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Abstract
Dialogue state modules are a useful component in
a task-oriented dialogue system. Traditional meth-
ods find dialogue states by manually labeling train-
ing corpora, upon which neural models are trained.
However, the labeling process can be costly, slow,
error-prone, and more importantly, cannot cover
the vast range of domains in real-world dialogues
for customer service. We propose the task of di-
alogue state induction, building two neural latent
variable models that mine dialogue states automat-
ically from unlabeled customer service dialogue
records. Results show that the models can effec-
tively find meaningful dialogue states. In addition,
equipped with induced dialogue states, a state-of-
the-art dialogue system gives better performance
compared with not using a dialogue state module.

1 Introduction
Dialogue state modules are a central component to a task-
oriented dialogue system [Wen et al., 2017; Lei et al.,
2018]. Given a user utterance and existing dialogue his-
tory, a dialogue system typically extracts dialogue states,
according to which a system response is generated. An
example is shown in Figure 1, given two turns of a dia-
logue, the first user utterance is “I want an expensive restau-
rant that serves Turkish food.”, and the dialogue states con-
sist of the slot-value pairs inform(price=expensive,
food=Turkish). As the dialogue proceeds, the dialogue
state is updated at each turn. After tow dialogue turns, the
dialogue state becomes inform(price=expensive,
food=Turkish); request(area), where inform rep-
resents the search constraints expressed by user and request
represents the search target that the user is asking for. In this
example, the user intention is to reserve a restaurant. The
business domain is restaurant customer service. The dialogue
state represents what the user is looking for at the current turn
of the conversation.

Prior work has mostly followed a manual labeling-train-
test paradigm, which begins with the design of annotation
guidelines, followed by the collection and manual labeling
of training corpora, before training a model. The supervised
learning task is called Dialogue State Tracking (DST) [Young

Manual labeling: 
inform(price=expensive, 

food=Turkish); request(area)

Ontology(optional): 
price: [cheap, expensive, moderate, ...] 
food: [Turkish, Italian, polish, ...] 
area: [south, north, center, ...]

Turn 1: 
inform(price=expensive, 

food=Turkish)

User: I want an expensive restaurant 
that serves Turkish food.
Manual labeling: 
inform(price=expensive, 

food=Turkish)

System: Anatolia serves Turkish food.
User: What is the area?

Turn 2: 
inform(price=expensive, 

food=Turkish); request(area)

Manual labeling: 
inform(price=expensive, 

food=Turkish); request(area)

Ontology(optional): 
price: [cheap, expensive, moderate, ...] 
food: [Turkish, Italian, polish, ...] 
area: [south, north, center, ...]

Turn 1: 
inform(price=expensive, 

food=Turkish)

User: I want an expensive restaurant 
that serves Turkish food.
Manual labeling: 
inform(price=expensive, 

food=Turkish)

System: Anatolia serves Turkish food.
User: What is the area?

Turn 2: 
inform(price=expensive, 

food=Turkish); request(area)

Figure 1: Comparison between DSI and traditional DST. The
strikethrough font is used to represent the resources not needed by
DSI. The dialogue state is accumulated as the dialogue proceeds.
Turns are separated by dashed lines. Dialogues and external ontol-
ogy are separated by black lines.

et al., 2010]. One limitation for supervised learning is that
the manual labeling process can be slow and costly given a
certain domain of customer service. Available datasets are la-
beled on a few popular domains such as restaurant, taxi, train
and hotel [Williams et al., 2014; Budzianowski et al., 2018;
Rastogi et al., 2019]. However, in practice, the number
of customer service domains ranges far beyond hundreds
(e.g. telecommunication customer service, banking, house-
hold maintenance, police, e-commercial customer service,
etc), which makes it infeasible to manually label corpora for
every domain. In addition, it has been shown that the ratio
of annotation errors can be as high as 30% and even 40% for
the DST task (i.e., the MultiWOZ datasets) [Eric et al., 2019;
Zhang et al., 2019].

To address this issue, it can be useful to automatically in-
duce dialogue states from raw dialogues. We assume that

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3845



there is a large set of dialogue records of many different do-
mains, but without manual labeling of dialogue states. Such
data are relatively easy to obtain, for example from customer
service call records from different businesses. Consequently,
we propose the task of dialogue state induction (DSI), which
is to automatically induce slot-value pairs from raw dialogue
data and can be better used for downstream dialogue tasks
such as database query, act prediction and response gener-
ation. The difference between DSI and DST is illustrated in
Figure 1. Similar to DST models, DSI outputs dialogue states
in slot-value pairs such as inform(price=expensive),
where price represents a slot, and expensive represents a
value. For requestable slots such as request(area), re-
quest is regarded as the slot and area is regarded as the value.
During training, DST relies on both a dialogue record and
manual labeling of slot-value pairs on the dialogues. In con-
trast, our task does not rely on manual labeling and can gen-
erate slot-value pairs over raw dialogues automatically.

We introduce two neural latent variable models for DSI
by treating the whole state and each slot as latent variables,
from which values observed in dialogue data are generated.
The goal is to induce slots according to those frequently co-
occurring values and the dialogue contexts. In particular,
each value (i.e., phrase in raw text) is represented by using
both a sparse one-hot representation and a dense contextu-
alized embedding representation. Both models are genera-
tive probabilistic models, which generate a value by first gen-
erating a latent dialogue state vector, and then generating a
slot. The difference between the two models is the model-
ing of service domains. We observe that different service
domains may contain slots with similar contexts or values.
For example, both taxi and bus domains can have the same
slot to location. In order not to mix their structures from a
large dialogue record, our second model further considers the
service domain explicitly by taking the dialogue state as a
Mixture-of-Gaussians. We refer to the basic model DSI-base
and the advanced model DSI-GM.

Experiments over the MultiWOZ [Budzianowski et al.,
2018] and the SGD [Rastogi et al., 2019] datasets show that
both DSI models can effectively induce dialogue states com-
pared with a random select strategy. In addition, the Gaus-
sian mixture model gives significantly better results com-
pared with the basic model. Finally, we apply DSI to a re-
cently proposed dialogue system [Chen et al., 2019], by re-
placing the dialogue state module with our DSI-GM model.
Results show that adding induced dialogue states gives sig-
nificantly better results in both dialogue act prediction and
response BLEU compared with a dialogue system without
considering dialogue states. In particular, the BLEU score
using the DSI-GM model outputs is better by 2.1% compared
with not using dialogue states, and lower by 0.8% compared
with using manual labeling dialogue states. This shows that
by inducing dialogue states, improved dialogue systems can
be obtained. To our knowledge, we are the first to automat-
ically induce dialogue states in the form of slot-value pairs
using a neural latent variable model. Our models can serve
as baselines for further research. We release our code at
https://github.com/taolusi/dialogue-state-induction.

2 Related Work

The role of DST and DSI in task-oriented dialogue sys-
tems. Task-oriented dialogue systems are complex, tradition-
ally involving a pipeline of multiple steps, including auto-
matic speech recognition (ASR) [Wen et al., 2017], spoken
language understanding (SLU) [Qin et al., 2019], dialogue
state tracking (DST) [Zhong et al., 2018], policy learning
and natural language generation (NLG) [Chen et al., 2019].
SLU consistes of two main sub-tasks, namely intent detec-
tion, which is to identify the user intent such as hotel book-
ing, and slot tagging, which is to identify relevant seman-
tic slots in a user utterance, such as price and stars.
Dialogue state tracking aims to identify user goals at every
turn of the dialogue, such as inform(price=moderate,
stars=4); request(phone), which makes the core
component in a task-oriented dialogue system. Policy learn-
ing aims to learn the system action based on the current
state. Natural language generation transforms the system ac-
tion into natural language.

Recently, some work on task-oriented dialogue systems
takes an overall end-to-end method, by encoding the user
utterance and dialogue history, and then generating a re-
sponse directly using a seq2seq model variant, without ex-
plicitly maintaining dialogue states [Eric and Manning, 2017;
Qin et al., 2020]. Compared to such work, we show that auto-
matically inducing dialogue states can improve dialogue per-
formance, which is consistent with observations of DST re-
search [Lei et al., 2018; Wen et al., 2018]. Wen et al. [2017]
pioneered this line of work by proposing a typical modularly
connected end-to-end trainable task-oriented dialogue system
directly based on text without considering the speech recog-
nition noise and thus ignored the component of SLU to obtain
the dialogue state.

DST vs SLU. In a traditional pipeline, DST operates on
SLU output to update the dialogue state dealing with noise
from ASR and SLU. In particular, SLU can give an N-Best
list of semantic representations based on the N-Best list of
sentences from ASR. DST handles all these uncertainties,
e.g. error propagation, to update the dialogue state. However,
the recent datasets are collected based on text without tak-
ing noisy speech inputs into consideration, which has made
the task of slot tagging in SLU and the task of DST rather
separately investigated. The correlation between recent slot
tagging work and DST work can be subtle, and there is lit-
tle discussion in the literature about their fundamental dif-
ferences. In practice, widely used datasets for SLU include
ATIS [Hemphill et al., 1990], while for DST include Multi-
WoZ [Budzianowski et al., 2018]. For latter datasets, there
is not labeling of the SLU task. Recently, DST research has
taken end-to-end methods, without considering SLU as a pre-
processing step. Compared with SLU, our work is more in
line with current neural DST work, with DSI being a direct
alternative to DST in zero-shot training scenarios.

DSI vs robust DST. Existing work on DST integrates di-
alogue states by manually labeling more or less. Compared
to these methods, our method has exactly the same setting
as end-to-end DST, which is more cost-effective. Traditional
supervised models for dialogue state tracking regard the task
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Utterance 1: I would like a guesthouse rather than a star hotel.
[Chen et al, 2013; Shi et al, 2018]: hotel_type=guesthouse, hotel_type=star hotel
DSI (representation of user intent): inform(hotel_type=guesthouse)

Utterance 2: I want a flight from Chicago to Dallas.
[Chen et al, 2013; Shi et al, 2018]: city=Chicago, city=Dallas
DSI (more fine-grained): inform(depature_city=Chicago, destination_city=Dallas)

Figure 2: Comparison between DSI and previous induction methods
for SLU.

as a multi-class classification problem [Mrkšić et al., 2015].
Given a user utterance and existing dialogue history, a model
predicts the corresponding value (or None) of each slot. How-
ever, such methods cannot predict the existence of unknown
slot values. Consequently, recent work begins to investigate
value generation from scratch [Ren et al., 2019]. Such meth-
ods reduce the decoding complexity by avoiding the enumer-
ation of all possible slots and values. However, the models
still rely on supervised data for training. Our method em-
ploys the same decoding efficiency, yet additionally does not
require labeled corpora.

DSI is also related to domain adaptations of DST in han-
dling unknown data. Supervised methods consider multi-
domain settings by parameter sharing [Wu et al., 2019a].
Such methods cannot deal with unknown domains, which
are dominant in practice. Some work considers zero-shot
learning, transferring knowledge from known domains to un-
known domains without labels [Rastogi et al., 2019]. One
constraint of such methods is that they rely on domain simi-
larity for transfer, and therefore cannot be applied to general
domains. In addition, they rely on schema-level slot descrip-
tions for capturing domain correlation, which requires man-
ual labeling and for which the quality is difficult to control. In
contrast, our method can be directly used to induce dialogue
states from arbitrary dialogue records.

Induction methods. The closest in spirit of our work,
Chen et al. [2013] used the FrameNet-style frame-semantic
parsers to induce slots from a user utterance; Shi et
al. [2018] proposed a framework auto-dialabel to cluster
noun words into slots. Compared with their work, our
work is different in two main aspects. First, the prob-
lems that we solve are different, which can be seen in Fig-
ure 2. In particular, given the utterance “I would like a
guesthouse rather than a star hotel.”, the user intent is to
book a hotel, the slots include hotel type=guesthouse
and hotel type=star hotel, and the dialogue state
is inform(hotel type=guesthouse). Given the
sentence “I want a flight from Chicago to Dallas”,
the user intent is to book a flight, the slots in-
clude city=Chicago and city=Dallas, and the di-
alogue state is inform(departure city=Chicago,
destination city=Dallas). From the two examples
we can see that DSI not only reflects the user goals but also is
more specific to the current dialogue state, while their meth-
ods are more general to the semantics. Our task is directly
useful for subsequent policy learning and response genera-
tion tasks. Second, we consider a deep neural model with
hidden variables and contextualized embeddings, which also
adapts better to the multi-domain scenario.

3 Task Definition: Dialogue State Induction
Given a set of customer service records without annotation
(e.g. user intent and dialogue states or other manual label-
ing), the task is to automatically discover information that the
user is looking for at each turn. We call this automatic dis-
covery process dialogue state induction (DSI). In particular,
at each turn, the current user utterance and dialogue history
can be used as input, and the output is a set of slot-value pairs,
namely, the dialogue state.
Turn-level vs joint-level dialogue state. By definition, a
dialogue state should reflect the user goal from the beginning
of the dialogue until the current turn. We call this a joint-level
dialogue state. In practice, DST research has also investigated
the extraction of local user goal at each dialogue turn, which
we call a turn-level state. Our models produce dialogue state
for each dialogue turn, where the input is the current user
utterance and its preceding system utterance, and the output is
a set of slot-value pairs. For multi-turn dialogues, the current
dialogue state should reflect the whole dialogue history, as
problem definition specifies. Following Zhong et al. [2018],
we handle this issue by simply using the union of slot-value
pairs in each history dialogue turn for representing the current
dialogue state. When there are multiple values for one slot,
we use the latest value.

4 Method
We build two incrementally more complex neural latent vari-
able models for DSI. The models induce dialogue state over
a dialogue turn according to a generate process from slots to
candidate values, where candidate values are represented by
both one-hot vectors and contextualized embedding vectors.
The two types of representations are complementary to each
other, with the latter also containing features from a global
context. In particular, the current user utterance and its pre-
ceding system utterance are concatenated (in their chronical
order, with the latter before the former) and fed as input to
a pre-trained ELMo model to obtain the contextualized word
embedding vector1.

4.1 Values
Both methods are generative models that induce slot-value
pairs over candidate values over a dialogue dataset. We fol-
low Goel et al. [2019] and extract possible values from local
conversation contexts before assigning them to slots. We take
a different method to this end. In particular, we use the model
of Cui and Zhang [2019] to extract POS tags and the Stan-
ford CoreNLP toolkit to extract named entities and corefer-
ences. A set of rules are used to extract candidate values given
the POS and entity patterns including filtering stopwords, re-
peated candidates and non-representative entity mentions.

4.2 Model 1: DSI-base
Our first model is shown in Figure 3(a). The model is a
generative model, which explains the occurrences of values

1In practice, we use the ELMo pre-trained model with the output
size of 256. We also tried BERT, whose performance is almost the
same as ELMo. However, BERT is much slower and more resource-
intensive for training.
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Figure 3: Illustration of DSI models. (T – # of user turns; C – #
of candidates per turn. d and s are discrete latent variables, z is a
continuous latent variable. oh and ce are observed data.)

(as represented by both a one-hot vector and a contextual-
ized dense vector) from a structured slot frame, distributed
according to a hidden vector variable z. This framework fol-
lows the variational dense embedding method of Kingma and
Welling [2014]. In particular, z is treated as a Gaussian vec-
tor, with the mean and variance factors themselves being de-
cided according to the observed values. As a result, its train-
ing follows a variational auto-encoder scheme.

Given a corpus of user turns T , for each turn t ∈ T , there
is a set of candidate values Ct. We first sample a latent state
vector z from a global Gaussian distribution. Then a neu-
ral network fs(z; θ) takes z as input to encode slot distribu-
tion logits, sampling a discrete slot assignment vector s cor-
responding to each candidate c ∈ Ct in turn t. Last, for each
candidate, we sample a one-hot vector oh from a categorical
distribution parameterized by the output of a neural network
foh(s;α), as well as a contextualized word embedding vector
ce from a multivariable Gaussian distribution parameterized
by the output of a neural network fce(s;β).

In particular, for the latent state z, the Gaussian distribution
is parameterized by a mean vector µ and a diagonal covari-
ance matrix σ2. Suppose that there are S slots. The categor-
ical slot distribution for each candidate c is parameterized by
a probability vector γ ∈ RS . For each slot s, the Gaussian
distribution for the contextualized embedding ce is param-
eterized by a mean vector µs ∈ Rn and a diagonal vector
of covariance matrix σs ∈ Rn, where n represents the di-
mension of ce. Further, the categorical distribution for the
one-hot vector oh is parameterized by a probability vector
λs ∈ RV , where V is the candidate value vocabulary size.
All the parameters are obtained through neural networks.

The generative process is shown in Algorithm 1. Accord-
ingly, the joint probability for a turn t can be factorized as:

p(t) = p(z)
∏
c∈Ct

p(s|z)p(oh|s)p(ce|s) (1)

where the probability terms are defined as:

p(z) = N
(
z|µ,σ2

)
(2)

p(s|z) = Cat(s|γ) (3)
p(oh|s) = Cat(oh|λs) (4)

p(ce|s) = N
(
ce|µs,σ2

s

)
(5)

Algorithm 1 DSI-base
1: for each user turn t ∈ T do
2: Sample a latent state vector z ∼ N

(
µ,σ2

)
3: for each candidate c ∈ Ct do
4: Compute a probability vector γ = fs(z; θ)
5: Sample a slot vector s ∼ Cat(γ)
6: Compute a probability vector λs = foh(s;α)
7: Sample a one-hot vector oh ∼ Cat(λs)
8: Compute [µs; logσ

2
s] = fce(s;β)

9: Sample a contextualized word embedding vector
ce ∼ N

(
µs,σ

2
s

)
10: end for
11: end for

Algorithm 2 DSI-GM
1: for each user turn t ∈ T do
2: Sample a domain d ∼ Cat(π)
3: Sample a latent state vector z ∼ N

(
µd,σ

2
d

)
4: for each candidate c ∈ Ct do
5: Compute a probability vector γ = fs(z; θ)
6: Sample a slot vector s ∼ Cat(γ)
7: Compute a probability vector λs = foh(s;α)
8: Sample a one-hot vector oh ∼ Cat(λs)
9: Compute [µs; logσ

2
s] = fce(s;β)

10: Sample a contextualized word embedding vector
ce ∼ N

(
µs,σ

2
s

)
11: end for
12: end for

µ and σ2 are the parameters of a Gaussian prior distribu-
tion. γ, λs, µs and σ2

s are calculated as:

γ = softmax(Wγz+ bγ) (6)
λs = softmax(Wλs+ bλ) (7)
µs = BN(Wµs+ bµ) (8)
σs = BN(Wσs+ bσ) (9)

4.3 Model 2: DSI-GM
A limitation of DSI-base is that sampling a latent state vec-
tor z from a global Gaussian distribution does not sufficiently
model the fact that different domains may have different dis-
tributions. For those slots that appear in different domains
(for example, slot name appear both in domain restaurant and
hotel with similar utterance contexts), it can be difficult for
DSI-base to distinguish them correctly. We apply a Gaussian
Mixture Model (GMM) in DSI-base by assuming the state
vector is generated from a Mixture-of-Gaussians, in which
each Gaussian represents a domain. This is inspired by Vari-
ational Deep Embedding (VaDE) [Jiang et al., 2017], which
combines VAE and GMM for a clustering task.

Specifically, suppose that there are K domains. As shown
in Figure 3(b), we first sample a domain d from a categori-
cal distribution parameterized by π ∈ RK , where πd is the
prior probability for domain d and

∑K
d=1 πd = 1. The latent

state vector z is sampled from a Gaussian distribution with
parameters of a mean vector µd and a covariance vector σd
corresponding to the chosen domain d. The latent state vector
is then used for sampling a slot vector for each candidate in a
turn, in the same way as DSI-base.
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Figure 4: An encoder network is used to maximize the ELBO of
DSI-base and DSI-GM. “LT” denotes linear transformation.

According to the generative process shown in Algorithm 2,
the joint probability for a user turn t is

p(t) = p(d)p(z|d)
∏
c∈Ct

p(s|z)p(oh|s)p(ce|s), (10)

where the additional probabilities are defined as:

p(d) = Cat(d|π) (11)

p(z|d) = N
(
z|µd,σ2

d

)
(12)

4.4 Inference
Given the generative process of DSI-GM, following Liu et
al. [2019a], we collapse the discrete slot latent variable s and
rewrite the joint log-likelihood as:

log p(t) = log

∫
z

∑
d

p(d)p(z|d)
∏
c∈Ct

p(oh|z)p(ce|z)dz

≥ Eq(z,d|t)[log
p(t, z, d)

q(z, d|t)
] = LELBO(t) (13)

where LELBO is the evidence lower bound (ELBO). Since
direct optimization and inference for Equation 13 is in-
tractable. We follow previous work [Kingma and Welling,
2014; Jiang et al., 2017] and use a variational posterior distri-
bution q(z, d|t) to approximate the true posterior distribution
p(z, d|t). By assuming a mean field distribution [Xing et al.,
2003], q(z, d|t) can be factorized as q(z|t)q(d|t). The pos-
terior q(z|t) can be modeled using a multivariate Gaussian
distribution, with the mean vector µd and the variance vector
σd obtained through a neural network as shown in Figure 4.
q(d|t) is calculated as follows:

p(d|t) = p(d|z) ≡ p(d)p(z|d)∑K
d′=1 p(d

′)p(z|d′)
(14)

Using the reparameterization trick [Kingma and Welling,
2014], the ELBO can be decomposed into a reconstruction
term and a regularization term, respectively:

LELBO(t) = Eq(z,d|t)[log p(t|z)]−DKL(q(z, d|t)||p(z, d))
(15)

where DKL(q(z, d|t)||p(z, d)) is the KL divergence between
the Mixture-of-Gaussians prior p(z, d) and variational poste-
rior q(z, d|t).

After training, the domain and slot assignment for each
candidate c can be obtained by Equation 14 and as follows:

p(s|c, t) =p(s|c, z) ∝ p(s,oh, ce, z) (16)
= p(s|z)p(oh|s)p(ce|s) (17)

User utterance

System utterance

Without annotation

Dialogue state induction

Manual labeling

NULL

Dialogue State

NULL

DB query 
result

Utterance understanding Dialogue act prediction Response generation

Dialogue state module DB module

Figure 5: DSI-based dialogue response generation.

5 DSI-Based Response Generation
We apply the DSI models on the task of downstream response
generation, following the pipeline system which was first pro-
posed by Wen et al. [2017] and then decomposed into two
components by Chen et al. [2019]. As shown in Figure 5,
the top component consists of the dialogue state module and
database operation module, while the bottom component con-
tains the dialogue act prediction module and response genera-
tion module. For the bottom component, we directly take the
recently proposed HDSA model [Chen et al., 2019] to test
our induced dialogue states.

For the top component, we investigate three different set-
tings of the dialogue state module: (i) empty dialogue states
under the condition that no annotation is available (grey
oval), (ii) dialogue states induced by our mixture model
(green oval), (iii) dialogue states obtained by manual label-
ing (golden oval). In the last two settings, the dialogue
states are regarded as input for subsequent modules, while
in the first setting, no state information is given, which cor-
responds to end-to-end models [Eric and Manning, 2017;
Wu et al., 2019b] for dialogue system. The first setting is used
to test the effectiveness of our model, while the third setting
can be regarded as the oracle upper bound of our model.

6 Experiments
We evaluate our proposed DSI task and its effectiveness on
the downstream tasks using the MultiWOZ 2.1 [Eric et al.,
2019] dataset, which fixes some noisy state annotations in
the MultiWOZ 2.0 [Budzianowski et al., 2018] dataset. Mul-
tiWOZ2.1 contains 10,438 multi-turn dialogues and we fol-
low the same partition as Wu et al. [2019a]. To justify the
generalization of the proposed model, we also use a recently
proposed SGD [Rastogi et al., 2019] dataset, which contains
16,142 multi-turn dialogues and is the largest existing con-
versational corpus. We use the same train/validation split sets
as Rastogi et al. [2019].

6.1 Experimental Settings
For the DSI models, the Adam optimizer is used to maximize
the ELBO of Equation 15. All the models are trained over the
training set, where hyper-parameters are tuned on the devel-
opment set, before being finally used on the test set. Since no
manual labels are available, we follow Liu et al. [2019a] and
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Models
MultiWOZ 2.1 SGD

Turn level Joint level Turn level Joint level

Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy

Random 1.49 1.51 1.49 1.39 0.21 0.28 0.23 0.02 0.94 0.95 0.94 0.92 0.05 0.08 0.06 0.02
DSI-base 38.8 37.7 37.3 25.7 33.9 32.1 32.1 2.3 27.0 26.0 26.0 21.1 13.9 17.5 14.5 2.3
DSI-GM 52.5 39.3 49.6 36.1 49.2 43.2 44.8 5.0 34.7 33.4 33.5 27.5 19.0 22.9 19.5 3.1

Table 1: Overall results of DSI.

Name Value Name Value
Domain number (DSI-GM only) 100 Batch size 200
Slot number (DSI-base/DSI-GM) 300/1000 Dropout 0.2

Feature dimension 256 Learning rate 0.02
Linear transformation layer size 100 Momentum 0.99

Table 2: Hyper-parameters settings.

select the hyper-parameters which fit the best ELBO score
on the dev set as shown in Table 2. For the downstream
HDSA model, we directly take the original hyper-parameters.
Since our datasets are manually labeled with domains and
slots (restaurant-name), we can name the induced slots after
the gold-standard slots that have the maximum value match.
In addition, in the datasets, each slot is labeled with a service
domain, and thus we obtain a domain output also.

6.2 Evaluation Metrics
DSI For each turn, DSI-base and DSI-GM induce several
or no slot-value pairs based on the current user utterance and
its preceding system utterance. We compare the DSI outputs
with the slots that have non-empty assignments in the ground
truth dialogue states for the current user turn. We consider
the following two metrics2:

1. State Matching (Precision, Recall and F1-score in Ta-
ble 1): Similar to previous work [Liu et al., 2019a],
we use state matching to evaluate the overlapping of in-
duced states and the ground truth.

2. Goal Accuracy (Accuracy in Table 1): We adopt this
standard metric from DST [Wu et al., 2019a; Zhong et
al., 2018]. The predicted dialogue states for a turn is
considered as true only when all the user search goal
constraints are correctly and exactly identified.

We evaluate both metrics in both the turn level and the
joint level (Table 1). The joint level metrics are more strict in
jointly considering the output of all turns.
Response generation Following Chen et al. [2019], the di-
alogue act prediction results are evaluated in terms of Preci-
sion, Recall and F1-score. Delexicalized-BLEU and Entity
F1 are used to evaluate response generation.

6.3 Results
DSI Performance The DSI results are shown in Table 1.
We have four main observations:

• Both DSI models show great advantages over a random
select strategy, which randomly assigns a reference slot
for each candidate. This shows the strength of our neural
generative models with hidden variables.

2A fuzzy matching mechanism is used to compare induced val-
ues with the ground truth.

Dialogue State Dialog Act Prediction Delexicalized

Precision Recall F1 BLEU Entity F1

None 71.0 67.4 69.1 18.7 54.6
DSI-GM 72.0 70.5 71.2 20.8 56.5
Manual labeling 75.6 73.0 74.2 21.6 61.3

Table 3: Empirical results on MultiWOZ dialogue act prediction and
response generation.

• DSI-GM outperforms DSI-base on both the turn level
and joint level metrics, which demonstrates the effec-
tiveness of the GMM model, which finds an appropriate
domain first before sampling a latent state representa-
tion. We attribute this to the fact that the dialogue states
can be more effectively regarded as a hierarchical struc-
ture (i.e., domain-slot-value) and hence first detecting a
domain and then a slot under this domain can help alle-
viate the difficulty of distinguishing the appropriate slot
in a large mixture of similar slot values.

• The joint goal accuracy is significantly lower compared
with the other metrics, which shows that the metric can
be overly strict in our unsupervised setting. This is a
consistent observation of recent work on cross-lingual
dialogue state tracking [Liu et al., 2019b], which shows
that the joint goal accuracy of a cross-lingual DST model
can be as low as 11% on accuracy even with cross-
lingual contextualized embeddings. Furthermore, the
joint goal F1-score can reach 44.8% on MultiWOZ
dataset, which shows that our model can achieve promis-
ing performance without any labeled training data.

• The results among all metrics on the SGD dataset are
lower than those on the MultiWOZ2.1 dataset. We at-
tribute it to this reason that the SGD dataset is more diffi-
cult than the MultiWOZ dataset because it contains more
types of domains and slots (16 domains and 214 slots as
compared with 7 domains and 24 slots in MultiWOZ).

DAP and Response Generation The dialogue act predic-
tion (DAP) and response generation results are shown in Ta-
ble 3. Compared to not using dialogue states, the outputs of
DSI-GM allows a subsequent model [Chen et al., 2019] to
improve the F1-score of dialogue act prediction by 2.1%, and
further improve the BLEU and entity F1 for a system out-
put utterance by 2.1% and 1.9%, respectively. This shows
that maintaining dialogue states can be useful in neural dia-
logue systems, as consistent with observations from DST re-
search [Lei et al., 2018; Wen et al., 2018]. The results demon-
strate that DSI is a useful task in dialogue systems research
and our baseline models are effective. In Table 3, the gap be-
tween DSI-GM and manual labeling indicates further rooms
for improvement on the dialogue model.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3850



attraction hotel restaurant taxi train0

20

40

60

80
D

om
ai

n…
A

cc
ur

ac
y

DSI-base
DSI-GM

Figure 6: Domain accuracy.

(a) DSI-base (b) DSI-GM

Figure 7: Visualization of state vectors learned by DSI-base and
DSI-GM. Each color represents a domain.

Assistant: Saffron brasserie is an expensive 
restaurant that serves italian food.
User: Can I get the address for saffrom 
brasserie?

DSI-base

DSI-GM

slot: attraction-name

value: Saffron brasserie 
slot: attraction-name

value: Saffron brasserie 

slot: restaurant - name

value: Saffron brasserie

Figure 8: Example output by DSI-base and DSI-GM. The cyan do-
main is correct, while the red domain is wrong.

6.4 DSI-GM vs. DSI-base
Domain Accuracy We measure the fraction of user turns
for which the domains are correctly induced for all candi-
dates. Figure 6 shows the comparison between the DSI-base
model and the DSI-GM model. We can see that the DSI-GM
outperforms the DSI-base on each domain, which demon-
strates that explicitly modeling the domain distribution is ef-
fective across all domains. In addition, to better intuitively
know how much better the domain representation can be
modeled through DSI-GM, we visualize the learned state rep-
resentations of DSI-base and DSI-GM only with its domain
label. In particular, we use t-SNE to reduce the dimensional-
ity of the latent representation z and plot the whole test set in
Figure 7. Compared with DSI-base, whose latent state rep-
resentations are mixed in the domain level, DSI-GM shows
its superiority in representing different domains, as represen-
tations are clustering in a more orderly way. This further
demonstrates the effectiveness of GMM applied in our task.

Case Study Figure 8 shows a case on the dialogue states
induced by DSI-base and DSI-GM. In this case, both the at-
traction and restaurant domains consist of a name slot, which
shares similar contexts such as “Can i get the address for”.
This can make their contextualized features similar although
the two name slots should be treated as two distinct types.
DSI-base generates an incorrect domain attraction while DSI-
GM induces the correct domain restaurant. We attribute it to

attraction hotel restaurant taxi train

DSI-base 27.9 21.7 26.1 30.7 26.0
DSI-GM 40.3 31.4 35.6 39.9 36.8

Table 4: Turn goal accuracy per domain.
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Figure 9: Slots distributions on hotel and attraction domains.

the fact that the DSI-GM model captures domain information
by explicitly modeling the multi-domain distribution through
a Mixture-of-Gaussians instead of a global Gaussian.

6.5 Error Analysis
We present the accuracies on each domain between DSI-base
and DSI-GM. The results are shown in Table 4. Both DSI-
base and DSI-GM give the lowest accuracy on the hotel do-
main and a relatively higher accuracy on the attraction do-
main. To further understand the reason, we calculate the
statistics of slots on the hotel and attraction domains, which
are shown in Figure 9. It can be seen that the numbers of dom-
inant slot types of the two domains are 10 and 3, respectively,
correctly recognizing which can give strong overall accura-
cies. In both domains, these slots are distributed evenly. This
indicates that the number of distinct slots is a key factor to the
difficulty level for our DSI models, which is intuitive.

7 Conclusion
We proposed a novel task of dialogue state induction, which
is to automatically identify dialogue state slots and values
over a large set of dialogue records. Compared with exist-
ing research, our task is practically more useful for handling
the large variety of services available in the industry, which
disallows scalable manual labeling of dialogue states. We fur-
ther built two neural generative models with latent variables.
Results on standard DST datasets show that the models can
effectively induce meaningful dialogue states from raw dia-
logue data, and further improve the results of a dialogue sys-
tem compared to without using dialogue states. Our methods
can serve as baselines for further research on the task.
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