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Abstract

The lack of sufficient training data in many do-
mains, poses a major challenge to the construc-
tion of domain-specific machine reading compre-
hension (MRC) models with satisfying perfor-
mance. In this paper, we propose a novel itera-
tive multi-source mutual knowledge transfer frame-
work for MRC. As an extension of the conven-
tional knowledge transfer with one-to-one corre-
spondence, our framework focuses on the many-to-
many mutual transfer, which involves synchronous
executions of multiple many-to-one transfers in
an iterative manner. Specifically, to update a
target-domain MRC model, we first consider other
domain-specific MRC models as individual teach-
ers, and employ knowledge distillation to train
a multi-domain MRC model, which is differen-
tially required to fit the training data and match
the outputs of these individual models according
to their domain-level similarities to the target do-
main. After being initialized by the multi-domain
MRC model, the target-domain MRC model is
fine-tuned to match both its training data and the
output of its previous best model simultaneously
via knowledge distillation. Compared with previ-
ous approaches, our framework can continuously
enhance all domain-specific MRC models by en-
abling each model to iteratively and differentially
absorb the domain-shared knowledge from others.
Experimental results and in-depth analyses on sev-
eral benchmark datasets demonstrate the effective-
ness of our framework. We release our code at
https://github.com/DeepLearnXMU/IMM

1 Introduction

As one of the core abilities of artificial intelligence, Machine
Reading Comprehension (MRC) attempts to enable machines
to answer questions after reading a passage. Due to its valu-
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able industry applications such as search engines, it has al-
ways been one of the research focuses in natural language
processing [Seo et al., 2017; Hu et al., 2018; Yu et al., 2018;
Devlin et al., 2019; Liu et al., 2020]. As the basis for MRC
studies, many datasets such as SQUAD [Rajpurkar et al.,
2016] and NEWSQA [Trischler et al., 2017] have been de-
veloped in recent years. However, some domain-specific
datasets are limited, and thus they are unable to individually
train a domain-specific MRC model with satisfying perfor-
mance. Therefore, how to overcome the shortage of domain-
specific training data has become one of the important re-
search directions in MRC.

To this end, one direction is to mix multiple domains
of data and train a unified MRC model [Xu et al., 2019]
and another line of work introduces silver data by automat-
ically generating questions [Duan et al., 2017; Song et al.,
2018] . However, such approaches ignore the differences be-
tween these domains and introduce noises, resulting in the
underutilization of these data. Recently, researchers have ex-
plored several transfer learning methods for MRC. Min et
al. [2017] and Chung et al. [2018] first introduced fine-tuning
into MRC. Furthermore, Talmor and Berant [2019] investi-
gated the effect of domain-level similarities on fine-tuning.
Despite their successes, fine-tuning still has some drawbacks.
First, it is a knowledge transfer method with one-to-one cor-
respondence, which also cannot effectively utilize multiple
source-domain data with different impacts. Second, the sig-
nificant difference between the source-domain and the target-
domain often makes the one-pass transfer procedure of fine-
tuning fail to fully exploit domain-shared knowledge. It can
be said how to fully exploit the training data in different do-
mains to construct domain-specific MRC models still remains
unresolved.

In this work, we propose a novel iterative multi-source
mutual knowledge transfer framework for MRC. The intu-
ition behind our method includes two aspects. First, each
domain-specific MRC model can be enhanced by the training
data and models of other domains, whose effects depend on
their domain-level similarities to the target domain. Second,
a process of iterative mutual reinforcement can achieve better
knowledge transfer, where domain-shared knowledge among
training data in different domains can be fully exploited to
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Figure 1: Overview of our framework for MRC. D; is the ¢-the domain training data, 95’” and qbl(-k) represent the ¢-th domain-specific model
and its corresponding multi-domain model at the k-th iteration, respectively. Solid arrows show the distillation based knowledge transfer

from {D;, Hj(.k) }iito ¢Z(.k), where color intensities of solid arrows indicate different domain-level similarities of multiple training data to the
i-th domain data. The dotted arrow pointing from d)§k) to 6‘§k+1> indicates initializing 6’§k+1) using ¢§k). The dotted arrow departing from
{Ds, ng)} to ng“) illustrates the distillation based knowledge transfer from {D;, 65’“)} to 65’““). Please note that each domain-specific

model has its own multi-domain model.

benefit all domain-specific MRC models.

Figure 1 shows our framework for MRC. Significantly
different from previous approaches, the execution process
of our framework involves synchronous executions of mul-
tiple many-to-one knowledge transfers in an iterative man-
ner. More specifically, as shown in the blue dashed part of
Figure 1, we conduct a many-to-one transfer involving two
steps to update a target-domain MRC model: First, we apply
knowledge distillation [Hinton et al., 2015; Tan er al., 2019;
Clark et al., 2019] to establish a multi-domain MRC model,
which is trained to simultaneously fit the training data and
match the outputs of other domain-specific MRC models.
Particularly, we introduce domain-level similarities to control
the impacts from the other domains on the construction of this
multi-domain MRC model. Second, after the initialization
with the multi-domain MRC model, we employ knowledge
distillation to fine-tune the target-domain MRC model, super-
vised by both its training data and the outputs of its previous
best model.

Compared with previous methods [Min et al., 2017; Chung
et al., 2018; Talmor and Berant, 2019], in this work, we
make the following contributions: (1) We extend the exist-
ing knowledge transfer with one-to-one correspondence into
anew setting of many-to-many mutual knowledge transfer for
MRC; (2) We exploit multi-source mutual knowledge trans-
fer for MRC, based on knowledge distillation, to particularly
leverage the similarity between each domain and the target
domain for better knowledge transfer; and (3) We propose to
perform multi-source mutual knowledge transfer in an itera-
tive manner, so that domain-shared knowledge can be fully
exploited to benefit all domain-specific MRC models.
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We conduct experiments on several commonly-used
datasets. Experimental results and in-depth analyses show
that our framework achieves significantly better performance
than the dominant knowledge transfer approaches for MRC.

2 Related Work

Transfer learning for MRC. To address the lack of large-
scale domain-specific training data in MRC, previous studies
use upstream datasets to enhance the performance of MRC
models, including word embeddings [Pennington et al., 2014]
and language models [Devlin et al., 2019]. Meanwhile, more
attempts have been made to explore transfer learning ap-
proaches for MRC, where fine-tuning is the most common
method achieving satisfying results on several datasets [Min
et al., 2017]. Particularly, Golub er al. [2017] introduced
a two-stage synthesis network to produce the target-domain
synthetic dataset, which can be used to fine-tune the MRC
model. Chung et al. [2018] demonstrated that transfer learn-
ing is helpful even in unsupervised scenarios. Xu et al. [2019]
explored a multi-task learning framework to exploit different
domains of datasets for MRC, where two re-weighting strate-
gies are investigated. Talmor and Berant [2019] performed a
thorough empirical investigation of generalization and trans-
fer over different domains of MRC datasets.

Unlike these work, our framework iteratively transfers
the knowledge among multiple MRC datasets, where each
domain-specific MRC model and its training data can be iter-
atively and differentially exploited to enhance other models.
To the best of our knowledge, such an approach has not been
fully explored before in MRC.
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Knowledge distillation based NLP. Recently, knowledge
distillation has been successfully applied into many tasks,
such as model compression [Kim and Rush, 2016] and knowl-
edge transfer [Zeng er al., 2019; Tan et al., 2019].

Similar to our first many-to-one knowledge distillation,
Tan et al. [2019] presented a distillation-based approach to
boost the performance of multilingual machine translation.
Furlanello et al. [2018] proposed BAN that is a simple re-
training procedure. During this procedure, after the teacher
model coverges, they initialize a new student model and train
it with the dual goals of predicting the correct labels and
matching the output distribution of the teacher model. On
this basis, Clark et al. [2019] extended BAN to BAM, which
utilizes multiple task datasets simultaneously and thus can be
considered as the multi-task version of BAN.

The most related work to ours is [Clark er al., 2019].
However, our work significantly differs from this work in
the following important aspects: (1) During the first step of
knowledge distillation, Clark et al. [2019] applied knowl-
edge distillation to transfer the knowledge of all single-task
models to a unified multi-task model. By contrast, we dis-
tills all non-target single-domain models into a multi-domain
model, which leverages domain-level similarities and thus is
a domain-specific one, resulting in the effectiveness of the it-
erative execution of our framework. (2) During the second
step of knowledge distillation, our teacher model is the cur-
rent domain-specific model rather than the multi-task model
adopted by [Clark et al., 20191; (3) We focus on MRC rather
than natural language inference in [Clark et al., 2019]. Note
that experimental results reported in Table 1 verify the supe-
riority of our framework over [Clark et al., 2019].

3 BERTQA

In this section, we briefly introduce BERTQA [Devlin et
al., 2019] that is chosen as our basic MRC model. Fig-
ure 2 shows the architecture of BERTQA. Given a passage
p = p1,p2---Pjp| and a question ¢ = qi1,q2...q|q|, We first
pack them into a single sequence s=[<CLS>, q, <SEP>, p,
<SEP>], where <CLS> is the token used for classification,
<SEP> is the token separating ¢ and p, and the sequence
length |s| = |p| + |¢| + 3. For each token s;, we construct

o : 0 s | se
its input representation as h\”) = el°f 4 €I 4 ¢3°9, where

eloF eP®, and e; are the token, position, and segment em-
beddings for sy, respectively. Please note that all tokens of p
share a same segment embedding, and all tokens of g use a
same segment embedding.

Such input representations are then fed into a BERT en-
coder with successive L Transformer [Vaswani et al., 2017]
layers, each of which is composed of two sub-layers with the
layer normalization mechanism: a multi-head self-attention
and a position-wise fully connected feed-forward neural net-

work. Finally, on the top of the hidden states h,EL) at the L-th
layer, we use a linear layer with softmax functions to produce
the probability of each token s; to be the beginning or ending
position of the answer span:

L
pr— _ oR(Wah)
s )\’
S exp(W]AS)

ey
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Figure 2: The BERTQA model.

P2 _ exp( ;—2h£L)) (2)
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where W, are related parameters.
To train BERTQA, we define the training objective based
on the log-likelihood of the true beginning and ending posi-
tions:

1
J = ~15] Z (logP; (0) + logP2(6)), 3)
queD

where the quadruple qu = (p, ¢, b, €) denotes an example of
the training data D, with b and e as the answer beginning
and ending position, respectively, and 6 is the set of model
parameters. At inference time, the span (b,e) where a < b
with the maximum P}, - P2 is chosen as the predicted answer.

4 Our Framework

In this section, we describe our framework in detail. As dis-
played in Figure 1, it is a multi-source multi-pass knowl-
edge transfer process. To facilitate the understanding of our
framework, we also summarize its training procedure in Al-
gorithm 1. We first train all initial domain-specific MRC
models {950)}5\;1 using their own training data {D;}¥ |, re-
spectively (Line 1). Then, we calculate the domain-level
similarities between training corpora, denoted by a matrix
S={s;;}, 1<i,j<N (Line 2), which can be subsequently
exploited to distinguish the impacts of other domains on the
construction of each multi-domain MRC model. Afterwards,
we conduct K iterations of many-to-many knowledge trans-
fer (Lines 3-13). Concretely, at the k-th iteration, we syn-

chronously perform multiple many-to-one knowledge trans-

fers from other domains to each target-domain model 9£k+1),

1<j<N (Lines 4-12). Such a transfer mainly consists of two
substeps: (1) We construct a multi-domain MRC model qbgk)
using {D;};; and {Hyc)}#i (Lines 5-6), and (2) We use

™. D; and 8% to establish 6" ") (Lines 7-11). Through
this multi-pass procedure, different domain-specific MRC
models can constantly absorb domain-shared knowledge to
reinforce each other.

Clearly, the calculation of domain-level similarities .S and
these aforementioned two substeps are the most important
steps in our framework. We describe them below.
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Calculations of Domain-level Similarities S. To this end,
for the training data D; of each domain, we first collect
its all questions to form a large question document @);,
and then use the TF-IDF representation to represent the
domain ;. Finally, we directly define the domain-level
similarity s; ; between i-th and j-th domains as the co-
sine similarity based on their TF-IDF representations: s; ;
= cosine(TF-IDF(Q);), TF IDF(Q ;)). Then, we normalize this
similarity as s; ; = 2/7(.
RNV

Please note that we only use the question words to calculate
the domain-level similarities. This is because the passages of
different domains may be similar. For example, SQUAD and
HOTPOTQA are both constructed from Wikipedia. By con-
trast, the question words are able to better reflect the domain-
level differences.

Substep 1: Constructing Multi-domain MRC Model ¢§k)_
Inspired by [Tan er al., 2019; Clark et al., 2019], we em-
ploy knowledge distillation to construct multi-domain MRC

model zbgk), where we train (;Sl(k) to fit the training data
{D,} ;i and match the outputs of individual domain-specific
models {6;};; simultaneously according to their domain-
level similarities to D;.

Specifically, for the i-th domain, we mix training corpora
{D,};-i from other domains to form a mixed training cor-
pus M;, where we conduct up-sampling on {D, }; to make
all domains have the same amount of training instances. For
a sampled training example qu = (p, ¢, b,e) from D;, two
kinds of errors are involved:

1. Negative likelihood L1 (qu; ¢*

qbgk) to fit training data D;. Formally, it can be formulated as

Li(qui ¢{") = ~logP}(6{") — logP2(¢")). @)

where P}(6\")) and P?(¢*)) are defined in Equation 1 and
2, respectively.

2. Prediction divergence Lo (qu; 9§-k); ¢Z(-k)): it aims to

keep the outputs of ¢¥ consistent with those of domain-

specific MRC model Hj(-k)

squared error between outputs of ng) and ¢Ek):
k k k
La(qu; 03 6") = (Ph((") — P(6}"))?
P2~ PLO)?. )
Thus, the joint error for the training instance qu is
Luna(qu 0573 6{") = Ana - L (qu; 6{))

(1= Ama) - La(qu; 87:007). (6)
Here we follow Clark et al. [2019] to linearly increase Apg
from O to 1 throughout training. In this way, ¢§k> will absorb

): it is used to enable

, and is formally defined as the mean

the guidance information from its teachers models {Oj(-k)} i
as much as possible during the early stage of training, and
then rely more on the training data so it can learn to surpass
its teachers.

Finally, the objective function over M; becomes

Z sig Lma(qui07500). (D)

queM

Algorithm 1 Iterative Multi-source Mutual Knowledge
Transfer Framework for MRC
Input: Training corpora {D;}¥ ,, validation sets {D?Y} |,
the maximal iteration number K K
Output: Domain-specific MRC models {92( )}f\;l
1: 0\ «TrainModel(D;),i = 1,2,.., N
2: Compute the similarity matrix S={s;;},i,j =
1,2,..,N, where s;; indicates the domain-level
similarity between D; and D; // Step 1
3: fork=0,1,2,...., K—1do
4 for:=1,2,...,N do
5: Initialize the multi-domain MRC model ¢*
6 (bl(-k) < TrainMultiDomainModel({D; } j4;,

{097}, 44, 9) //Step 2

7. Initialize 0" with ¢{*)
8: 95“1) + FineTuneModel(D;, 95’“)) // Step 3

9: if EvalModel(§*™) D¥) < EvalModel(6"), D?)
then

10: ot o)

11: end if

12:  end for

13: end for

Where M; is the previously-mentioned mixed training cor-
pus. Note that by introducing s; ;, we can effectively differ-

entiate the impacts of different domains on qbl(.k)

Substep 2: Constructing Domain-specific MRC Model

gk+1) During this process, we first initialize 95“1) with

¢(-k), and then also apply knowledge distillation [Tan er al.,

2019; Clark et al., 2019] to update QEkH) using its previous
model e}’“ and training corpus D;.

Similarly, the objective function of each training example
qu from D; involves two kinds of errors:

1. Negative likelihood Ls(qu; 6"
to fit the reference of D;:

1)): it requires ngﬂ)

La(qu; 0%™)) = —1ogP} (0%) — 1ogP? (6% ). (8)
2. Prediction divergence L,(qu; 05“”): it makes the
outputs of 0£k+1) consistent with those of ng):
La(qu; 077:6{°)) = (PL(6/7)) — PL(6]"))?
+(POY) - o)) ©)

Finally, the objective function over D; is defined as

Z Lys(qu; 97

queD

oy 10)

where
Las(qu; 05 6%Y) = Mg - La(qu; 6F)
(1= Aas) - La(qu; 07;0079),

7
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where the hyper-parameter Ay is adjusted in a similar way
as Amg. In particular, we compare the performance of 9§k+1)

and ng) to retain the current best model (Lines 9-11).

As described before, we apply the above procedure to gen-
erate all domain-specific models {9£k+1)}i:1 in a parallel
manner, which can effectively reduce the training time of
our framework. Furthermore, we repeat this many-to-many
knowledge transfer process, until the maximal number of it-

eration K is reached or all domain-specific models converge.

5 Experiments
5.1 Setup

In our experiments, we use the following datasets:

e SQUAD [Rajpurkar et al., 2016]. It is one of the most
popular MRC datasets, which consists of more than
100K instances. Each example is a pair of context para-
graph from Wikipedia and a question created by a hu-
man, and the answer is a span in the context. Particu-
larly, we use SQUAD v1.0 in this work.

e NEWSQA [Trischler et al., 2017]. It contains about
120K question-answer pairs, all of which are related to
CNN articles.

e TRIVIAQA [Joshi et al., 2017]. This dataset includes
95K question-answer pairs from Trivia Database, each
of which is paired with a document collected by com-
pleting a web search of the question.

e HOTPOTQA [Yang et al., 2018]. Crowdsourcing work-
ers were shown pairs of related Wikipedia paragraphs
and asked to author questions that require multi-hop
reasoning over the paragraphs. There are two versions
of HOTPOTQA, and we use the second version, where
10 paragraphs retrieved by an information retrieval (IR)
system are given.

e NQ [Kwiatkowski et al., 2019]. It is a question an-
swering dataset where the numbers of its training, val-
idation and test examples are 307K, 7.8K and 7.8K, re-
spectively. Each example is comprised of a google.com
query and a corresponding Wikipedia page.

We adopt the F1 score as our evaluation metric. We sample
300 examples from the training data of each domains as our
validation sets. Finally, we evaluate the performance of dif-
ferent models on the official validation sets.

To enhance the performance of our MRC model, we initial-
ize the parameters of the BERT encoding layer using the pre-
trained model officially released by Google*, and randomly
initialize other trainable parameters. These models were pre-
trained on the concatenation of BooksCorpus (800M words)
and Wikipedia (2,500M words) via joint modeling of tasks
of masked language model and next sentence prediction. We
use the uncased base model, which is case insensitive and
contains 12 Transformer encoding blocks, each with 12 self-
attention heads and 768 hidden units. Moreover, we use the
Adam optimizer [Kingma and Ba, 2015] with a learning rate
of 1.5x10~° and a batch size of 12.

*https://github.com/google-research/bert
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Model SAD NQA HQA NQ TQA [ AvE.
Single 8830 6525 76.17 77.00 6842 | 75.03
Mix 87.88 67.19 75.69 76.08 72.60 | 75.89
FT 89.52 66.87 77.83 77.92 72.74 | 76.98
MS-FT | 88.83 6597 7634 7728 70.14 | 75.71
MFT 88.56 67.65 7635 7770 73.46 | 76.74
MS-MFT | 87.69 6747 7650 77.67 71.20 | 76.11
BAM 89.50 68.00 7745 77.79 72.83 | 77.11
IMM 89.44 6878 78.52 7923 73.71 | 77.94

Table 1: Experimental results on various test sets. SAD = SQUAD,
NQA = NEWSQA, HQA = HOTPOTQA, and TRIVIAQA = TQA
AVE. = average score.

5.2 Baseline Models

We refer to our framework as IMM and compare it with the
following baseline models:

e Single. The BERTQA model trained on a single domain
training corpus.

e Mix. The BERTQA model trained on the mix of all train-
ing corpora.

e Fine-tuning (FT). We first train an MRC model on the
mix of non-target domain training corpora until con-
vergence, and then update its parameters on the target-
domain training corpus.

o Fine-tuning with the most similar training data (MS-
FT). A variant of FT, where we only exploit a source-
domain data that is the most similar to the target-domain
data when we using fine-tuning.

e Mixed fine-tuning (MFT) [Chu et al., 2017]. Unlike
FT, we resume training the MRC model on a mix of all
training data.

e Mixed fine-tuning with the most similar training data
(MS-MFT). A variant of MFT, where only the source-
domain data most similar to the target-domain data is
leveraged via mixed fine-tuning.

e Born-Again Multi-task Network (BAM). It is the
multi-task version of Born-Again Network (BAN)
[Clark et al., 2019]. Using the same many-to-one knowl-
edge distillation procedure as BAM, we first construct
a unified multi-domain model using all equally consid-
ered domain-specific models and training data, then fur-
ther fine-train the domain-specific models on individual
datasets.

Effect of the Maximal Iteration Number K
From Figure 1, we observe that the maximal iteration num-
ber K is an important hyper-parameter, which directly deter-
mines the amount of the transferred knowledge into domain-
specific MRC models. To investigate the effect of K, we re-
port the average performance of domain-specific MRC mod-
els using different K's on the validation sets. Note that we
only keep the best models at each iteration.

Figure 3 illustrates the experimental results using different
K. At first, the performance of almost all domain-specific
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Figure 3: Effect of the iteration number (K) on the validation sets.

MRC models has been improved with the increment of the
iteration number. However, when the iteration number is
greater than 3, all models tend to converge. Therefore, we
directly used K'=3 in all subsequent experiments.

Overall Performance

Table 1 shows the experimental results. Overall, the conven-
tional approaches including FT, MS-FT, MFT, MS-MFT and
BAM, achieve better performance than both Single and Mix,
echoing the reported results in previous studies [Min er al.,
2017; Chung er al., 2018; Xu er al., 2019]. Besides, under
our framework, the performance of all domain-specific mod-
els is further significantly improved. Specifically, the aver-
age score of our framework is 77.94, which is +2.91, +2.05,
+0.96, +2.23, +1.20, +1.83, +0.83 points higher than those of
Single, Mix, FT, MS-FT, MFT, MS-MFT and BAM, respec-
tively. In particular, in all datasets except SQUAD, our model
achieves the best performance among all models. Even com-
pared with BAM, our improvement is still remarkable. This
result strongly demonstrates the effectiveness and generality
of our framework.

Robustness in MRC

To inspect the impact of our framework on enhancing ro-
bustness, we follow Hu er al. [2018] to report the results
on two adversarial SQUAD datasets, namely ADDONESENT
and ADDSENT.

From Table 2, we can observe that the improvement on
adversarial data is much higher than the one on original squad
dataset. This result is reasonable, because our framework can
better absorb the knowledge of other domains, boosting its
ability in dealing with the much more confusing answers in
adversarial datasets.

5.3 Ablation Study

The main highlights of our framework consist of the usages
of domain-level similarities of training corpora to the target-
domain one, and two stages of distillation-based knowledge
transfers. To evaluate their effects on our framework, we
compared our framework with its following variants: (1) -
SIMI. The variant of IMM without domain-level similari-
ties, i.e., we directly set s; ; of Equation 7 to 1; (2) -KD1.
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Model | SQUAD | ADDSENT  ADDONESENT
Single 88.30 50.15 61.38
Mix 87.88 53.15 64.04
FT 89.52 53.05 63.91
MS-FT 88.83 50.88 62.78
MFT 88.89 53.29 64.23
MS-MFT 87.69 51.03 62.94
BAM 89.50 55.52 65.20
IMM 89.44 56.49 66.20

Table 2: Comparison of different approaches on two adversarial
SQUAD datasets.

Model AVE.
IMM 77.94
—SIMI 77.49
—KD1 77.68
—KD2 77.58
—KDI1,KD2 | 77.34

Table 3: Ablation study of our framework on various test sets.

The variant of IMM without the distillation-based knowledge

transfer from {Gj(-k)} j#i tO qbl(-k), where Apg of Equation 6 is

directly set to 0; and (3) -KD2. The variant of IMM without
the distillation-based knowledge transfer from ¢Ek) to 9§k+1) ,
where Ay of Equation 11 is directly set to 0.

From the experimental results shown in Table 3, we can
observe that our framework achieves better performance than
all its variants. These results show that domain-level similar-
ities, two stages of distillation-based knowledge transfers are

indeed beneficial for MRC.

6 Conclusion

In this work, we have presented a novel iterative multi-source
mutual knowledge transfer framework for MRC, which en-
ables all domain-specific MRC models to constantly rein-
force each other by iteratively and differentially absorbing
the domain-shared knowledge from others. Experimental re-
sults and in-depth analyses on several MRC datasets strongly
demonstrate the effectiveness of our framework.

In the future, we will focus on how to effectively leverage
the unlabeled data of different domains under our framework.
Besides, we plan to apply our framework to other tasks, such
as machine translation [Zeng er al., 2019]. Finally, inspired
by studies of multi-domain NMT [Zeng ef al., 2018; Su et
al., 2019], we will explore a unified multi-domain model for
MRC.
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