordinate of ∇f(x; ξ) almost equals to each

other.
Assumption 4.2 (L-smooth). f(x) = Eξf(x; ξ) is L-
smooth: for any x,y ∈ Rd, it satisfied that

∣∣f(x) − f(y) −
〈∇f(y),x− y〉

∣∣ ≤ L
2 ‖x− y‖22.

Assumption 4.2 is frequently used in analysis of gradient-
based algorithms. It is equivalent to the L-gradient Lipschitz
condition, which is often written as ‖∇f(x) − ∇f(y)‖2 ≤
L‖x−y‖2. Next we provide the main convergence rate result
for our proposed algorithm. The detailed proof can be found
in the longer version of this paper.
Theorem 4.3. In Algorithm 1, suppose that p ∈ [0, 1/2],
β1 < β2p

2 , αt = α and ‖g1:T,i‖2 ≤ G∞T
s for t = 1, . . . , T ,

0 ≤ s ≤ 1/2, under Assumptions 4.1 and 4.2, let ∆f =
f(x1)− infx f(x), for any q ∈ [max{0, 4p− 1}, 1], the out-
put xout of Algorithm 1 satisfies that

E
[∥∥∇f(xout)

∥∥2
2

]
≤ M1

Tα
+
M2d

T
+

M3αdG
1−q
∞

T (1−q)(1/2−s)
, (4.1)

where

M1 = 2G2p
∞∆f, M2 =

4G2+2p
∞ E

∥∥v̂−p
1

∥∥
1

d(1− β1)
+ 4G2

∞,

M3 =
4LG1+q−2p

∞

(1− β2)2p
+

8LG1+q−2p
∞ (1− β1)

(1− β2)2p(1− β1/β2p
2)

(
β1

1− β1

)2

.

Remark 4.4. From Theorem 4.3, we can see thatM1 andM3

are independent of the number of iterations T and dimension
d. In addition, if ‖v̂−11 ‖∞ = O(1), it is easy to see that M2

also has an upper bound that is independent of T and d. s

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3270

(a) CIFAR-10 (b) CIFAR-100

Figure 1: Performance comparison of Padam with different choices of p for training ResNet on (a) CIFAR-10 and (b) CIFAR-100 datasets.

characterizes the growth rate condition [Liu et al., 2019] of
the cumulative stochastic gradient g1:T,i. In the worse case,
s = 1/2, while in practice when the stochastic gradients are
sparse, s < 1/2.

The following corollary simplifies the result of Theorem
4.3 by choosing q = 0 under the condition p ∈ [0, 1/4].
Corollary 4.5. Under the same conditions in Theorem 4.3, if
p ∈ [0, 1/4], Padam’s output satisfies

E
[∥∥∇f(xout)

∥∥2
2

]
≤ M1

Tα
+
M2d

T
+
M ′3αdG∞
T 1/2−s

, (4.2)

where M1 and M2 and ∆f are the same as in Theorem 4.3,
and M ′3 is defined as follows:

M ′3 =
4LG1−2p

∞

(1− β2)2p
+

8LG1−2p
∞ (1− β1)

(1− β2)2p(1− β1/β2p
2)

(
β1

1− β1

)2

.

Remark 4.6. We show the convergence rate under optimal
choice of step size α. If

α = Θ
(
d1/2T 1/4+s/2)−1

,

then by (4.2), we have

E
[∥∥∇f(xout)

∥∥2
2

]
= O

(
d1/2

T 3/4−s/2
+
d

T

)
. (4.3)

Note that the convergence rate given by (4.3) is re-
lated to s. In the worst case when s = 1/2, we have
E[‖∇f(xout)‖22] = O

(√
d/T+d/T

)
,which matches the rate

O(1/
√
T) achieved by nonconvex SGD [Ghadimi and Lan,

2016], considering the dependence of T . When the stochas-
tic gradients g1:T,i, i = 1, . . . , d are sparse, i.e., s < 1/2,
the convergence rate in (4.3) is strictly better than the conver-
gence rate of nonconvex SGD [Ghadimi and Lan, 2016].

5 Experiments
In this section, we empirically evaluate our proposed algo-
rithm for training various modern deep learning models and
test them on several standard benchmarks.6 We show that
for nonconvex loss functions in deep learning, our proposed
algorithm still enjoys a fast convergence rate, while its gen-
eralization performance is as good as SGD with momentum

and much better than existing adaptive gradient methods such
as Adam and Amsgrad.

We compare Padam against several state-of-the-art algo-
rithms, including: (1) SGD-Momentum, (2) Adam [Kingma
and Ba, 2015], (3) Amsgrad [Reddi et al., 2018], (4) AdamW
[Loshchilov and Hutter, 2019] (5) Yogi [Zaheer et al., 2018]
and (6) AdaBound [Luo et al., 2019]. We use several pop-
ular datasets for image classifications and language model-
ing: CIFAR-10 [Krizhevsky and Hinton, 2009], ImageNet
dataset (ILSVRC2012) [Deng et al., 2009] and Penn Tree-
bank dataset [Marcus et al., 1993]. We adopt three popular
CNN architectures for image classification task: VGGNet-
16 [Simonyan and Zisserman, 2014], Residual Neural Net-
work (ResNet-18) [He et al., 2016], Wide Residual Net-
work (WRN-16-4) [Zagoruyko and Komodakis, 2016]. We
test the language modeling task using 2-layer and 3-layer
Long Short-Term Memory (LSTM) network [Hochreiter and
Schmidhuber, 1997]. For CIFAR-10 and Penn Treebank ex-
periments, we test for 200 epochs and decay the learning rate
by 0.1 at the 100th and 150th epoch. We test ImageNet tasks
for 100 epochs with similar multi-stage learning rate decay-
ing scheme at the 30th, 60th and 80th epoch.

We perform grid searches to choose the best hyper-
parameters for all algorithms in both image classifica-
tion and language modeling tasks. For the base learning
rate, we do grid search over {10−4, . . . , 102} for all algo-
rithms, and choose the partial adaptive parameter p from
{2/5, 1/4, 1/5, 1/8, 1/16} and the second order moment pa-
rameter β2 from {0.9, 0.99, 0.999}. For image classification
experiments, we set the base learning rate of 0.1 for SGD with
momentum and Padam, 0.001 for all other adaptive gradient
methods. β1 is set as 0.9 for all methods. β2 is set as 0.99 for
Adam and Amsgrad, 0.999 for all other methods. For Padam,
the partially adaptive parameter p is set to be 1/8. For Ad-
aBound, the final learning rate is set to be 0.1. For AdamW,
the normalized weight decay factor is set to 2.5 × 10−2 for
CIFAR-10 and 5 × 10−2 for ImageNet. For Yogi, ε is set
as 10−3 as suggested in the original paper. The minibatch
size for CIFAR-10 is set to be 128 and for ImageNet dataset
we set it to be 256. Regarding the LSTM experiments, for
SGD with momentum, the base learning rate is set to be 1 for

6The code is available at https://github.com/uclaml/Padam.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3271

https://github.com/uclaml/Padam

(a) Train Loss for VGGNet (b) Train Loss for ResNet (c) Train Loss for WideResNet

(d) Test Error for VGGNet (e) Test Error for ResNet (f) Test Error for WideResNet

Figure 2: Train loss and test error (top-1) on the CIFAR-10 dataset.

(a) Top-1 Error, VGGNet (b) Top-1 Error, ResNet (c) 2-layer LSTM

(d) Top-5 Error, VGGNet (e) Top-5 Error, ResNet (f) 3-layer LSTM

Figure 3: Test error on the ImageNet dataset (left and middle columns), and test perplexity on the Penn Treebank dataset (right column).

2-layer LSTM model and 10 for 3-layer LSTM. The momen-
tum parameter is set to be 0.9 for both models. For all adap-
tive gradient methods except Padam and Yogi, we set the base
learning rate as 0.001. For Yogi, we set the base learning rate
as 0.01 for 2-layer LSTM model and 0.1 for 3-layer LSTM

model. For Padam, we set the base learning rate as 0.01 for
2-layer LSTM model and 1 for 3-layer LSTM model. For all
adaptive gradient methods, we set β1 = 0.9, β2 = 0.999. In
terms of algorithm specific parameters, for Padam, we set the
partially adaptive parameter p as 0.4 for 2-layer LSTM model

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3272

Models SGD-Momentum Adam Amsgrad AdamW Yogi AdaBound Padam

VGGNet 93.71 92.21 92.54 93.54 92.94 93.28 93.78
ResNet 95.00 92.89 93.53 94.56 93.92 94.16 94.94

WideResNet 95.26 92.27 92.91 95.08 94.23 93.85 95.34

Table 1: Test accuracy (%) of all algorithms after 200 epochs on the CIFAR-10 dataset. Bold number indicates the best result.

Models Test Accuracy SGD-Momentum Adam Amsgrad AdamW Yogi AdaBound Padam

Resnet Top-1 70.23 63.79 67.69 67.93 68.23 68.13 70.07
Top-5 89.40 85.61 88.15 88.47 88.59 88.55 89.47

VGGNet Top-1 73.93 69.52 69.61 69.89 71.56 70.00 74.04
Top-5 91.82 89.12 89.19 89.35 90.25 89.27 91.93

Table 2: Test accuracy (%) of all algorithms after 100 epochs on the ImageNet dataset. Bold number indicates the best result.

and 0.2 for 3-layer LSTM model. For AdaBound, we set the
final learning rate as 10 for 2-layer LSTM model and 100 for
3-layer LSTM model. For Yogi, ε is set as 10−3 as suggested
in the original paper. For AdamW, the normalized weight de-
cay factor is set to 4 × 10−4. The minibatch size is set to be
20 for all LSTM experiments.

5.1 Experimental Results
We compare our proposed algorithm with other baselines
on training the aforementioned three modern CNN archi-
tectures for image classification on the CIFAR-10 and Im-
ageNet datasets. Figure 2 plots the train loss and test er-
ror (top-1 error) against training epochs on the CIFAR-10
dataset. As we can see from the figure, at the early stage
of the training process, (partially) adaptive gradient meth-
ods including Padam, make rapid progress lowing both the
train loss and the test error, while SGD with momentum con-
verges relatively slowly. After the first learning rate decay-
ing at the 100-th epoch, different algorithms start to behave
differently. SGD with momentum makes a huge drop while
fully adaptive gradient methods (Adam and Amsgrad) start to
generalize badly. Padam, on the other hand, maintains rel-
atively good generalization performance and also holds the
lead over other algorithms. After the second decaying at
the 150-th epoch, Adam and Amsgrad basically lose all the
power of traversing through the parameter space due to the
“small learning dilemma”, while the performance of SGD
with momentum finally catches up with Padam. AdamW,
Yogi and AdaBound indeed improve the performance com-
pared with original Adam but the performance is still worse
than Padam. Overall we can see that Padam achieves the best
of both worlds (i.e., Adam and SGD with momentum): it
maintains faster convergence rate while also generalizing as
well as SGD with momentum in the end.

Figure 3 (a)(b)(d)(e) plot the Top-1 and Top-5 error against
training epochs on the ImageNet dataset for both VGGNet
and ResNet. We can see that on the ImageNet dataset, all
methods behave similarly as in our CIFAR-10 experiments.
Padam method again obtains the best from both worlds by
achieving the fastest convergence while generalizing as well
as SGD with momentum. Even though methods such as

AdamW, Yogi and AdaBound have better performance than
standard Adam, they still suffer from a big generalization
gap on the ImageNet dataset. Note that we did not conduct
WideResNet experiment on the Imagenet dataset due to GPU
memory limits.

We also perform experiments on the language model-
ing tasks to test our proposed algorithm on Long Short-
Term Memory (LSTM) network [Hochreiter and Schmidhu-
ber, 1997], where adaptive gradient methods such as Adam
are currently the mainstream optimizers for these tasks. Fig-
ure 3 (c)(f) plot the test perplexity against training epochs on
the Penn Treebank dataset [Marcus et al., 1993] for both 2-
layer LSTM and 3-layer LSTM models. We can observe that
the differences on simpler 2-layer LSTM model is not very
obvious but on more complicated 3-layer LSTM model, dif-
ferent algorithms have quite different optimizing behaviors.
Even though Adam, Amsgrad and AdamW have faster con-
vergence in the early stages, Padam achieves the best final
test perplexity on this language modeling task for both of our
experiments.

For a more quantitative comparison, we also provide the
test accuracy for all above experiments. Table 1 shows the test
accuracy of all algorithms on the CIFAR-10 dataset. On the
CIFAR-10 dataset, methods such as Adam and Amsgrad have
the lowest test accuracy. Even though more recent algorithms
AdamW, Yogi, AdaBound improve upon original Adam, they
still fall behind or barely match the performance of SGD with
momentum. In contrast, Padam achieves the highest test ac-
curacy for VGGNet and WideResNet on CIFAR-10 dataset.
For training ResNet on the CIFAR-10 dataset, Padam is also
on a par with SGD with momentum at the final epoch (differ-
ences less than 0.2%). Table 2 shows the final test accuracy
of all algorithms on the ImageNet dataset. Again, we can ob-
serve that Padam achieves the best test accuracy for VGGNet
(both Top-1 and Top-5) and Top-1 accuracy for ResNet. It
stays very close to the best baseline of Top-1 accuracy for
the ResNet model. Table 3 shows the final test perplexity
of all algorithms on the Penn Treebank dataset. As we can
see, Padam achieves the best (lowest) test perplexity on both
2-layer LSTM and 3-layer LSTM models. All these exper-
imental results suggest that practitioners can use Padam for

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3273

Models SGD-Momentum Adam Amsgrad AdamW Yogi AdaBound Padam

2-layer LSTM 63.37 61.58 62.56 63.93 64.13 63.14 61.53
3-layer LSTM 61.22 60.44 61.92 63.24 60.01 60.89 58.48

Table 3: Test perplexity (lower is better) of all algorithms after 200 epochs on the Penn Treebank dataset. Bold number indicates the best
result.

training deep neural networks, without worrying about the
generalization performances.

6 Conclusions and Future Work
In this paper, we proposed Padam, which unifies
Adam/Amsgrad with SGD-Momentum. With an appro-
priate choice of the partially adaptive parameter, we show
that Padam can achieve the best from both worlds, i.e., main-
taining fast convergence rate while closing the generalization
gap. We also provide a theoretical analysis towards the
convergence rate of Padam to a stationary point for stochastic
nonconvex optimization.

It would also be interesting to see how well Padam per-
forms in other types of neural networks, such as genera-
tive adversarial network (GAN) [Goodfellow et al., 2014]
and graph convolutional neural network (GCN) [Kipf and
Welling, 2017; Zou et al., 2019]. We leave it as a future work.

Acknowledgements
We thank the anonymous reviewers for their helpful com-
ments. This research was sponsored in part by the Na-
tional Science Foundation CAREER Award IIS-1906169,
BIGDATA IIS-1855099 and IIS-1903202. We also thank
AWS for providing cloud computing credits associated with
the NSF BIGDATA award. The views and conclusions con-
tained in this paper are those of the authors and should not be
interpreted as representing any funding agencies.

References
[Basu et al., 2018] Amitabh Basu, Soham De, Anirbit

Mukherjee, and Enayat Ullah. Convergence guarantees
for rmsprop and adam in non-convex optimization and
their comparison to nesterov acceleration on autoencoders.
arXiv preprint arXiv:1807.06766, 2018.

[Chen et al., 2018] Xiangyi Chen, Sijia Liu, Ruoyu Sun, and
Mingyi Hong. On the convergence of a class of adam-type
algorithms for nonconvex optimization. arXiv preprint
arXiv:1808.02941, 2018.

[Davis et al., 2019] Damek Davis, Dmitriy Drusvyatskiy,
and Vasileios Charisopoulos. Stochastic algorithms with
geometric step decay converge linearly on sharp functions.
arXiv preprint arXiv:1907.09547, 2019.

[Deng et al., 2009] Jia Deng, Wei Dong, Richard Socher, Li-
Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 248–255. Ieee, 2009.

[Dozat, 2016] Timothy Dozat. Incorporating nesterov mo-
mentum into adam. 2016.

[Duchi et al., 2011] John Duchi, Elad Hazan, and Yoram
Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning
Research, 12(Jul):2121–2159, 2011.

[Ge et al., 2019] Rong Ge, Sham M Kakade, Rahul Ki-
dambi, and Praneeth Netrapalli. The step decay schedule:
A near optimal, geometrically decaying learning rate pro-
cedure. arXiv preprint arXiv:1904.12838, 2019.

[Ghadimi and Lan, 2013] Saeed Ghadimi and Guanghui
Lan. Stochastic first-and zeroth-order methods for non-
convex stochastic programming. SIAM Journal on Opti-
mization, 23(4):2341–2368, 2013.

[Ghadimi and Lan, 2016] Saeed Ghadimi and Guanghui
Lan. Accelerated gradient methods for nonconvex nonlin-
ear and stochastic programming. Mathematical Program-
ming, 156(1-2):59–99, 2016.

[Goodfellow et al., 2014] Ian Goodfellow, Jean Pouget-
Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. In Advances in Neural Informa-
tion Processing Systems, pages 2672–2680, 2014.

[Goodfellow et al., 2016] Ian Goodfellow, Yoshua Bengio,
Aaron Courville, and Yoshua Bengio. Deep learning, vol-
ume 1. MIT press Cambridge, 2016.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 770–
778, 2016.

[Hinton et al., 2012] Geoffrey Hinton, Nitish Srivastava, and
Kevin Swersky. Neural networks for machine learning lec-
ture 6a overview of mini-batch gradient descent, 2012.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and
Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[Howard et al., 2017] Andrew G Howard, Menglong Zhu,
Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mo-
bilenets: Efficient convolutional neural networks for mo-
bile vision applications. arXiv preprint arXiv:1704.04861,
2017.

[Huang et al., 2017] Gao Huang, Zhuang Liu, Kilian Q
Weinberger, and Laurens van der Maaten. Densely con-
nected convolutional networks. In Proceedings of the

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3274

IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2017.

[Keskar and Socher, 2017] Nitish Shirish Keskar and
Richard Socher. Improving generalization perfor-
mance by switching from adam to sgd. arXiv preprint
arXiv:1712.07628, 2017.

[Kingma and Ba, 2015] Diederik P Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. Interna-
tional Conference on Learning Representations, 2015.

[Kipf and Welling, 2017] Thomas N Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. International Conference on Learning Repre-
sentations, 2017.

[Krizhevsky and Hinton, 2009] Alex Krizhevsky and Geof-
frey Hinton. Learning multiple layers of features from tiny
images. 2009.

[Li and Orabona, 2018] Xiaoyu Li and Francesco Orabona.
On the convergence of stochastic gradient descent with
adaptive stepsizes. arXiv preprint arXiv:1805.08114,
2018.

[Liu et al., 2019] Mingrui Liu, Youssef Mroueh, Jerret Ross,
Wei Zhang, Xiaodong Cui, Payel Das, and Tianbao Yang.
Towards better understanding of adaptive gradient algo-
rithms in generative adversarial nets. arXiv preprint
arXiv:1912.11940, 2019.

[Loshchilov and Hutter, 2019] Ilya Loshchilov and Frank
Hutter. Decoupled weight decay regularization. In Inter-
national Conference on Learning Representations, 2019.

[Luo et al., 2019] Liangchen Luo, Yuanhao Xiong, Yan Liu,
and Xu Sun. Adaptive gradient methods with dynamic
bound of learning rate. In Proceedings of the 7th Interna-
tional Conference on Learning Representations, New Or-
leans, Louisiana, May 2019.

[Marcus et al., 1993] Mitchell Marcus, Beatrice Santorini,
and Mary Ann Marcinkiewicz. Building a large annotated
corpus of english: The penn treebank. 1993.

[Mukkamala and Hein, 2017] Mahesh Chandra Mukkamala
and Matthias Hein. Variants of rmsprop and adagrad with
logarithmic regret bounds. In International Conference on
Machine Learning, pages 2545–2553, 2017.

[Reddi et al., 2016] Sashank J Reddi, Ahmed Hefny, Suvrit
Sra, Barnabas Poczos, and Alex Smola. Stochastic vari-
ance reduction for nonconvex optimization. In Interna-
tional conference on machine learning, pages 314–323,
2016.

[Reddi et al., 2018] Sashank J Reddi, Satyen Kale, and San-
jiv Kumar. On the convergence of adam and beyond.
In International Conference on Learning Representations,
2018.

[Ren et al., 2015] Shaoqing Ren, Kaiming He, Ross Gir-
shick, and Jian Sun. Faster r-cnn: Towards real-time ob-
ject detection with region proposal networks. In Advances
in Neural Information Processing Systems, pages 91–99,
2015.

[Simonyan and Zisserman, 2014] Karen Simonyan and An-
drew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[Ward et al., 2018] Rachel Ward, Xiaoxia Wu, and Leon
Bottou. Adagrad stepsizes: Sharp convergence over non-
convex landscapes, from any initialization. arXiv preprint
arXiv:1806.01811, 2018.

[Wilson et al., 2017] Ashia C Wilson, Rebecca Roelofs,
Mitchell Stern, Nati Srebro, and Benjamin Recht. The
marginal value of adaptive gradient methods in machine
learning. In Advances in Neural Information Processing
Systems, pages 4151–4161, 2017.

[Wu et al., 2018] Yuhuai Wu, Mengye Ren, Renjie Liao,
and Roger Grosse. Understanding short-horizon bias in
stochastic meta-optimization. In International Conference
on Learning Representations, 2018.

[Xie et al., 2017] Saining Xie, Ross Girshick, Piotr Dollár,
Zhuowen Tu, and Kaiming He. Aggregated residual trans-
formations for deep neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 5987–5995. IEEE, 2017.

[Xu et al., 2016] Yi Xu, Qihang Lin, and Tianbao Yang. Ac-
celerate stochastic subgradient method by leveraging local
growth condition. arXiv preprint arXiv:1607.01027, 2016.

[Zagoruyko and Komodakis, 2016] Sergey Zagoruyko and
Nikos Komodakis. Wide residual networks. In Proceed-
ings of the British Machine Vision Conference (BMVC),
pages 87.1–87.12, 2016.

[Zaheer et al., 2018] Manzil Zaheer, Sashank Reddi, Deven-
dra Singh Sachan, Satyen Kale, and Sanjiv Kumar. Adap-
tive methods for nonconvex optimization. In Advances in
Neural Information Processing Systems, 2018.

[Zeiler, 2012] Matthew D Zeiler. Adadelta: an adaptive
learning rate method. arXiv preprint arXiv:1212.5701,
2012.

[Zhang et al., 2017] Zijun Zhang, Lin Ma, Zongpeng Li, and
Chuan Wu. Normalized direction-preserving adam. arXiv
preprint arXiv:1709.04546, 2017.

[Zou and Shen, 2018] Fangyu Zou and Li Shen. On the con-
vergence of adagrad with momentum for training deep
neural networks. arXiv preprint arXiv:1808.03408, 2018.

[Zou et al., 2019] Difan Zou, Ziniu Hu, Yewen Wang, Song
Jiang, Yizhou Sun, and Quanquan Gu. Layer-dependent
importance sampling for training deep and large graph
convolutional networks. In Advances in Neural Informa-
tion Processing Systems, pages 11247–11256, 2019.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3275

	Introduction
	Additional Related Work

	Review of Adaptive Gradient Methods
	The Proposed Algorithm
	Convergence Analysis of the Proposed Algorithm
	Experiments
	Experimental Results

	Conclusions and Future Work

