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Abstract

Formal query building is an important part of com-
plex question answering over knowledge bases. It
aims to build correct executable queries for ques-
tions. Recent methods try to rank candidate queries
generated by a state-transition strategy. However,
this candidate generation strategy ignores the struc-
ture of queries, resulting in a considerable number
of noisy queries. In this paper, we propose a new
formal query building approach that consists of two
stages. In the first stage, we predict the query struc-
ture of the question and leverage the structure to
constrain the generation of the candidate queries.
We propose a novel graph generation framework
to handle the structure prediction task and design
an encoder-decoder model to predict the argument
of the predetermined operation in each generative
step. In the second stage, we follow the previous
methods to rank the candidate queries. The experi-
mental results show that our formal query building
approach outperforms existing methods on com-
plex questions while staying competitive on simple
questions.

1 Introduction
Knowledge Base Question Answering (KBQA) is an active
research area where the goal is to provide crisp answers
to natural language questions. An important direction in
KBQA is answering via semantic parsing [Bao et al., 2016;
Luo et al., 2018; Yih et al., 2015] to natural language ques-
tions, transforming the corresponding semantic components,
including entities, relations and various constraints, into for-
mal queries (e.g., SPARQL) and then executing queries over
the knowledge base (KB) to retrieve answers. In general, a
question can be regarded as correctly answered if its correct
query has been built. For a complex question, whose query
consists of multiple entities, relations, and constraints, how
to select the correct semantic components of the query and
combine them in an appropriate way is still a problem to be
solved.
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Figure 1: One example to prove the importance of query structures.
For each query graph, ?v0 is the placeholder of the answer and ?v1
(if any) is the hidden variable.

In recent research, most query building approaches [Luo et
al., 2018; Maheshwari et al., 2019] are based on query rank-
ing, i.e., scoring candidate queries by similarities with the
question and outputting the top-scored one. Such ranking-
based approaches leverage a query graph to represent for-
mal queries and generate candidate query graphs by a state-
transition strategy [Yih et al., 2015; Luo et al., 2018; Mahesh-
wari et al., 2019]. This strategy first assumes that the length
of the path between the topic entity1 and the answer does not
exceed two hops, and then generates the candidate queries
by enumerating all possible structures meeting this assump-
tion. Although the strategy can cover almost all correct query
graphs in existing KBQA datasets, it has a significant draw-
back: a considerable number of noisy query graphs are pro-
duced. These noisy queries have incorrect structures but their
components have high similarity to the question. In fact, ex-
isting query ranking models often make erroneous judgments
when dealing with them. For example, Figure 1 shows one
question that was answered incorrectly by the states-of-the-
arts ranking-based approach2. Below the question are two
candidate query graphs generated by the above strategy. The
model does not identify the structure (dotted box) of the cor-
rect query (blue box) so that it selects the noisy query (red
box).

To avoid producing noisy queries, we propose abstract
query graphs (AQG) to describe query structures and propose

1“topic entity” is proposed in [Yih et al., 2015], which refers to
the root of the query graph(tree).

2We reimplement the approach proposed in [Luo et al., 2018].

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3751



Class Instances Symbol

Entity Y.S. Rajasekhara. Redy, · · · rectangle
Type Election, Actor, President, · · · rounded rectangle

Number 1, 2008, · · · diamond
Variable ?v0, ?v1, · · · circle

Relation 〈party〉, 〈winner〉, · · · -
Order min at n, max at n -

Comparison <, >, = -
Count count -

Isa rdf:type -

Table 1: Classes of vertices and edges in query graphs

a new formal query building approach with query structure
prediction. Specifically, our approach consists of two stages.
In the first stage, we first leverage a neural network-based
generative model to generate an AQG according to the ques-
tion. The AQG is regarded as a predicted structure of the
query graph. Then, we utilize the AQG as a constraint to
generate the candidate query graphs whose structures match
it. In the second stage, we perform candidate query ranking
by an existing model, in order to evaluate the improvement
brought by the AQG constraint. Following the previous ap-
proaches, our work focuses on handling the query graph of
the tree structure. We perform comprehensive experiments on
multiple QA datasets, and our proposed method consistently
outperforms previous approaches on complex questions and
produces competitive results on the dataset mainly made up
of simple questions.

2 Preliminaries
2.1 Query Graph
The knowledge base (KB) can be regarded as a collection of
subject-predicate-object triples 〈s, p, o〉, where s is an entity,
p is a relation and o can be either a literal or an entity.

The query graph is defined in [Yih et al., 2015], which
is a structured representation of natural language questions.
In theory, it is a directed graph. However, in the existing
datasets, it is often a tree structure with n vertices and n − 1
edges. Therefore, we focus on dealing with the queries of the
tree structure in this paper, and the process to general graph
structures is left for future work. The vertices of query graphs
include KB entities, KB types, etc., and the edges consist of
KB relations and some built-in properties. Table 1 shows a
detail classification of the vertices (middle) and edges (bot-
tom).

2.2 Abstract Query Graph
Following the work given in [Hu et al., 2018; Ding et al.,
2019], we propose an abstract query graph to describe the
query structure. An abstract query graph (AQG) is a tree,
which consists of a combination of n labeled vertices v ∈
{“Ent”, “Type”, “Num”, “Var”}, connected with n − 1 la-
beled, undirected edges e ∈ {“Rel”, “Ord”, “Cmp”, “Cnt”,
“Isa”}. Here, all the labels in AQG correspond to the vertex
classes and edge classes in query graphs (see Table 1). Intu-
itively, AQG reflects the topology and the component classes
of query graphs and each query graph corresponds to a unique

AQG (Figure 1). Therefore, if the correct AQG is predicted,
it can be used as a constraint to avoid generating the noisy
queries with wrong structures.

2.3 Grounding
The operation of utilizing AQG to generate candidate queries
is called grounding. In our work, we perform grounding on
an AQG g by a two-step method: first, we obtain an inter-
mediate graph by replacing all the vertices (not variables)
and built-in property edges of g with the candidate instances.
The intermediate graph is denoted by g∗. Then, we execute
the queries3 (SPARQL) corresponding to g∗ against the KB
to retrieve all instance relations corresponding to each ”Rel”
edges of g∗. After replacing the “Rel” edges of g∗ with the re-
trieved instance relations, the query graph is generated. Con-
cretely, for each invariable vertex, its candidate instances are
obtained from the existing linking results, including entities,
type, number (time and ordinal). For each edge, if its class la-
bel is “Rel”, its candidate instances retrieved by executing g∗.
Otherwise, it is a built-in property and its candidate instances
are obtained by referring to Table 1. After all the combina-
tions of the candidate instances are tried to replace vertices
and edges, and their legitimacy is verified by the KB, ground-
ing is over and the candidate query graphs corresponding to
g are finally generated.

2.4 Graph Transformer
Since query structure is a tree or even a graph, traditional neu-
ral networks cannot effectively capture its structural informa-
tion. In this paper, we introduce graph transformer [Koncel-
Kedziorski et al., 2019], which is a graph neural network, to
learn the vector representation of AQG. Its input is a multi-
labeled graph (e.g., AQG), which consists of three compo-
nents: a sequence of vertices, a sequence of edges, and an
adjacency matrix. Here, both sequences are unordered and
each vertex or edge is represented by its corresponding class
label vector, which is randomly initialized. For each vertex or
edge in the graph, graph transformer exploits the multi-head
attention mechanism [Vaswani et al., 2017] to aggregate the
information of its neighbors (within several hops) to update
its vector representation. Finally, the output includes three
parts: a sequence of vertex vectors, a sequence of edge vec-
tors, and a global vector of the entire graph, which is obtained
by the weighted sum of all the vertices and edges.

3 Approach
3.1 Process Overview
For an input question q, we first assume that the linking re-
sults of entities, type, and number in q have been obtained
by preprocessing, denoted by Rl. Then, the query graph gq
corresponding to q is built by the following two stages:
(a) Generating candidate query graphs. First, an AQG

generator translates q into an AQG, denoted by g. Then,
according to Rl, a query graph candidate set Cg is gen-
erated by performing grounding on g.

3The queries are generated from g∗ and all the possible directions
of “Rel” edges are taken into account. That is, if there are two “Rel”
edges in the AQG, the number of the direction combinations is 4.
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(b) Ranking candidate query graphs. An existing query
ranking model is employed as a black box to score each
query graph in Cg and the top-scored one is selected as
gq .

Our approach aims to explore how to predict query struc-
tures (AQG generation) and whether they can improve exist-
ing query ranking approaches. Consequently, in order for the
experimental comparison, we keep the query ranking model
consistent with [Luo et al., 2018]. To more intuitively show
the value of AQG and shorten the training time of the rank-
ing model, we only employ their basic version model which
removes the dependency representation of the question and
id representation of the path (refer to [Luo et al., 2018] for
details). In the rest of this section, we will detail the process
of AQG generation.

3.2 Abstract Query Graph Generation
We first introduce the proposed generative framework, and
then detail the neural network-based AQG generator which
follows this framework.

Generative Framework
An AQG is a tree, which can be regarded as a specific case
of undirected graphs, denoted by g = (V,E). Here, V and E
are the sets of labeled vertices and labeled edges, respectively.
In our framework, the generative process of AQG can be de-
scribed by a sequence of graphs G =

{
g0, g1, ..., gL

}
, where

g0 is an empty graph and gL is the completed AQG. For each
time step t ≥ 1, gt = f(gt−1, ∗at), where f denotes the op-
erator and ∗at denotes several arguments according to f . In
this paper, we define the following three types of graph-level
operators:

(a) addVertex. For a graph gt = (V,E), addVertex(gt, cv)
represents adding a fresh vertex of label cv into gt. The
result is a graph gt+1 = (V ∪ {vadd} , E), where vadd
denotes the added vertex.

(b) selectVertex. For the graph gt+1 = (V ∪ {vadd} , E)
after addVertex, selectVertex(gt+1, vadd, vslc) means se-
lecting a vertex vslc ∈ V that will be connected to
the fresh vertex vadd. The results is a graph gt+2 =
(V ∪ {vadd} , E)4.

(c) addEdge. For the graph gt+2 = (V ∪ {vadd} , E) af-
ter selectVertex, addEdge(gt+2, vadd, vslc, ce) means
adding a fresh edge of label ce into gt+2 to connect
vadd with vslc. The result is a graph gt+3 = (V ∪
{vadd} , E ∪ {eadd}), where eadd = (vslc, ce, vadd) is
the added edge.

Successively performing the operations addVertex, se-
lectVertex, and addEdge on a graph is called an iteration,
which adds a new triple 〈vslc, ce, vadd〉 into the graph. In the
proposed framework, we stipulate that the first operation is
always addVertex, which converts the initial empty graph to a
graph containing only one isolated vertex. Then, the AQG is

4Note that the structures of gt+1 and gt+2 are identical. Here,
utilizing the two different identifiers aims to distinguish the time
steps they belong to.
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Figure 2: Architecture of the AQG generator. Red indicates the ob-
ject being operated at each step.

generated by multiple iterations. Although the operator f is
predetermined in each time step, different arguments ∗at re-
sult in generating different AQG. Here, the arguments vadd in
selectVertex, vadd and vslc in addEdge can be obtained by the
previous step, consequently, only the last argument of each
operation need be determined, i.e., cv in addVertex, vslc in
selectVertex and ce in addEdge.

There are two reasons for predicting query structures by a
grammar (graph-level operations) -based generation process
rather than predefined structure templates: (1) First, com-
pared to the templates, the graph-level operations are more
underlying and therefore more flexible. (2) Second, and more
importantly, the test query structure may not be visible during
training. The generation process can help deal with this sit-
uation by learning the visible steps of the invisible complex
query structures.

NN-based AQG Generator
The architecture of the proposed AQG generator is shown
in Figure 2. It takes a question and an empty graph g0

as the inputs and then outputs a sequence of graphs G =
{g1, g2, ..., gL}, where gL is the completed AQG. At each
time step, the generator first predicts the argument for the op-
eration and then generates a new graph by performing the
operation on the previous graph. Intuitively, for each predic-
tion, the generator needs to integrate the information of both
the question and the previous graph. Therefore, the model
consists of four components: a question encoder, a graph en-
coder, a decoder, and an executor.

Question Encoder. To capture the semantic information of
the question, we apply a Bi-LSTM as the question encoder
to get the vector representations of the question. First, we
replace all entity (number) mentions (from linking results)
used in the question q by tokens 〈e〉 (〈n〉), to enhance the
generalization ability. Then, the question encoder works on
the word embeddings of q and outputs its vector representa-
tions Γq = [γ1q , γ

2
q , ..., γ

l
q], where l denotes the number of the

words in q.

Graph Encoder. To capture the semantic information of
the graph generated at the previous time step, we leverage
a graph transformer as the graph encoder. At time step t, the
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graph encoder embeds the graph gt−1 and outputs a list of
vertex vectors Γt−1

v = [γ1v , γ
2
v , ..., γ

n
v ], a list of edge vectors

Γt−1
e = [γ1e , γ

2
e , ..., γ

m
e ] and a vector ht−1g ∈ Rd, where n

and m respectively denote the numbers of the vertices and
edges in gt−1, and ht−1g is the representation of gt−1.

Decoder. We employ a Bi-LSTM as the decoder to translate
the information from the question and the previous graph into
a vector at each time step. This vector carries the semantic
information of the predicted argument. Specifically, at time
step t, htq ∈ Rd is the context vector from the question q,
which is computed by

htq =
n∑

i=1

αt
iγ

i
q (1)

αt
i =

exp(ht−1g ·Wγiq)∑l
j=1 exp(ht−1g ·Wγjq)

(2)

where · denotes the dot product operation, W ∈ Rd×d is the
trainable parameter matrix, ht−1g is the output from the graph
encoder for gt−1, and αt

i is the weight of attention from gt−1

for the i-th word of the question. This attention mechanism
is based on the following intuition: At time step t, the model
should focus on some parts of q which do not carry the re-
dundant information of gt−1. i.e., avoid repeatedly adding
the triple that has been added. Thereafter, the input to the
decoder, denoted by htin ∈ Rd, is calculated by a skip con-
nection: htin = ht−1g +htq . Here, + denotes the element-wise
addition. Although ht−1g is already involved in calculating htq ,
the decoder still needs the direct information of gt−1 when
making decisions, such as selectVertex. Therefore, we adopt
the idea from Residual Networks [He et al., 2016], enhanc-
ing the propagation of ht−1g by this skip connection. Finally,
the decoder takes htin as the input and outputs the semantic
vector of the predicted argument, denoted by htout ∈ Rd.

Executor. At each time step t, the executor first transforms
the decoder’s output htout into the argument ∗at. Then, it
performs the operation f(gt−1, ∗at) to output a new graph
gt. Corresponding to the types of the operator f , the executor
contains three modules. For each module, we design a pointer
network [Vinyals et al., 2015] for predicting the argument:

• Add Vertex Module. The argument cv denotes the label
of the added vertex, which is determined by

cv = arg max
i∈Cv

pav(i|q, gt−1) (3)

pav(i|q, gt−1) =
exp(htout · βi)

Σj∈Cv exp(htout · βj)
(4)

where βi ∈ Rd is the parameter vector of label i and
Cv ={“Ent”, “Type”, “Num”,“Var”, “End”}. Compar-
ing to the AQG vertex classes, Cv has one more class
label “End”, which is used to terminate the process.
Specifically, if “End” is selected at time step t, the gen-
eration process ends and the generator outputs gt.

• Select Vertex Module. vslc denotes the index of the
selected vertex of gt−1, which is determined by

vslc = arg max
i∈V t−1

psv(i|q, gt−1) (5)

psv(i|q, gt−1) =
exp(htout · γiv)

Σj∈V t−1 exp(htout · γ
j
v)

(6)

where V t−1 denotes the vertex set of gt−1, and γjv ∈ Rd

is the vector representation of the vertex j in gt−1 from
the graph encoder.
• Add Edge Module. ce denotes the label of the added

edge, which is determined by

ce = arg max
i∈Ce

pae(i|q, gt−1) (7)

pae(i|q, gt−1) =
exp(htout · ρi)

Σj∈Ce
exp(htout · ρj)

(8)

where ρi ∈ Rd is the parameter vector of label i and
Ce ={“Rel”, “Ord”, “Cmp”, “Cnt”, “Isa”}.

KB Constraint. AQG aims to be grounded to the KB to
generate query graphs. Therefore, whether the AQG can be
grounded in the knowledge base is also an important indica-
tor to evaluate its correctness. To prevent the excessive ex-
pansion of the AQG, we utilize the KB to constrain its gener-
ation. Concretely, whenever the AQG completes an iteration,
we ground it against the KB to check if there is at least one
query graph that matches the AQG. If it exists, the generation
process will continue, otherwise, the triple added by the lat-
est iteration will be removed and the current graph is returned
as the result. In addition, we employ a strategy to enhance
the recognition of the type constraint: if there is no “Type”
vertex in the generated AQG but the type linking result set of
the question is not empty, we attach a type vertex to a vari-
able vertex and obtain a new AQG. Then, the KB constraint
is required to verify the legality of this new AQG.

3.3 Training
In the experiments, each training sample consists of a ques-
tion q and its gold query graph g+q . The AQG corresponding
to g+q is regarded as the gold AQG, denoted by g+.

To get the ground-truth for training the AQG generator, we
traverse g+ to restore its generation process. In fact, for the
same AQG, different traversal strategies and starting vertices
result in different ground-truth. By experimental compari-
son, we adopt depth-first traversal. In addition, in a query
graph, there is at least one variable vertex representing the
answer5, denoted by ?v0. Therefore, we select the vertex in
g+, which corresponds to ?v0, as the starting vertex of the
traversal. Specifically, the ground-truth π is obtained by the
following steps: Initially, π is an empty sequence. At the be-
ginning of the traversal, the starting vertex vs is first visited
and its label is added to π. Thereafter, whenever a fresh ver-
tex v is visited from the vertex u along the edge e, the class
label of v, the index of u, and the class label of ewill be added
to π in turn. When all vertices in g+ are visited, the last label

5Other variables are hidden variables, like ?v1 in Figure 1.
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“End” is added to π and the ground-truth π = {a1, a2, ..., aL}
is obtained. Here, L is the step number of the generation pro-
cess, and at is the ground true argument (last argument) of
each operation. During training time, our model is optimized
by maximizing the log-likelihood of the ground true argument
sequences: ∑

q∈Q

L∑
t=1

p(at|q, gt−1) (9)

Here, Q is the set of the questions, and p(at|q, gt−1) is the
predicted probability of the ground true argument at, includ-
ing pav , psv and pae.

4 Experiments
4.1 Experimental Setup
Our models are trained and evaluated over the following three
KBQA datasets:

LC-QuAD [Trivedi et al., 2017] is a gold standard com-
plex question answering dataset over the DBpedia 04-2016
release, having 5,000 NLQ and SPARQL pairs. The dataset
is split into 4,000 training and 1,000 testing questions6.

ComplexQuestions (CompQ) [Bao et al., 2016] is a ques-
tion answering dataset over Freebase, which contains 2,100
complex questions collected from Bing search query log. The
dataset is split into 1,300 training and 800 testing questions7.

WebQuestions (WebQ) [Berant et al., 2013] is a question
answering dataset over Freebase, which contains 5,810 ques-
tions collected from Google Suggest API. It is split into 3,778
training and 2,032 testing QA pairs8. Since more than 80% of
the questions in this dataset are simple questions that contain
only one fact, we use it as a benchmark for simple questions.

For LC-QuAD, we directly use its provided standard
SPARQL as the gold query. However, ComplexQuestions
and WebQuestions only contain question-answer pairs, so we
search the candidate queries released by [Luo et al., 2018]
and take the query with the highest F1-score as the gold
query. To compare with previous methods[Luo et al., 2018;
Maheshwari et al., 2019], we follow them to use the results
of the state-of-the-art entity-linking tool S-MART [Yang and
Chang, 2015] on CompQ and WebQ, and use the gold entities
on LC-QuAD. For each dataset, we randomly select the 10%
of the training set as the development set.

Implementation details. In our experiments, all word vec-
tors are initialized with 300-d pretrained word embeddings
using GloVe[Pennington et al., 2014]. The following hyper-
parameters are tuned on development sets: (1) Both the sizes
of the hidden states are set to 256; (2) The layer number of
Bi-LSTM is set to 1 and the layer number of graph Trans-
former is set to 3; (3) The learning rate is set to 2× 10−4; (4)
The number of the training epochs is set to 30. Our code are
publicly available9.

6https://figshare.com/projects/LC-QuAD/21812
7https://github.com/JunweiBao/MulCQA/tree/

ComplexQuestions
8https://nlp.stanford.edu/software/sempre/
9https://github.com/Bahuia/AQGNet

Method LC-QuAD CompQ WebQ

[Yih et al., 2015] - 36.9 52.5
[Bao et al., 2016] - 40.9 52.4

[Abujabal et al., 2017] - - 51.0
[Cui et al., 2017] - - 34.0
[Luo et al., 2018] - 42.8 52.7
[Hu et al., 2018] - - 53.6
[Yu et al., 2017] 70.0 - -

[Maheshwari et al., 2019] 71.0 - -

Our approach 74.8 43.1 53.4

Table 2: Average F1-scores on LC-QuAD, CompQ and WebQ.

4.2 End-to-End Results
We compared our approach with several existing KBQA
methods. [Abujabal et al., 2017] performs query building
by existing templates. [Yih et al., 2015; Bao et al., 2016;
Yu et al., 2017] construct pipelines to generate query graphs.
[Luo et al., 2018; Maheshwari et al., 2019] obtain state-
of-the-art performance on CompQ and LC-QuAD by query
ranking, respectively. [Hu et al., 2018] achieves a state-of-
the-art result on WebQ by state-transition over dependency
parsing. The main difference between our method and theirs
is that they perform state transition by enumerating pre-
defined transition conditions, but we let our model learn to
how to expand the AQG automatically at each step.

The experimental results are reported in Table 2. Our ap-
proach achieves state-of-the-art results on both LC-QuAD
and CompQ, and ranks second only to [Hu et al., 2018] on
WebQ. Although the performance on WebQ did not exceed
[Hu et al., 2018], our approach achieves a result that closes
to theirs on WebQ without any predefined transition condi-
tions. From another perspective, our approach outperforms
all the existing ranking-based approaches [Luo et al., 2018;
Maheshwari et al., 2019] on the three datasets.

The performance of [Abujabal et al., 2017; Bao et al.,
2016; Yu et al., 2017] is limited by the error propagation
of the pipeline for ranking components. [Luo et al., 2018;
Maheshwari et al., 2019] rank entire queries to joint the in-
formation of components, thus achieve better results. How-
ever, enumeration on query structures makes their perfor-
mance suffer from noisy queries. Existing models lack suf-
ficient representation capacity to balance structure and com-
ponents. Our approach decouples the query ranking task and
exploits a specific generative model to handle the information
of structures, achieving better results.

4.3 Detailed Analysis
Contribution of AQG Constraint
In order to evaluate the improvement by AQG constraint, we
kept our baseline ranking model unchanged but generated
candidate queries by the staged-transition strategy (ST).

Table 3 shows the average numbers of candidate queries,
precision, recall, and F1-score of the entire systems based
on different candidate generation strategies. Intuitively, the
size of the candidate set generated by AQG is much smaller
than that generated by ST, especially on LC-QuAD. In ad-
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LC-QuAD CompQ WebQ

Nc P R F1 Nc P R F1 Nc P R F1

our approach 204.4 75.63 75.01 74.75 88.3 42.11 54.59 43.06 76.1 53.77 61.81 53.43
replacing AQG with ST 1379.9 65.89 75.30 69.53 204.4 40.76 54.98 42.47 147.5 52.16 61.25 52.73

Table 3: Average candidate number(Nc), precision (P), recall (R) and F1-scores (F1) for different candidate query generation methods.

LC-QuAD CompQ WebQ

AQG generator 83.00 88.88 91.88

w/o attention 80.20 87.75 90.50
w/o skip connection 78.40 85.45 91.29
w/o graph encoder 38.60 39.13 89.90
w/o KB constraint 72.90 80.52 90.36

breadth-first 81.80 84.12 91.95
random 79.80 83.78 91.55

Table 4: Accuracy of AQG generation.

dition, comparing to the ST-based strategy, the AQG-based
strategy improves the performance of the entire system on all
the datasets by increasing the average precision of answering.

To further analyze the impact of question complexity on the
performance, we divided the questions in each dataset into
four complexity levels according to the number of edges in
the correct query graph. Here, level i indicates that the query
graph contains i edges. We tested the average F1-scores when
answering the questions of different levels. Figure 3(a),3(b)
and 3(c) show the results. The improvements of the AQG-
based strategy over the ST-based strategy increase with the
complexity of questions. Furthermore, we found that the per-
formance of both methods on CombQ and WebQ (using en-
tity linking results) increases as the question is more com-
plex, but it is not reflected in LC-QuAD (using gold entities).
It hints to the fact that constraints in complex questions can
provide more comprehensive information for entity linking.

Ablation Study on AQG Generator
To explore the contributions of various components of our
AQG generator, we compared the following settings:

w/o attention. We replaced the attention mechanism with
an average-pooling to get htq .

w/o skip connection. We removed the skip connection of
ht−1g and htq and only used htq as the input to the decoder.

w/o graph encoder. We removed the graph encoder, that
is, at decoding time step t, we use ht−1out to calculate htq and
obtain htin by the element-wise addition of ht−1out and htq .

w/o KB constraint. We removed the KB constraint that
prevents the excessive expansion of AQG.

The middle of Table 4 shows the accuracy of AQG gener-
ation of different settings. By removing the attention mech-
anism, the accuracy declined approximately 2% on the three
datasets. Removing the graph encoder results in a significant
drop in performance, especially on LC-QuAD and CombQ.

It demonstrates that the structural information of the previ-
ous graph is essential. The performance drop by removing
skip connection also illustrates this fact. The main reason
for the smaller drop on WebQ can be that most questions in
WebQ are simple questions whose true query only contains
one edge. In this case, the model can also achieve good re-
sults only by the memory of the previous operation. Rmoving
the KB constraint makes the performance approximately drop
10% over both the complex datasets, which reveals that KB
is an effective tool for the query structure disambiguation.

Impact of the Ground-truth Construction Strategy
We also evaluate the accuracy of the AQG generator super-
vised by different ground-truth, which are constructed by fol-
lowing traversal strategies.

Breadth-first traversal. We replaced the depth-first traver-
sal with the breadth-first traversal.

Random traversal. We adopted the random traversal.
Specifically, once visiting a vertex v, randomly select an un-
visited vertex connected to v as the next vertex to visit.

The bottom of Table 4 shows the results. The perfor-
mance is worst when the ground-truth is constructed by ran-
dom traversal. Depth-first traversal achieves better perfor-
mance than breadth-first traversal on LC-QuAD and CompQ.
By observation, we speculate it is because the facts of com-
plex questions are typically reflected in the form of chains.
Depth-first traversal can effectively preserve this chain struc-
ture so that it achieved better results. Three traversal strate-
gies achieve close results on WebQ because three traversal
strategies have the same results for simple query graphs.

Results on Varied Sizes of Training Data
We tested the performance of our approach with different
sizes of training data. The results are shown in Figure
3(d),3(e) and 3(f). The model equipped with the attention
mechanism, the graph encoder, the skip connection, and the
KB constraint always maintains optimal performance with
different sizes of training data. Furthermore, with less train-
ing data, the performance of our approach can still maintain
certain stability. It is due to the fact that our model learns
fine-grained generative steps instead of entire structures. In
this way, even if there are some invisible test query structures,
which do not appear in the training data, our model can still
handle them by visible generative steps.

5 Related Work
Traditional semantic parsing based KBQA approaches [Be-
rant and Liang, 2014; Fader et al., 2014; Reddy et al., 2017]
aim to learn semantic parsers that translate natural language
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Figure 3: F1-score with varied complexity levels of questions and proportions of training data

questions into a logical form expression. Recent researches
proposed an alternate approach to semantic parsing by treat-
ing KBQA as a problem of semantic graph generation. [Yih et
al., 2015] defines a sequence of stages for generating query
graphs, each relying on a set of manually defined rules for
how query conditions are added. [Yu et al., 2017] proposes
a hierarchical representation model for the matching of ques-
tion and KB relations. Current KBQA methods simplify the
pipeline into query ranking. [Luo et al., 2018] apply a staged
candidate generation strategy to generate candidate query
graphs and then rank them by utilizing a semantic matching
model. [Maheshwari et al., 2019] follows the candidate gen-
eration methods proposed in [Yih et al., 2015] and propose
a novel self-attention based slot matching model. These ap-
proaches try to capture the structural information and the se-
mantic information by a single model. The main difference
between our approach and previous approaches is that we ex-
plicitly leverage the structural constraint (AQG) to narrow the
search space of candidate queries, in order to release the bur-
den of query ranking. In addition, to avoid using any pre-
defined structured templates which limit the generalization
ability of our approach, we propose a generative framework
to generate AQG based on basic graph-level operations. To
the best of our knowledge, this is the first attempt to predict
the query structures without any pre-defined templates. Last
but not least, to utilize the structural information of the graph
to help the model make decision in the AQG generation pro-
cess, we apply graph transformer[Koncel-Kedziorski et al.,
2019], which is an existing graph neural network model, to
learn the representation of the AQG. The most related work
to ours is [Hu et al., 2018] and [Ding et al., 2019]. [Hu et
al., 2018] proposes a semantic query graph to constrain can-
didate query generation. They perform state transition on the
dependency tree by predefined conditions. In contrast, we
make the model learn to perform the state transition without
any conditions. [Ding et al., 2019] proposes to leverage the

query substructure templates in the training data to construct
complex queries. Different from [Ding et al., 2019], we try
to predict the query structure from the perspective of graph
generation without using templates.

6 Conclusion
In this paper, we presented our two-stage formal query build-
ing approach. Our approach can automatically predict the
query structure and use it as a constraint to avoid generating
noisy candidate queries, thereby improving the performance
of the following query ranking. The experimental results
showed that our approach achieved superior results than the
existing methods on complex questions, and produced com-
petitive results on other simple question based datasets. In
future work, We will try to extend the AQG generation frame-
work in order to deal with the query of general graph struc-
tures. In addition, we plan to apply reinforcement learning
instead of supervised learning to train the AQG generator.
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Petrov, Mark Steedman, and Mirella Lapata. Universal
semantic parsing. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing,
pages 89–101, 2017.

[Trivedi et al., 2017] Priyansh Trivedi, Gaurav Maheshwari,
Mohnish Dubey, and Jens Lehmann. Lc-quad: A corpus
for complex question answering over knowledge graphs.
In Proceedings of 16th International Semantic Web Con-
ference, pages 210–218, 2017.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Proceedings of Advances in Neural Information
Processing Systems 30: Annual Conference on Neural In-
formation Processing Systems, pages 5998–6008, 2017.

[Vinyals et al., 2015] Oriol Vinyals, Meire Fortunato, and
Navdeep Jaitly. Pointer networks. In Corinna Cortes,
Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama,
and Roman Garnett, editors, Advances in Neural Informa-
tion Processing Systems 28: Annual Conference on Neu-
ral Information Processing Systems 2015, December 7-
12, 2015, Montreal, Quebec, Canada, pages 2692–2700,
2015.

[Yang and Chang, 2015] Yi Yang and Ming-Wei Chang. S-
MART: novel tree-based structured learning algorithms
applied to tweet entity linking. In Proceedings of the 53rd
Annual Meeting of the Association for Computational Lin-
guistics, pages 504–513, 2015.

[Yih et al., 2015] Wen-tau Yih, Ming-Wei Chang, Xiaodong
He, and Jianfeng Gao. Semantic parsing via staged query
graph generation: Question answering with knowledge
base. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language Pro-
cessing of the Asian Federation of Natural Language Pro-
cessing, pages 1321–1331, 2015.

[Yu et al., 2017] Mo Yu, Wenpeng Yin, Kazi Saidul Hasan,
Cı́cero Nogueira dos Santos, Bing Xiang, and Bowen
Zhou. Improved neural relation detection for knowledge
base question answering. In Proceedings of the 55th An-
nual Meeting of the Association for Computational Lin-
guistics, pages 571–581, 2017.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3758


	Introduction
	Preliminaries
	Query Graph
	Abstract Query Graph
	Grounding
	Graph Transformer

	Approach
	Process Overview
	Abstract Query Graph Generation
	Generative Framework
	NN-based AQG Generator

	Training

	Experiments
	Experimental Setup
	End-to-End Results
	Detailed Analysis
	Contribution of AQG Constraint
	Ablation Study on AQG Generator
	Impact of the Ground-truth Construction Strategy
	Results on Varied Sizes of Training Data


	Related Work
	Conclusion

