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Abstract
Unstructured document compliance checking is al-
ways a big challenge for banks since huge amounts
of contracts and regulations written in natural lan-
guage require professionals’ interpretation and judg-
ment. Traditional rule-based or keyword-based
methods cannot precisely characterize the deep se-
mantic distribution in the unstructured document
semantic compliance checking due to the seman-
tic complexity of contracts and regulations. Deep
Semantic Compliance Advisor (DSCA) is an un-
structured document compliance checking platform
which provides multi-level semantic comparison by
deep learning algorithms. In the statement-level se-
mantic comparison, a Graph Neural Network (GNN)
based syntactic sentence encoder is proposed to cap-
ture the complicate syntactic and semantic clues of
the statement sentences. This GNN-based encoder
outperforms existing syntactic sentence encoders
in deep semantic comparison and is more benefi-
cial for long sentences. In the clause-level semantic
comparison, an attention-based semantic relatedness
detection model is applied to find the most relevant
legal clauses. DSCA significantly enhances the pro-
ductivity of legal professionals in the unstructured
document compliance checking for banks.

1 Introduction
Governments around the world have tightened regulatory con-
trols and placed substantially significant penalties on non-
compliance in recent years. Banks have to spend billions on
regulatory compliance and litigation each year. Banks need so-
lutions to quickly assess, manage, and maintain their business
compliance and reduce the noncompliance risks. However,
most of the compliance management solutions provide compli-
ance checking on the structured data and business rules[Butler
and OBrien, 2018]. They can’t provide regulatory compliance
checking on contracts and regulations. Regulatory compli-
ance against these unstructured legal documents is still a big
challenge for banks since it is a high-cost, low-efficient and
inconsistent process due to the manual review required.
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We developed Deep Semantic Compliance Advisor (DSCA)
for solving the above challenges. Different from the existing
solutions, DSCA provides deep semantic compliance checking
for contracts and regulations. For example, all the contracts
are analyzed by DSCA collectively. A smart checking engine
would look at every contract against the criteria repository
and highlight the dubious or incomplete contract clauses for
legal professionals to double check. By leveraging document
understanding and multi-level semantic comparison, DSCA
can identify the most relevant reference clauses for the legal
clauses under review. The legal professionals may further view
the detailed semantic comparison of the relevant clause pairs
with differences clearly highlighted. They can quickly figure
out which clauses they could accept or counter.

Traditional rule-based or keyword-based methods can not
effectively characterize the deep semantic distribution of the
contracts and regulations due to their semantic complexity.
We attempt to employ deep learning technology to capture
both explicit and hidden semantic association in the semantic
comparison. In the statement-level deep semantic compari-
son, we propose a GNN-based sentence encoder to combine
both syntactic information and context semantics of the state-
ment sentences, which outperforms existing syntactic sentence
encoders in our experiment. In the clause-level semantic com-
parison, one big challenge is to find the semantic relevant
clause pairs between the contract under review and the refer-
ence one since the sequence of the clauses and wording style
are often different. Hence, we propose an attention-based deep
semantic relatedness detection model to automatically find the
most relevant clause pairs according to topic semantic relat-
edness of clauses. Experimental results show that our model
outperforms both Support Vector Machine (SVM) algorithm
and Long Short-Term Memory(LSTM) representation model.

In sum, the key technical advantages of DSCA are below.

• Deep statement semantic comparison with GNN-based
sentence encoder

• Clause semantic relatedness detection with neural atten-
tion model.

2 Related Work
Deep semantic comparison is a big challenge in unstructured
document compliance checking. It focuses on checking the
semantic relations between the statement sentences, including
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entailment, contradiction and neutral. Such semantic compari-
son actually is a natural language inference (NLI) task.

Syntactic information can provide rich semantic association
clues for natural language inference. There are three represen-
tative syntactic sentence encoders in previous works on NLI.
Tree-LSTM [Tai et al., 2015] [Chen et al., 2017] is a recursive
network that composes the meaning of sub-trees according to
the syntax with expensive recursion computation. Tree-based
Convolutional Neural Network (CNN) [Mou et al., 2016] does
convolutions on the dependency parse tree and is shown to be
more robust than sequential convolution in terms of word order
distortion. Phrase-level self-attention network (PSAN) [Wu et
al., 2018] utilizes a constituency parse tree and hierarchically
captures context dependencies at the phrase level instead of
the sentence level. Our model uses GNNs to make utilizing
the syntactic structure more flexible.

Recurrent neural networks(RNNs) have been used to im-
prove language model [Mikolov et al., 2010] and sentence
embedding [Palangi et al., 2015]. Although a great success
in a variety of tasks [Bengio et al., 1994; Hochreiter, 1998],
RNNs are not good at memorizing long or distance sequences
[Sutskever et al., 2014]. In order to improve the result in trans-
lating longer sentences, [Bahdanau et al., 2014] propose to use
attention in RNN models, which allows RNNs to selectively
focus on the most task-relevant parts of input sequence, assign
importance weights to those parts and join them into a sin-
gle representation. Our clause semantic relatedness detection
method is motivated by the central role of the neural attention
mechanism in machine translation [Bahdanau et al., 2014].
Since legal clause often consists of long text snippet, we may
leverage an attention-based model to find the most relevant
reference clauses for the given clauses.

3 Semantic Compliance Advisor Overview
DSCA is a semantic compliance advisor platform for unstruc-
tured document compliance checking (see Figure 1). DSCA
can provide contract compliance, regulation tracking, cross-
region compliance applications by leveraging document inges-
tion and deep semantic comparison models. We take contract
compliance checking as an example to illustrate the key com-
ponents of DSCA in this paper.

In the document ingestion phase, clause parser extracts le-
gal clauses from the contract using patterns and rules. In the
semantic comparison phase, DSCA provides multi-level se-
mantic comparison, including document-level, clause-level
and statement-level comparison. In the statement-level seman-
tic comparison, in order to effectively capture the underlying
semantic association among the statement sentences, we build
a deep statement semantic comparison model which encodes
syntactic information and sequence context information using
GNN-based sentence encoder. More details will be illustrated
in Section 4. In the clause-level semantic comparison, we pro-
pose an attention-based clause semantic relatedness detection
model to automatically find the most relevant clause pairs. We
employ word by word attention mechanism and two LSTM
encoders to calculate attention weights among the words and
the clauses for the semantic relatedness comparison. Then
an output LSTM layer is used to summarize the comparison

Figure 1: Deep Semantic Compliance Advisor (DSCA) overview

Figure 2: Document level comparison

results and output the final label (i.e. relevant or irrelevant).
More details will be illustrated in Section 5. In the document-
level semantic comparison, DSCA provides an overview of
the similarity distribution of the most relevant clause pairs (see
Figure 2). The reviewer may look into the detail statement
semantic comparison of each relevant clause pair with differ-
ences clearly highlighted. If the clauses in the contract under
review are not mentioned in the reference one, the reviewer
should check them carefully.

By leveraging deep semantic comparison, DSCA improves
the productivity of legal professionals in the unstructured doc-
ument compliance checking.

4 GNN-based Deep Statement Semantic
Comparison

Deep semantic comparison is the key task in unstructured
document compliance checking. It focuses on detecting the se-
mantic inferential relationship (i.e. entailment, contradiction
or neutral) between the special statements in the contracts un-
der review and the standard ones in the reference contracts or
regulations. The key challenge for deep semantic comparison
is how to capture the semantic association in statements, espe-
cially for long legal statements. We propose a deep semantic
comparison framework which employs GNN-based sentence
encoder to effectively encode the syntactic and semantic asso-
ciation among statements.

4.1 Deep Statement Semantic Comparison
Framework

Deep statement semantic comparison in compliance checking
actually is a natural language inference (NLI) task. If the
given statement (a premise) semantically entails the standard
statement (a hypothesis), the given statement is considered as
compliance. If they are contradiction, the given statement is
considered as noncompliance.
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Figure 3: An illustration of the proposed syntactic sentence encoder. A cylinder indicates a word vector or a sentence vector. ri indicates a
relation type. h(i)

j indicates the latent representation of the j-th token in i-th layer. f (i)
A indicates the aggregation function in i-th layer. The

semantic of the sentence is encoded in a vector after the aggregation layers and the readout layer.

Generally, NLI models follow the Siamese architecture
[Bromley et al., 1994] to encode premise and hypothe-
sis separately through the same sentence encoder and then
do classification based on two sentence vectors. Existing
sentence encoders in NLI typically utilize RNNs and self-
attention mechanism [Bowman et al., 2015; Mou et al., 2016;
Conneau et al., 2017; Im and Cho, 2017; Yoon et al., 2018].
However, RNNs are hard to parallelize or capture long-term
dependencies. Attentions only rely on word representations,
which may suffer from syntax variants and the required mem-
ory grows quadratically with the sentence length. The key for
statement semantic comparison is to learn an efficient sentence
encoder with strong semantic capturing ability. To achieve
that, we leverage syntactic structure of sentences as a prior
knowledge since it provides us rich semantic clues for under-
standing sentences. The existing syntactic sentence encoders
encode the sentence structure as a tree, which loses flexibility
and limits the expressiveness of the model. Hence, we propose
a novel GNN-based syntactic sentence encoder for semantic
comparison task.

In our framework, a sentence is first converted into a graph,
then encoded by the proposed GNN-based syntactic sentence
encoder (see section 4.2). With the intrinsic advantages of
GNN, our model allows contextual messages propagating
along the sentence structure which is more flexible and ef-
ficient in incorporating syntax-aware latent representations.
Besides, our model is well parallelized without recursion com-
putation. At last, the comparison model inference on two
sentence vectors captured by GNN-based encoder (see section
4.3).

4.2 GNN-based Syntactic Sentence Encoder
Our syntactic sentence encoder (see Figure 3) contains two
types of layers. Specifically, the aggregation layer enables
context propagates along sentence structures to encode syntax-
aware contextual representation of each token. The readout
layer employs the stochastic encoding mechanism to obtain
the sentence embedding with better generalization ability.
Sentence graph generation. As the input of the GNN-
based encoder, a sentence is represented by a labeled directed

asymmetric sentence graph. The sentence graph contains both
sequential and syntactic structures. Given a sentence, node
vi represents the i-th token in sentence. Each edge is a tuple
eij = (vi, vj , rij), where rij is the relation label from word vj
to word vi. In sentence graph, there are three types of relations:
dependency, opposite dependency, sequence. Dependency re-
lation (vi, vj , dij) indicates a grammatical relation dij ∈ Dr,
e.g.’nsubj’, holds between the governor vi and the dependent
vj . Dr is the set of all dependency relations. Opposite depen-
dency relation is the opposite of that with an opposite labeled
type, e.g.’op-nsubj’. Sequence relations (vi, vi+1, ’seq’) and
(vi, vi−1, ’seq’) with the type label ’seq’ are also added into
the sentence graph. If there are more than one relation from
one node to another, we will keep the dependency relation. In
the semantic comparison, we use X ∈ RN×d0 as the input
word embedding matrix, H ∈ RN×d as the latent node fea-
ture matrix and A ∈ RN×N as the labeled adjacency matrix,
where N is the number of nodes and d is the dimension of
node features. H and A together depict the sentence graph.
Aggregation layer. In this layer, every node aggregates mes-
sages from its neighbors that have direct structural connections
with it. In our model, the context messages of node vi in k-th
layer are aggregated, with a softmax function, to c

(k)
i accord-

ing to different relation types between it and its neighbors
N (vi) as

c
(k)
i =

∑
vj∈N (vi)

 exp (a
(k)
ij )∑

vj∈N (vi)
exp (a

(k)
ij )

h
(k−1)
j


where h

(k−1)
j is the latent vector of node vj , a

(k)
ij is the learn-

able weight parameter of the relation rij in the k-th layer
indicating the contribution of neighbor vj . Combining the con-
text message together with its feature vector and then passing
through a multi-layer perception (MLP) leads to the syntactic-
context-aware representation of node vi as

h
(k)
i = MLP(k)

[
ε(k)h

(k−1)
i + (1− ε(k))c(k)i

]
or matrix form for whole graph as

H(k) = MLP(k)[ε(k)H(k−1) + (1− ε(k))A(k)
n H(k−1)]
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where ε(k) is a global learnable parameter, A(k)
n ∈ RN×N

is the relation matrix after softmax. By stacking multiple
aggregation layers, we would get the feature vector of every
token containing contexts from its large-hop neighbors.

Readout layer. In order to get the sentence representation
after aggregation layers, we first conduct a readout function as

hS = max
[
concat

(
H(0),H(1),H(2)

)]
where we assume there are 2 aggregation layers and the sen-
tence vector hS ∈ Rd(0)+d(1)+d(2) is derived from the max-
pooling on every dimension after the concatenation of every
aggregation layer’s output. With hierarchical max-pooling,
the sentence vector hS contains rich information but may also
suffer redundancy at the same time. In order to eliminate
the redundancy and improve the generalization ability at the
same time, we employ a stochastic encoding module [Alemi
et al., 2017] to encode the sentence representation hS into the
stochastic sentence representation z as

z ∼ p(z|hS)

p(z|hS) =N (z;Lµ(hS), Lσ(hS)I)

where z is sampled from the posterior p(z|hS) which is a
multivariate Gaussian distribution with diagonal covariance
matrix whose parameters are computed from hS . Lµ and Lσ
are two linear layers. By controlling mutual information be-
tween z and hS when learning, we would get the sentence
representation z with lower dimension but higher generaliza-
tion ability guaranteed by previous works [Xu and Raginsky,
2017] and confirmed by our experiments.

4.3 Deep Semantic Comparison Model
Through the GNN-based sentence encoder, the premise and
the hypothesis are encoded into two sentence vectors (we use p
and h to denote them respectively). To inference the semantic
relation of the premise and the hypothesis, a matching layer
m = [p;h; |p − h|;p � h] [Mou et al., 2016] is applied
on the top of the encoder and the entailment is done by a
classifier on it. Note that, the loss function in our approach is
a combination of the cross entropy and the regularization on
mutual information between z and hS .

In the model learning, the pre-trained word embedding
GloVe (GloVe 840B 300D) [Pennington et al., 2014] is em-
ployed and is fixed during training. We use universal depen-
dency parser conducted by StanfordNLP [Qi et al., 2018] to
generate dependency relations. 2-layer MLP is applied in ag-
gregation layers and 2-layer MLP is applied for classification.
ReLU is used as the activation function. Dropout with rate 0.1
is applied after each MLP layer (except the last layer). β is set
to 1e-6. Learning rate is initialized as 5e-4 and is decreased by
the factor of 0.2 if the performance does not improve after an
epoch. We use Adam [Kingma and Ba, 2015] as the optimizer
and set batch size to 64. Mean value of p(z|x) rather than
the sampled ones is used as the sentence representation during
inference. Models are evaluated on the validation data after
each epoch and early stop with 3 epoch patience.

Figure 4: The architecture of neural attention model

5 Attention-based Clause Semantic
Relatedness Detection

In the clause-level semantic comparison, it is very challenging
to find the semantic relevant clause pairs since the sequence
of the clauses and wording style are often varied with the doc-
uments. DSCA employs clause semantic relatedness detection
to find the most relevant clause pairs between the contract
under review and the reference one. We consider this task as a
learning-based binary classification task. Given two contract
clauses, the model will give a label (i.e. relevant or irrelevant).

5.1 Neural Attention Model for Clause Semantic
Relatedness Detection

The core model consists of the following three components(see
Figure 4), which are trained jointly: 1) word by word attention,
2) compare measurement and 3) RNN output layers.

Word by word attention. Attentive neural networks have
recently demonstrated success in a wide range of tasks such as
machine translation [Bahdanau et al., 2014], image captioning
[Xu et al., 2015] and sentence inference [Rocktäschel et al.,
2016]. The idea is to allow the model to attend over past output
vectors. In the clause semantic relatedness detection, we use
word by word attention mechanism to soft align words in the
clause under review with the reference one. Two LSTMs are
employed to encode the two clauses respectively. Then each
output state of the first LSTM attends the second LSTM’s
output vector. Attention weights αt and comparisons are
calculated over all output vectors of the reference clause for
each output state ht in the clause under review. This can be
modeled as follows:

hak =
[
Comp(Σmj=1αkjh

′
j ,hk),Σmj=1αkjComp(h′j ,hk)

]
where, αkj =

exp(eij)

Σj′exp(ekj′)

ekj = W e · tanh(W sh′j + W thk + W cComp(h′j ,hk))

where hak is the compare result of output state hk of the clause
under review and the output vectors of reference h′, all matri-
ces W contain weights to be learned and the function Comp
is the compare function detailed in the next section. Note that
the compare result hak is an concatenation of two parts: 1)
compare result of hk and an aggregate of vector h′ with the
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attention weights; 2) an aggregate of compare result of hk and
each reference state h′j . We also assume the soft align weight
αkj is relevant to the comparison of hk and h′j .
Compare measurement. We define the compare function
for two states as follows:

Comp(x,y) = [cos(x,y), dl2(x,y), |x− y|,x� y]

where cosine distance (first term) and element-wise multi-
plication (fourth term) measure the distance of two vectors
according to the angle between them, Euclidean distance (sec-
ond term) and element-wise absolute distance (third term)
measure magnitude differences. In another perspective, cosine
distance and Euclidean distance measure the sum distance and
element-wise multiplication and absolute distance measure
the element-wise distance in each dimension of the vectors.
RNN output layers. After word by word attention, each
output state of the clause under review has a compare result
with the reference one and then another LSTM is used to
sequentially summarize the compare results. We take the last
state of the LSTM as the compare result representation. On
top of the LSTM layer, we use a linear layer and a log-softmax
layer as the final output layer, which outputs the label (i.e.
relevant or irrelevant).
Network learning. To train our models, we use stochastic
gradient descent (SGD) to minimize the negative log likeli-
hood loss function and the back-propagation algorithm to com-
pute the gradients. For the output layer, we employ dropout
with a constraint on l2-norm of the weight vectors. The
dropout rate is 0.2 and the l2 constraints is 3. Training is
done through stochastic gradient descent over mini-batches
with the size of 50 and Adadelta update rule [Zeiler, 2012] and
the number of epochs is set to 200. The encoding LSTM layer
in DSCA is bidirectional LSTM and the numbers of cell are
all set as 20. The hidden state in the output linear layer is set
as 50. In our experiment, we use initialized randomly word
vectors for each word and learn them as parameters during
training. The dimension of word vectors is set to 50.

6 Experiments and Use Case
We evaluate our method on both banking data and available
public data in this section. In order to verify the wide ap-
plications of our GNN-based sentence encoder, we evaluate
our method and the state-of-the-art methods on the available
public data set. Experimental results show that our method
outperforms other syntactic sentence encoders. Meanwhile,
we also evaluate our clause relatedness detection method on a
real banking data set from our customer. All the experimental
results show that our method achieves better performances in
various applications.

6.1 Evaluation on GNN-based Deep Statement
Semantic Comparison

In order to compare our GNN-based deep semantic com-
parison model with existing syntactic sentence encoders
and GNN models, we conduct experiments on the pub-
lic Stanford Natural Language Inference (SNLI) dataset
(https://nlp.stanford.edu/projects/snli/).

Model Acc(%)

Gumble TreeLSTM [Choi et al., 2018] 86.0
TBCNN [Mou et al., 2016] 82.1
PSAN [Wu et al., 2018] 86.1
GCN [Kipf and Welling, 2017] 83.1
GAT [Veličković et al., 2018] 84.0
GGS-NNs [Li et al., 2016] 85.3
Ours 86.6

Table 1: Test accuracy (%) of syntactic sentence encoders evaluated
on the SNLI dataset.
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Figure 5: Test accuracy of our model and PSAN on SNLI dataset
with respect to different sentence lengths.

Baselines. Gumble TreeLSTM [Choi et al., 2018], TBCNN
[Mou et al., 2016], PSAN [Wu et al., 2018] are three represen-
tative syntactic sentence encoders. GCN [Kipf and Welling,
2017] is a GNN variant that does convolution on the graph.
GAT [Veličković et al., 2018] aggregates messages with at-
tention mechanism. GGS-NNs [Li et al., 2016] uses gated
recurrent units for aggregation. All models follow the same
Siamese architecture.
Experimental results. As shown in Table 1, our model out-
performs all three existing syntactic sentence encoders and
three Graph Neural Networks. Furthermore, we evaluate the
performance of our model on different length conditions of the
premise-hypothesis sentence pair. It is hard to capture the se-
mantic of long sentences due to complex syntax and long-term
dependencies. We compare our model with PSAN, the state-of-
the-art syntactic sentence encoder which utilizes phrase-level
self-attention on constituency parse tree. Figure 5 shows the
test accuracy of two models according to different average
lengths of premise-hypothesis sentence pairs. As expected,
by leveraging dependency relations directly and encoding the
sentence as a graph, our model has remarkable advantages
on capturing long-term dependencies and extracting semantic
meanings of complex sentences.

6.2 Evaluation on Clause Semantic Relatedness
Detection

Data set. As there is not any available public data set for
evaluating contract clause semantic relatedness, we conduct
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Figure 6: Deep statement semantic comparison

Model SVM LSTM Ours

Acc (%) 80.6 89.1 91.1

Table 2: Accuracy of clause semantic relatedness detection

experiments on a real English contract data set from our cus-
tomer. Two legal professionals manually extracted the most
relevant clause pairs from the contracts as positive samples.
We also randomly construct negative samples with irrelevant
clauses in the difference contracts. We use 2,028 clause pairs
as training set, 500 pairs as the develop set and 400 pairs as
test set. In each set, the positive-negative ratio is about 1:1.

Baselines. In this experiment, our attention-based semantic
relatedness detection method is compared with the popular
text classification algorithms SVM (Support Vector Machine)
and LSTM (Long Short-Term Memory). SVM-based method
uses TF-IDF of words to represent the clause and the output
of compare function defined in Section 5 as features. LSTM-
based method uses two LSTMs to represent the given two
clauses respectively, a compare layer of the function defined
in Section 5, and a log-softmax layer to give the label.

Experimental results. Experimental results are shown in
Table 2. We have the following observations: 1) The models
with RNN (Recurrent Neural Network) encoder (LSTM and
our neural attention models) perform better than SVM. This
shows the effectiveness of learning representation by RNN en-
coder. 2) Our proposed neural attention model performs better
than LSTM model. This shows the effectiveness of learning
word soft-alignment by attention models. Pairwise compari-
son by attention mechanism are relatively more important than
global-level representations.

6.3 Use Case
DSCA has been applied for unstructured document compli-
ance checking in one of the largest financial institutions in
the world, which operates in over 100 countries and regions
around the globe. The key pain-point in this case is that man-
ual processing of a large collection of regulation documents
and assessing compliance against them become difficult to
manage and scale. DSCA significantly increase the process-
ing speed and consistency in parsing regulations, assessing
compliance, and remediate non-compliance issues.

When the reviewer uploads a contract or regulation to
DSCA, DSCA analyzes the document to extract all the clauses

at first. Then DSCA finds the most relevant clauses in the ref-
erence repository using clause semantic relatedness detection
model. Finally, DSCA provides multi-level semantic compari-
son for the reviewer to check the consistency and inconsistency
between the document under review and the most relevant ref-
erence one. Since customer contracts are confidential, they
can not be shown here. Hence, we take two public financial
regulations as examples. Figure 6 shows the deep statement
semantic comparison between the regulation under review (in
the left side) and the reference one (in the right side). The
reviewer can easily check how each clause under review se-
mantically matches or differs from the standard clause in the
reference document. As shown, DSCA figures out that the
statement pair in the left and right dotted boxes has entailment
relationship. When the statements in the left side are irrelevant
to any statements in the right side, they are grayed. Obviously,
the reviewer can quickly figure out which clauses they could
accept or counter by multi-level semantic comparison.

Generally, it takes one legal professional 4+ hours for each
contract checking while DSCA can return the checking re-
sults with detail comparison information in one minute. This
significantly saves legal professionals’ efforts and time in the
compliance checking.

7 Conclusion
Unstructured document compliance checking is a challenging
task with high interest in the financial area (particularly for
in-house legal and compliance division). The big challenge for
unstructured document compliance checking is deep semantic
comparison among the contracts and regulations. Our deep
semantic compliance advisor provides GNN-based deep state-
ment semantic comparison and attention-based clause seman-
tic relatedness detection for unstructured document compli-
ance checking. The proposed novel deep statement semantic
comparison method employs GNN-based syntactic sentence
encoder to encode both syntactic information and the surround-
ing sequence context in the statements. Experimental results
indicate that our GNN-based syntactic sentence encoder out-
performs the existing syntactic sentence encoders. Our GNN-
based model is good at capturing semantic meaning of long
sentences and structure information. DSCA platform proposed
in this paper can significantly enhance the productivity of le-
gal professionals by leveraging deep learning algorithms. It
reduces human efforts and time in the unstructured document
compliance checking. Moreover, it enhances the coverage of
compliance checking and reduces the potential risks.
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[Veličković et al., 2018] Petar Veličković, Guillem Cucurull,
Arantxa Casanova, Adriana Romero, Pietro Liò, and
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