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Abstract
Dialogue disentanglement aims to separate inter-
mingled messages into detached sessions. The ex-
isting research focuses on two-step architectures,
in which a model first retrieves the relationships
between two messages and then divides the mes-
sage stream into separate clusters. Almost all ex-
isting work puts significant efforts on selecting fea-
tures for message-pair classification and clustering,
while ignoring the semantic coherence within each
session. In this paper, we introduce the first end-to-
end transition-based model for online dialogue dis-
entanglement. Our model captures the sequential
information of each session as the online algorithm
proceeds on processing a dialogue. The coher-
ence in a session is hence modeled when messages
are sequentially added into their best-matching ses-
sions. Meanwhile, the research field still lacks data
for studying end-to-end dialogue disentanglement,
so we construct a large-scale dataset by extracting
coherent dialogues from online movie scripts. We
evaluate our model on both the dataset we devel-
oped and the publicly available Ubuntu IRC dataset
[Kummerfeld et al., 2019]. The results show that
our model significantly outperforms the existing
algorithms. Further experiments demonstrate that
our model better captures the sequential semantics
and obtains more coherent disentangled sessions.1

1 Introduction
Along with the development of social networks, online group
chat channels have embraced a huge success and become
more and more popular. The popularization of social APPs,
like Slack2 and Facebook Messenger3, promote the rapid in-
crease of group conversation messages. When users enter a
group chat channel, a bunch of messages will jump out and
these messages tend to be related to different topics. These
entangled messages mix all topics together without illustrat-
ing the structure of the conversation, bringing difficulty for

1https://github.com/layneins/e2e-dialo-disentanglement
2https://slack.com/
3https://www.messenger. com/

Speaker A: Are you going to have dinner with me?

Speaker B: So anyone got time for this issue tomorrow?

Speaker C: No I’ll need to write the project report …

Speaker D: Yes sure. See you later.

Speaker C: But I can do it tonight.

Line 32:

Line 33:

Line 34:

Line 35:

Line 36:

…
…

❌

Speaker C: There is a problem with our project.Line 31:

Figure 1: An example of dialogue disentanglement. By consider-
ing session history Line 31, it is easier for an algorithm to recognize
Line 34 as a response to Line 33. If an algorithm only considers mes-
sage pairs but not session coherence, Line 34 could be regarded as
responding to Line 32, resulting in a wrong disentanglement result.

users to find topics that they are interested in. Automatic
dialogue disentanglement will be helpful by separating en-
tangled messages into different sessions and providing users
with convenience in finding useful information.

Existing solutions for dialogue disentanglement pay at-
tention to the relationship between two messages. Most of
them adopt the two-step architecture: first predicting the rela-
tionship between two messages and then separating the mes-
sage stream into clusters according to the relationship. There
are different ways to implement such a two-step architec-
ture. Some early work uses handcrafted features to train
a classifier to obtain the global or local coherence of mes-
sage pairs [Elsner and Charniak, 2010; Elsner and Charniak,
2011]. With the rapid development of deep learning tech-
nologies, recent work builds neural models to predict the re-
lationship between two messages [Mehri and Carenini, 2017;
Jiang et al., 2018]. The work consider if two messages are
in the same session or if one message is replying the other
message. Based on the predicted relationship, a clustering
algorithm is adopted to separate the messages apart.

There are apparent weaknesses in the two-step methods. In
the relationship retrieving step, these methods try to predict
the relationships between a message pair but ignore the con-
text in dialogues and the sessions that are already detached.
Messages in dialogues tend to be short and simple, which
may be orally coherent with many preceding messages with-
out considering the context. An example is given in Figure
1. Simply predicting relationships between message pairs ig-
nores useful session semantics and coherence. In the cluster-
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ing step, existing methods need a meticulously picked clus-
tering algorithm and some require a great deal of human in-
volvement. The weaknesses make such methods less flexible
for tackling the disentanglement task.

In order to solve the above problems, we propose the first
end-to-end model for online dialogue disentanglement. We
formulate dialogue disentanglement as a session state transi-
tion problem, where the number of sessions is dynamically
maintained. Different from the previous methods, our model
captures the sequential information of the dialogue as well
as that of the disentangled sessions. When a message is be-
ing processed, two actions can be operated on this message:
1) categorize the message into a session that best matches
the contextual semantics, or 2) build a new session and ini-
tialize the state of the new session with the current message.
Through this state transition process, our model focuses on
the semantic match between sessions and messages, which
shows to be more effective and efficient in our experiments.

To imitate real-life situations, we solve the dialogue disen-
tanglement task in an online manner. In order to overcome
the limitations brought by the online training, we propose
two learning strategies: teacher-student learning and decision
sampling. Both strategies are combined with our model to
further improve the performance.

Due to the lack of public benchmarks, we construct a new
large-scale dataset from movie scripts for studying dialogue
disentanglement. The new dataset contains more than 30,000
intermingled dialogues. We perform experiments on both this
newly proposed dataset and the publicly available Ubuntu
IRC dataset [Kummerfeld et al., 2019]. Results show that our
model significantly outperforms the existing two-step meth-
ods. Further experiments demonstrate our model’s ability in
capturing the semantics of the disentangled sessions.

Our main contributions are summarized as follows:
• We propose the first end-to-end model for the online dia-

logue disentanglement task with two learning strategies.
The model captures the sequential information of the
disentangled sessions and considers the match of seman-
tics between messages and sessions.
• We release a large-scale dataset for studying dialogue

disentanglement. The dataset contains more than 30,000
intermingled dialogues.
• We conduct experiments on two datasets. Results

demonstrate that our model significantly outperforms
the previous methods by better capturing the semantics
of the dialogues and sessions.

2 Related Work
Recent work on dialogue disentanglement has mostly adopted
a two-step approach: first determining the relationship be-
tween two messages, and then separating the messages into
clusters. Some previous work predicts if two messages are
in the same session. Elsner and Charniak [2010] use hand-
crafted features to represent a message and use them as the
input to train a classifier, and Jiang et al. [2018] adopt deep
learning methods and use a CNN model as the classifier.
Meanwhile, there are some other work targeting at retriev-
ing the “reply-to” relationship between messages. Chen et al.

[2017] predict the “reply-to” relationship based on text sim-
ilarity and latent semantic transferability. Guo et al. [2018]
and Mehri and Carenini [2017] both adopt an RNN to predict
if one message is replying to the other message. Apart from
building models to extract the relationship between messages,
the previous work has also put efforts on designing effective
clustering algorithms, including carefully selecting thresh-
olds for the relationship predicted in the first step. Shen et
al. [2006] run extensive experiments to explore the influence
of the threshold used for clustering. Jiang et al. [2018] pro-
pose a novel similarity ranking method to avoid extensively
exploring the setting of the threshold.

There are also some tasks sharing properties in common
with dialogue disentanglement such as topic detection and
tracking (TDT) [Allan, 2012] and streaming news clustering
[Miranda et al., 2018]. However, TDT and streaming news
clustering focus on tracking topics, which is very different
from dialogue disentanglement. For example, the content in
a detached topic is less sequential where modelling the coher-
ence of content is less of a concern. The chronological order
is less important there (e.g., event locations are among the
most prominent features in many top models in TDT). This is
very different from dialogue disentanglement, where the dis-
entangled sessions are still conversations and the sequential
information in the sessions is critical for the models.

Transition-based methods have been widely used in many
sequence prediction tasks [Chen and Manning, 2014; Dyer
et al., 2015; Zhang et al., 2016]. Recently, neural-network-
based transition models have been studied and achieved good
results in different tasks. Our work is the first to propose
transition-based neural networks for dialogue disentangle-
ment, which, to our knowledge, has not been investigated.

3 Task and Notations
We formulate the task of end-to-end online dialogue disentan-
glement as a session state transition problem for each mes-
sage in a dialogue stream. There are two actions for each
message: 1) initialize a new session; 2) update an existing
session. Since it is an online task, all action decisions are
made without knowing the following messages.

The input is a dialogue D that contains n messages
[u1, u2, . . . , un]. Our goal is to separate the n messages into
K sessions [S1, S2, . . . , SK ], where K is unknown to the
model. For a given message ui, there exists a session set S
which contains z(i) sessions [S1, S2, ..., Sz(i)], where z(i) is
a function indicating the number of existing sessions when ui
is being processed. Our model needs to decide whether ui
belongs to any session in S. If ui belongs to Sj ∈ S, Sj is
updated by ui. If ui does not belong to any existing session,
the model will build a new session Sz(i)+1 and treat ui as the
first message of Sz(i)+1. Then Sz(i)+1 is added to S.

4 Method
In this section, we first introduce our framework for end-to-
end online dialogue disentanglement. Moreover, to eliminate
the potential drawback that is caused by the online training
process, we propose two learning strategies that can be com-
bined with our model to further improve the performance.
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Figure 2: Figure (a) is the overall architecture of our proposed model. Figure (b) is an example from u4 to u6, illustrating how the session
state encoder (SSE) updates the state. SSE will make a dot product between u4 and all the elements in the candidate action set, and predict
that u4 belongs to S2. Then the state of S2 is updated from s21 to s22. When u5 is being processed, SSE will predict that u5 belongs to a new
session. So the mask of S3 is removed, and we use u5 to initialize the state of S3 as s31.

4.1 Model
Given a sequence of messages [u1, u2, . . . , un], the goal of
our model is to learn a probability distribution:

P (D) =
n∏

i=1

P (yi | y<i, u≤i, S) (1)

where yi is the action decision for the message ui.
Our model consists of two parts: the dialogue encoder and

session state encoder. The dialogue encoder aims to encode
each message into a vector representation. This component
captures the semantics of a message and the corresponding
preceding context. The second module is a session state en-
coder that maintains the states of all existing sessions. It
should decide if the current message belongs to an existing
session or a new session, and update the session state accord-
ingly. Figure 2a presents an overview of our model. We dis-
cuss the details of the model in the following sections.

Dialogue Encoder
The dialogue encoder aims to capture the semantics of a given
message and the preceding context. In our model, we use
a hierarchical LSTM network [Hochreiter and Schmidhuber,
1997].

For the message-level encoder, given a message ui that
contains |ui| tokens 〈w1, w2, . . . , w|ui|〉, we obtain its vector
representation with a LSTM and self-attention (SA) mecha-
nism [Lin et al., 2017] to capture the context information:

〈h1,h2, . . . ,h|ui|〉 = LSTMu(〈w1, w2, . . . , w|ui|〉) (2)

ui = SA(〈h1,h2, . . . ,h|ui|〉) (3)
In this way we can obtain all the message representation in a
dialogue D as 〈u1,u2, . . . ,un〉.

For the context-level encoder, we use another LSTM to en-
coder the context information:

ct = LSTMc(ut, ct−1) (4)
We denote the message representations that contain the pre-
ceding context information as 〈c1, c2, . . . , cn〉.

Session State Encoder
The key idea behind our model is incrementally building the
disentangled sessions according to the action for each mes-
sage in D. For a given utterance, there will be two actions:

• Build: the current message will be used to initialize a
new session, and then the new session is added to S
• Update: the current message will be used to update the

state of an existing session in S
Given a message ui, the model will first decide which ac-

tion to take. Suppose there are z(i) sessions in the session set
S = [S1, S2, . . . , Sz(i)]. For each session Sj , it has a session
state representation sj , which contains the sequential infor-
mation of Sj . If the action “Update” is taken, one of the state
in S will be updated. Meanwhile, the number of sessions K
is unknown to our model, so there should be a special state
indicating when action “Build” should be taken. This state
should contain both information in existing sessions and the
dialogue history. In our experiment, we calculate the special
state as snewi as:

snewi = W3[AvgPooling(S) : ci−1] (5)

where W3 is the parameters. [:] means concatenation and
AvgPooling(S) the average pooling over 〈s1, s2, . . . , sz(i)〉.
In this way, for a given message ui, we have a supplementary
session state set as 〈snewi , s1, s2, . . . , sz(i)〉.

Then we need to decide which action to take in order to up-
date the states of S. Our model will calculate the dot product
between ui and each state in the supplementary session state
set to predict the decision yi:

yi = argmax{dot(ui, s
new
i ),max

j
dot(ui, s

j)} (6)

After we obtain the decision yi for ui, we need to perform
state transition on S according to yi. Our model follows the
rule below to conduct the state transition:

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3870



• If yi = new, it means our model will take the “Build”
action. Then a new session Sz(i)+1 will be built and ui
will be used to initialize Sz(i)+1.

• If yi = j, where j ∈ [1, 2, . . . , z(i)], our model takes
the “Update” action, which means we need to update the
state of Sj . In order to maintain the sequential informa-
tion of the session, we use another LSTM as the session
encoder to update Sj :

sjupdate = LSTMs(ui, s
j) (7)

Notice that LSTMs is shared among all the sessions.
An example of the state transition process is shown in Fig-

ure 2b.

4.2 Training
In this section, we introduce the online training method and
several learning strategies to eliminate the drawbacks caused
by the training method.

During the online training, the session number is dynami-
cally maintained in our model. In consideration of calculation
and convergence, we assume a maximum session number to
be K4. When calculating the loss, we mask all unused ses-
sion states and calculate a masked cross-entropy loss between
the prediction yi and the ground truth y?i :

L =
∑
D

n∑
i=1

y?i ln p(yi) ·MASKz(i) (8)

K is a hyper-parameter tuned on the development dataset.
The setting of K is reasonable for a group chat because there
will not be too many sessions simultaneously going on [Aoki
et al., 2006]. We will investigate the effect of K in the exper-
iment section.

Since we regard dialogue disentanglement as an online
task, two drawbacks are caused due to the limitation of on-
line training:

1. Our model cannot use any future information.

2. There is a discrepancy between how the model is used
during training and inference.

In order to overcome the above drawbacks, we propose two
training strategies and combine them into our framework:
teacher-student learning and decision sampling.

Teacher-Student Learning
Teacher-student learning (TSL) is proposed to transfer knowl-
edge from an expert model to a student model [Hinton et al.,
2015]. The student model is trained to minimize the differ-
ence between its own output distributions and those of the
expert model. This approach has shown to be effective in re-
cent studies including speech recognition [Kim et al., 2017]
and neural machine translation [Kim and Rush, 2016]. In-
spired by these studies, we aim to improve our online model
by transferring knowledge from a pretrained offline model.

4We use the same assumption for all the baseline experiments.
Notice that during inference, when the maximum session number K
is reached, action “Build” will not be chosen any more.

Due to the limitation of the online learning strategy, our
model cannot see any bidirectional information, which, how-
ever, has been proved to be helpful [Peters et al., 2018] for
sequential tasks. In our experiments, we change our online
model to a bidirectional offline model by replacing LSTMu,
LSTMc and LSTMs with bidirectional LSTM. We regard the
bidirectional offline model as the teacher model. We first pre-
train the teacher model and denote its output probability as
Pt(yi | u1:n, S). Meanwhile, we regard our model as the stu-
dent model and denote the output as Ps(yi | u≤i, S). The goal
is to minimize the distance between the output of the teacher
model and that of the student model. We calculate Kullback-
Leibler (KL) divergence between the two output distributions
and the KL loss can be formulated as:

LKL =
∑
D

n∑
i=1

H(Pt(yi | u1:n, S), Ps(yi | u≤i, S)) (9)

where H(Pt, Ps) computes cross entropy and the final loss is
a combination of the cross-entropy loss and the KL loss:

Lfinal = αL+ (1− α)LKL (10)

where α is a tunable parameter for balancing the two loss.

Decision Sampling
In order to pack the dataset into mini-batch for training, in-
spired by Chen and Manning [2014], we pre-calculate all
the corresponding session states for each message using the
ground truth, so the output probability distribution is given by
P (yi | y?<i). However, during inference, ground-truth deci-
sions are unavailable and thus are replaced by decisions gen-
erated by the model itself, which will bring an output given
by P (yi | y<i). This difference yields a discrepancy between
how the model is used at training and inference.

Inspired by Scheduled Sampling [Bengio et al., 2015], we
similarly propose Decision Sampling (DS) to bridge the gap
between training and inference. During training, we add
noise to σ% of training data by randomly replacing golden la-
bels. Here σ is the sampling ratio which is a hyper-parameter.
We do this to imitate the situation during inference when a
wrong decision is made. The errors brought by the “fake la-
bel” will propagate with the session state updating. We expect
our model can still predict the correct labels even when there
are some errors in the session states.

5 Datasets and Settings
5.1 Datasets
There are two datasets used in our experiments: a movie di-
alogue dataset developed in this paper and the IRC dataset
proposed by [Kummerfeld et al., 2019].

Movie Dialogue Dataset
To contribute to the research on disentanglement, we develop
a large-scale dataset from online movie scripts. Messages in
the same plot of a movie tend to be coherent. We collect 869
movie scripts that explicitly indicate the plot changing. Then
we extract 56,562 sessions from the scripts and manually in-
termingle these sessions to construct a synthetic dataset. The
minimum and maximum session numbers in one dialogue are
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2 and 4, respectively. We randomly split the dataset into
29,669/2036/2010 pairs for train/dev/test. We publish our
dataset to the research community.

IRC Dataset
The IRC dataset contains 153 annotated interleaved dialogues
and each of the dialogue consists of 500 messages. It is orig-
inally used in the previous study on two-step methods. We
separate roughly every 50 continuous messages into a group
and obtain 1737/134/104 pairs for train/dev/test, respectively.
The difference between the reorganized IRC dataset and our
proposed dataset is that the minimum and maximum session
numbers are 2 and 14 in the reorganized IRC dataset.

5.2 Training Details
We initialize word embedding using 300-dimension GloVe
vectors [Pennington et al., 2014]. Other parameters are ini-
tialized by sampling from normal distribution with a standard
deviation of 0.1. The mini-batch is 16 and size of hidden vec-
tors in LSTM is 300. We use Adam optimizer [Kingma and
Ba, 2014] with an initial learning rate of 5e-4.

6 Experiments
6.1 Disentanglement Results
For dialogue disentanglement, three clustering metrics are
widely used: Normalized Mutual Information (NMI), Ad-
justed Rand Index (ARI), and Shen F value (S-F) [Shen et
al., 2006]. ARI is the most strict measure that bases the eval-
uation on a pairwise basis while NMI penalizes more on the
cluster-level. S-F measures how well related messages are
grouped, which is a very common and useful metric for di-
alogue disentanglement. The results are shown in Table 1.5
On both datasets, our model achieves the best results com-
pared to all previous two-step algorithms, including BERT
[Devlin et al., 2019], which has the best performance among
all two-step methods. The dialogues in IRC contains up to 14
sessions per dialogue, while the maximum session number of
our movie dialogue dataset is 4. The results also demonstrate
that our model has a good scalability and flexibility. More-
over, the performance of our end-to-end model is further im-
proved when combined with the two learning strategies.

Note that “Oracle” in Table 1 is the optimal performance of
two-step methods if all message pair relationships can be cor-
rectly predicted. In other words, “Oracle” indicates the effec-
tiveness of the clustering algorithm used in the second step.
As we can see, the performance of the clustering algorithm
will be a bottleneck of the performance of a two-step method.
To achieve good results, two-step methods need both a pow-
erful relationship classifier and a carefully designed cluster-
ing algorithm, which yield much inflexibility. For example,
choosing to use a different classifier often requires adjusting
clustering algorithms. In contrast, our model works in an
end-to-end manner, which is more efficient and flexible.

6.2 Influence of Session Number
An important metric for evaluating a model is to measure
whether the model can disentangle a given dialogue to the

5Significance test p < 0.05

Dataset Movie Dialogue IRC
Metrics NMI ARI S-F NMI ARI S-F

Weighted SP 18.42 4.05 52.25 25.27 2.56 33.29
BiLSTM 22.31 8.37 55.09 47.36 1.94 40.34

CISIR 20.47 6.45 53.77 46.62 3.37 40.78
BERT 25.57 10.97 56.91 54.61 8.15 43.87
Oracle 76.19 68.13 87.24 55.25 26.92 51.91

Our model 35.3 24.9 64.7 61.4 18.0 48.19
+TSL 35.54 25.09 64.75 62.61 20.58 49.7
+DS 34.05 25.05 64.89 60.43 20.39 49.09

+TSL & DS 35.75 25.45 64.96 61.68 19.14 48.59

Table 1: Performance of dialogue disentanglement on two datasets:
the movie dialogues and the IRC dataset. Weighted SP is proposed
by [Shen et al., 2006] and CISIR is proposed by [Jiang et al., 2018].
BiLSTM and BERT are both used as the model for retrieving the
relationship between a message pair; the clustering algorithm used
in the second step is from [Jiang et al., 2018]. Oracle indicates the
optimal performance of a two-step algorithm if relationships of all
message pairs are correctly retrieved in the same dialogue.

BiLSTM CISIR Ours
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Figure 3: Influence of K on the movie dialogue dataset. The maxi-
mum session number is 4.

correct number of sessions. In the two-step architecture, a
wrong threshold for clustering will make the model either
keep opening to new sessions or keep categorizing messages
to existing sessions. In our experiments, we set a maximum
session number K for all the baselines and our model. We
study the influence of K by computing the mean squared er-
ror (MSE) of the predicted numbers on our movie dialogue
dataset. The results are shown in Figure 3. As we can see,
our model is better at capturing the semantics of the dialogue
because it achieves a lower MSE on session numbers. Mean-
while, a two-step model is more vulnerable to the change of
K. This is partially due to the threshold used in the clustering
step, which has to be adjusted under different experiment set-
tings. In comparison, our model is more flexible when learn-
ing automatically to build a new session.

To further test the influence of the session number, we com-
pare the performances of our model and the baseline meth-
ods on dialogues that are composed of different numbers of
sessions. Since the dialogues in our movie script dataset is
composed of 2, 3, and 4 sessions respectively, we use subsets
with different session numbers to test the performance, and
the results are shown in Figure 4. We can see that the pro-
posed model achieves substantially better results on all the
subsets by a rather large margin in comparison to the base-
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Figure 5: Experiments on TSL and DS

lines. Meanwhile, for all the methods we compare, the Shen F
value will decrease when the dialogues are composed of more
sessions, but the degree of drop on our model is more mod-
erate than that of other two-step methods. This also demon-
strates our model is more robust than the two-step methods
on the change of semantics in dialogues.

6.3 Comparison of Learning Strategies
We propose two learning strategies that can further improve
the performance of our framework: Teacher-Student Learn-
ing (TSL) and Decision Sampling (DS). The two strategies
aim to alleviate different drawbacks of the base model.

The goal of TSL is to transfer the knowledge from the
teacher model to the student model. In our experiments,
we use the bidirectional LSTMs to replace the unidirectional
LSTMs and treat this offline model as the teacher model. The
assumption is that the teacher model will have a stronger abil-
ity to learn the semantics in the dataset. In order to verify the
assumption, we compare the training processes of our teacher
model and student model in Figure 5a. Notice that we use the
same learning rate and optimizer for training the teacher and
student. In Figure 5a, we can see that the teacher model con-
verges much faster than the student model, which indicates
the teacher has a stronger learning ability.

DS aims to bridge the gap between training and inference.
In our experiments, we set a hyper-parameter σ to control the
sampling ratio. We expect that through randomly replacing
some ground-truth labels with wrong labels, we can imitate
the inference situation when the model makes a wrong pre-
diction for a given message. Here we explore the influence of
σ. Since all the metrics display a similar fluctuation pattern,
we only display the results on ARI in Figure 5b for concise-
ness. As we can see, a small sampling noise will improve the
results and make our model more robust, while when σ be-

Oh - I was only trying to 
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Oh, hurry -please hurry!
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Lion, darling, I knew you’d 
come!

I knew you would! 

Hurry! we've got no time to 
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people.
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Figure 6: Visualization of the session states

comes too large, the performance will be harmed. The results
are aligned with theoretical analysis that too much random
noise in the dataset can significantly disturb the distribution
of the dataset and thus harm the performance.

6.4 Visualization
One advantage of our model is that it captures the sequen-
tial information of the disentangled sessions and categorizes
a given message to the session that has the best semantic
match. To analyse the update process of sessions, we use
t-SNE [Maaten and Hinton, 2008] to map the states of differ-
ent sessions at different time steps to a 2-dimensional vector.
Figure 6 shows an example of how session states change as
the dialogue goes on. As we can see, the starting points of
sessions are close. With new messages being added, the dis-
tance between the states of two sessions becomes larger and
the trajectories stretch to different directions, which suggests
that our model possesses the capability of distinguishing dif-
ferent meaning between sessions.

7 Conclusions
In this paper, we propose the first end-to-end transition-based
neural network models for online dialogue disentanglement.
Our model captures and utilizes the coherence of sessions that
are already disentangled. For each message, our model deter-
mines “Build” or “Update” by considering the semantics of
the current message, existing sessions, and the dialogue his-
tory, and then classifies the message to the best-matched ses-
sion. Moreover, we propose to enhance our model with two
learning strategies. Due to the lack of large-scale datasets,
we also develop and contribute a new dataset built on dia-
logues extracted from movie scripts for dialogue disentangle-
ment research. We conduct experiments on both the movie
dialogue dataset and the IRC dataset. The results demonstrate
that our model significantly outperforms the baseline methods
and can be improved after combined with the proposed learn-
ing strategies. Further experiments show that the proposed
model is robust and possesses a good ability in capturing the
semantics of the disentangled sessions.
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