
Relation-Aware Transformer for Portfolio Policy Learning

Ke Xu1,2∗ , Yifan Zhang1,2∗ , Deheng Ye3 , Peilin Zhao3† , Mingkui Tan1†

1South China University of Technology, Guangzhou, China
2Pazhou Lab, Guangzhou, China

3Tencent AI Lab, Shenzhen, China
{ms201721045770, sezyifan}@mail.scut.edu.cn, {dericye,masonzhao}@tencent.com,

mingkuitan@scut.edu.cn

Abstract
Portfolio selection is an important yet challenging
task in AI for FinTech. One of the key issues is how
to represent the non-stationary price series of assets
in a portfolio, which is important for portfolio deci-
sions. The existing methods, however, fall short of
capturing: 1) the complicated sequential patterns
for asset price series and 2) the price correlations
among multiple assets. In this paper, under a deep
reinforcement learning paradigm for portfolio se-
lection, we propose a novel Relation-aware Trans-
former (RAT) to handle these aspects. Specifically,
being equipped with our newly developed attention
modules, RAT is structurally innovated to capture
both sequential patterns and asset correlations for
portfolio selection. Based on the extracted sequen-
tial features, RAT is able to make profitable port-
folio decisions regarding each asset via a newly de-
vised leverage operation. Extensive experiments on
real-world crypto-currency and stock datasets ver-
ify the state-of-the-art performance of RAT.1

1 Introduction
Portfolio selection (PS) is an important research problem in
computational finance [Li and Hoi, 2014; Li and Ng, 2000].
PS aims to maximize the long-term returns of wealth by
dynamically allocating the wealth among a set of assets,
e.g., stocks and crypto-currencies. Despite making great
financial sense, it is very difficult for investors to handle
such a laborious task, since even domain experts have to
spend a large amount of effort/time in investigating each asset
and managing portfolios. Recently, machine learning based
methods have been proposed to address this task and have
shown empirical improvements at PS [Agarwal et al., 2006;
Das et al., 2014]. However, due to the complex nature of PS,
existing methods may not be able to achieve promising per-
formance in practice. Specifically, it is very hard to represent
the non-stationary price series of assets, as they often contain
significant noises and oscillations [Zhang et al., 2020].
∗Equal contributions. Work done as interns at Tencent AI Lab.
†Corresponding author.
1The source code is available: https://github.com/Ivsxk/RAT.

The majority of existing PS methods [Cover and others,
1991; Shen and others, 2015] heavily rely on handcrafted fea-
tures, such as moving average [Li and Hoi, 2012], stochastic
technical indicators [Neely et al., 2014], etc. These features,
however, have shown limited representation ability over prac-
tical price series [Zhang et al., 2020]. Recently, deep neural
networks (DNNs) have become popular in sequential model-
ing and shown stronger sequential representation ability [Le-
Cun et al., 2015]. However, directly applying existing DNNs
for portfolios cannot extract price sequential features well due
to two practical challenges listed below.

First, price sequences of assets often follow complex finan-
cial laws that are hard to capture using existing DNNs. For
instance, asset prices contain complex short-term trends [At-
salakis and others, 2009], which potentially shed light on lo-
cal patterns of price series. Here, the local pattern indicates
the sequential pattern of a local price subsequence. More-
over, asset prices generally satisfy the long-term mean rever-
sion principle [Poterba and Summers, 1988]. That is, the
price of an asset will finally reflect its true value. In this
sense, both long-term and local sequential patterns of price
series are important for PS. To handle this, one may employ
recurrent neural networks (RNNs) (such as LSTM [Hochre-
iter and others, 1997] and GRU [Cho et al., 2014]) to model
price series. However, empirical studies [Li et al., 2019b;
Zhang et al., 2020] have found that these methods are strug-
gling to capture (very) long-term dependencies. Thus, how
to exploit DNNs to effectively capture the sequential patterns
for portfolio assets remains an open challenge.

Second, financial assets in portfolios contain complex cor-
relations that may vary rapidly over time [Stefanova and Elka-
mhi, 2011]. Such asset correlations are important in mining
financial data [Frye, 2008; Lopez, 2004], as they are helpful
for the estimation of investment risk, thereby guiding more
effective portfolio management. For instance, during eco-
nomic downturns, investors may reduce investment risk by
increasing portfolio diversification [Tasca et al., 2017] based
on asset correlations; while during economic upturns, they
may increase portfolio returns by exploiting the synergy of
upward/related assets. However, existing DNNs for series
modeling generally extract features for each temporal series,
without particular considerations in modeling the correlations
among assets. Hence, how to capture asset correlations in
price sequences is another under-explored problem in PS.
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In recent years, the attention mechanism [Vaswani et al.,
2017] has gained great attention in compelling sequence
modeling. More recently, Transformer [Vaswani et al., 2017],
which relies on the attention mechanism, has shown great
potential in grasping repeating sequential patterns with very
long-term dependencies. However, Transformer cannot be di-
rectly applied to PS due to two reasons. First, in Transformer,
the similarities between queries and keys in self-attention lay-
ers are computed based on point-wise values, which makes it
incapable of capturing local context information and easily
confused by local noisy points [Li et al., 2019b]. Moreover,
as Transformer is primarily designed for word-level sequence
translation, it is unable to capture the assets correlations that
are useful in making portfolio decisions.

In this paper, we propose to exploit and improve Trans-
former for long-term sequence modeling in portfolios, so that
it can well capture local sequential patterns of price series
and the correlations among assets. Specifically, we propose
a Relation-aware Transformer (RAT), which serves as a pol-
icy network for PS. RAT is structurally innovated to capture
sequential patterns and asset correlations via newly proposed
attention-based modules, and makes profitable portfolio deci-
sions through a newly devised decision-making module. By
exploiting reinforcement learning to train the policy network,
RAT yields significant improvements in PS performance.

Our main contributions are summarized as follows:

• We propose a novel RAT method for PS. According
to our best knowledge, this is the first attention-based
method to simultaneously model complex sequential
patterns and varying asset correlations for PS.

• By exploring financial leverage, we resolve a decision-
making limitation in existing deep reinforcement learn-
ing methods for PS. Based on a new decision-making
module, RAT makes more profitable portfolio decisions
under the deep reinforcement learning framework.

• Extensive experiments on real-world datasets verify the
significant superiority of our method, compared with
state-of-the-art methods in PS, including both online
learning and reinforcement learning based methods.

2 Problem Formulation
Without loss of generality, we consider a portfolio selection
(PS) task with m assets during a total number of n trading
periods. Assume each asset has d kinds of prices. Here, we
consider 4 kinds of prices, namely opening, highest, lowest
and close prices (which means d = 4). As the prices of-
ten change over time, we use pt,i∈Rd+ to denote the price
of asset i at period t (where t=1, .., n) and let Pt∈Rm×d
be the prices for all assets at this period. Moreover, let
Pt={Pt−k, ..,Pt−1}∈Rk×m×d be the price series of previ-
ous k-moment prices regarding period t.

Portfolio Selection as a Markov Decision Process. The
price of assets is determined by many factors (such as the
market), so it is impossible to annotate the data in advance.
As a result, the traditional supervised learning paradigm is
not suitable for modeling the PS process. In fact, given the
decision nature of PS, it is more natural and convenient to

model it as a Markov Decision Process (MDP). An MDP
can be defined as a tuple (S,A, T ,R), where S denotes a
finite state space, A denotes a finite set of actions, T (s′|s, a)
is a state transition function that defines the next state s′

given the current state s and action a, and R(s, a) is a re-
ward function. Moreover, a policy π(a|s) determines an
action a given the current state s. In the context of PS,
the MDP model will be slightly different from the standard
ones. Specifically, the action is specified by a portfolio vector
at=[at,1, at,2, ...at,m]>∈Rm, where at,i indicates the wealth
proportion regarding asset i and

∑m
i=1 at,i=1. To construct a

PS policy, at period t, an agent observes a state of price series
st=Pt∈S , and takes an action at=π(Pt)∈A. Afterwards,
the agent receives a reward rt∈R(s, a), while the next state
st+1 is reached based on st+1∼T (st,at). In practice, if st+1

is mainly determined by the market, then st+1∼T (st).
In this paper, we aim to devise a policy network (served

as π) to maximize the accumulated reward (e.g., the overall
wealth of portfolios) via reinforcement learning (RL). How-
ever, it is non-trivial to devise such a policy network, as non-
stationary price series and complex asset correlations make
sequential modeling very difficult. Existing RL-based meth-
ods for PS directly use existing DNN models for PS, which,
however, cannot extract the complex information well. To
solve this, we propose a Relation-Aware Transformer.

3 Relation-Aware Transformer
In portfolio selection (PS), both price series patterns and as-
set correlations are significant for correct decision-making of
portfolios and it is important to capture both types of infor-
mation in the learning process. To this end, we propose a
Relation-Aware Transformer (RAT), which will serve as a
policy network for PS. The goal of such a policy network is to
extract informative features for asset prices, and make portfo-
lio decisions based on these features. To this end, we extend
the standard Transformer structure by making it be relation-
aware and handle this task with reinforcement learning (RL).

3.1 General Architecture
RAT follows an encoder-decoder structure [Vaswani et al.,
2017]. As shown in Figure 1, RAT consists of an encoder
and a decoder, where the encoder is for sequential feature
extraction, while the decoder is for decision making.

Encoder: In PS, both sequential patterns and asset corre-
lations are necessary for correct decision-making of portfo-
lios. Therefore, we propose two task-specific attention mod-
ules for the encoder. To be specific, a sequential attention
layer is devised to capture sequential patterns for asset prices
(See Section 3.2), and a relation attention layer is devised for
capturing asset correlations (See Section 3.3).

Decoder: The decoder has network modules similar to the
encoder, apart from a new decision-making layer (See Sec-
tion 3.4). Such a layer aims to select portfolios by compre-
hensively considering the extracted features, local price con-
text, and the decision of last period. Here, a new leverage
operation is designed to enhance the decision making. Other
components of the encoder-decoder structure, such as the po-
sitional encoding, feed forward layer and layer normalization,
are identical to Transformer [Vaswani et al., 2017].
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Figure 1: The scheme of Relation-aware Transformer. The left is the
encoder, whose input is a price series Pt at period t. The right is the
decoder, whose input is local price context P l

t={Pt−l, ..,Pt−1}.

3.2 Sequential Attention Layer
Financial price series generally follows the mean reversion
principle in the long term. Besides, a price series is often
affected by surrounding events, such as interest rate cutting,
leading to oscillations in the short term. Hence, it is non-
trivial to devise DNNs for capturing such complex sequen-
tial patterns. Although self-attention works well in modeling
long-term dependencies in Transformer, it falls short of ex-
ploiting local context since its query-key matching is com-
puted based on point-wise values (as shown in Figure 2 (a)).
As a result, standard self-attention may be confused by lo-
cal noisy points, causing underlying optimization issues. To
solve this, we devise a sequential attention layer, which en-
hances multi-head attention via new devised context atten-
tion. First, we introduce the multi-head attention scheme.

Multi-head Attention. With Pt∈Rk×m×d as the input, a
multi-head attention processes the price series Pt,i∈Rk×d for
each asset i∈{1, 2, ..,m}. Specifically, it first transforms Pt,i

into H distinct query matrices Qh
t,i=Pt,iW

Q
h , key matrices

Kh
t,i=Pt,iW

K
h and value matrices Vh

t,i=Pt,iW
V
h , respec-

tively. Here, h∈{1, 2, ..,H} denotes the head index, while
WQ

h , WK
h ,W

V
h ∈Rd×df denote parameters of linear projec-

tions and df indicates the dimension of the projected feature
space. After linear projections, the scaled dot-product atten-
tion is adopted to compute the output values as follows:

Oh
t,i=softmax

(
Qh

t,iKh>
t,i√

df

)
Vh

t,i, (1)

where
√
df is a scale term [Vaswani et al., 2017]. We then

concatenate the outputs of all heads, i.e., Ot,i∈Rk×Hdf . The
final output is to concatenate all assets, i.e., Ot∈Rk×m×Hdf .

Mulit-head Attention

Linear LinearLinear

(a) Standard self-attention

Multi-head Attention

Linear Linear Linear

(b) Context-aware self-attention

Figure 2: The comparison between different self-attention mecha-
nisms. (a) standard self-attention in Transformer can be confused by
noisy points due to point-wise matching. Instead, (b) context-aware
self-attention uses context attention to transform local price context
into queries/keys, thus being more robust to local price noise.

Note that the dot-product attention in Eq. (1) cannot well
exploit the context information. To address this, as shown in
Figure 2 (b), instead of using dot-point projections for query-
key matching, we propose a context attention scheme to trans-
form the local context into queries and keys.

Context Attention. To enhance the queries and keys with
locality, we explore short-term dependencies between the cur-
rent price and local price context. Specifically, at period t, we
first introduce how to obtain the query matrix Qh

t,i regarding
head h in Eq. (1) with linear projection matrix ŴQ

h ∈Rd×df .
Without loss of generality, at any moment τ∈{1, 2, ..., k}

in the price series Pt∈Rk×m×d, we input local price con-
text P l

τ={Pτ−l, ..,Pτ−1}∈Rl×m×d (instead of only the cur-
rent price) into context attention. Here, l is the length
of context, and we use padding when τ≤l. For as-
set i, the context attention first transforms local context
P l
τ,i∈Rl×d into the context-aware key matrix and value ma-

trix K̂h
τ,i=V̂h

τ,i=P l
τ,iŴ

Q
h ∈Rl×df , while transforming the

current price Pτ−1,i into context-agnostic query matrix
Q̂h
τ,i=Pτ−1,iŴ

Q
h ∈R1×df . After projection, the query ma-

trix can be obtained by exploiting the dependencies between
context-aware key and context-agnostic query through scaled
attention as follows:

Qh
τ,i = softmax

(
Q̂h
τ,iK̂h>

τ,i√
df

)
V̂h
τ,i. (2)

We then concatenate the outputs of all moments to obtain the
queries Qh

t,i∈Rk×df . The keys Kh
t,i can be computed in the

same manner with different parameters ŴK
h . In this way, the

queries and keys can be more aware of the local context and
thus more robust to local price noise. When l=1, the sequen-
tial attention degrades to standard multi-head attention.
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3.3 Relation Attention Layer
Assets in a portfolio inherently contain complex and vary-
ing correlations. Such correlations are important for PS
since they reveal macro market trends and help to address
investment risk by adjusting portfolio diversification. To cap-
ture the correlations, we devise a relation attention layer to
enhance features after the sequential attention layer. With
Oh
t ∈Rk×m×df as the output of the h-th head in the previous

sequential attention layer, the relation attention uses scaled
self-attention to model asset correlations and enhance fea-
tures Oh,j

t ∈Rm×df for each time point j∈{1, .., k} as below:

Zh,j
t = softmax

(
Oh,j
t Oh,j>

t√
df

)
Oh,j
t . (3)

The output of the h-th attention head is the concatenation
of all time points by Zh

t =Concat{Zh,1
t , ..,Zh,k

t }∈Rk×m×df ,
while the output of the relation attention layer is to concate-
nate all heads by Zt=Concat{Z1

t , ..,ZH
t }∈Rk×m×Hdf .

3.4 Decision-making Layer
It is non-trivial to design a decision-making module for RAT
due to the complexity of PS. Existing RL based methods for
PS [Jiang et al., 2017; Liang and others, 2018] decide the
portfolio through a fully connected layer with softmax. How-
ever, using a softmax layer inevitably enforces the propor-
tion of assets to be positive, i.e., at,i∈(0, 1) for asset i, where∑m
i=1 at,i=1. This may make the agent suffer a huge loss of

wealth when the asset prices decrease in the future. The criti-
cal problem is that even if the agent can predict the decrease,
it cannot avoid the loss due to at,i∈(0, 1).

To enhance the decision-making ability of RAT, motivated
by leverage [Mandelker and others, 1984], we introduce short
sale [Shen and others, 2015; Shen and Wang, 2016] into the
decision making. The short sale means that the policy net-
work can first borrow some assets (whose prices are predicted
to decrease by the network) for sale, and then reinvest the liq-
uidated money into other assets (whose prices are predicted
to increase). In this way, RAT is able to make more accurate
decisions regarding each asset.

To this end, we devise a new leverage operation with three
independent softmax fully-connected decision-making layer.
Specifically, one head outputs an initial portfolio vector ât,
and one head outputs a short sale vector âst , while the last
one outputs a reinvestment vector ârt . Based on the three
heads, we improve the decision by considering both short sale
and reinvestment. That is, the final portfolio vector is decided
by at=ât−âst+ârt . In this way, the proportion regarding asset
i becomes at,i∈(−1, 2), where

∑m
i=1 at,i=1. The negative

sign of the weight indicates that investors will make money if
asset price drops, while suffering a loss if the price rises.

In addition, since PS is also influenced by transaction costs,
we adopt a recursive mechanism [Moody and Saffell, 2001]
to avoid heavy transaction fees. That is, the decision-making
requires taking into consideration the action from last period,
which discourages very large changes between portfolios. To
this end, we concatenate the portfolio vector from last period
at−1 into feature maps so that RAT can make profitable port-
folio decisions while constraining aggressive trading.

3.5 Learning with Reinforcement Learning
Since the asset prices are determined by many factors such
as the financial market, it is impossible for us to annotate
the data in advance and train RAT with supervised learning.
To address this, we resort to reinforcement learning (RL).
Specifically, we adopt a classical direct policy gradient al-
gorithm [Moody and Saffell, 2001] to train the policy net-
work (RAT) by maximizing a reward function. Here, we first
denote the price change of all assets by a price relative vec-
tor yt:=

pct
pct−1
∈Rm regarding period t, where pct indicates the

close price. Based on the price relative vector, we devise the
reward relying on the log-return of portfolios as follows:

R(s0,a0, .., sn,an) =
1

n

n∑
t=0

ln(a>t yt(1− ct)), (4)

where ct denotes the transaction cost, computed using the
method presented in [Jiang et al., 2017]. The motivation lies
in that the direct policy gradient algorithm guarantees at least
a theoretical log-optimal strategy with the log-return as the re-
ward. This can be proved by combining the previous theoret-
ical results [Györfi and Vajda, 2008; Sutton et al., 2000]. One
can also use more advanced RL methods, e.g., DDPG [Lilli-
crap and others, 2016] and PPO [Schulman and others, 2017].
However, we found that they usually fail to converge in PS in
our preliminary studies. Since RL is not our main focus, we
leave the study of more task-specific RL to future work.

4 Related work
Portfolio selection (PS) has attracted extensive research focus
from the AI community [Shen and others, 2015; Shen and
Wang, 2016]. Following the Kelly principle [Kelly, 1956],
many types of PS methods have been proposed, including on-
line learning and reinforcement learning based methods.

Online learning based methods aim to maximize the ex-
pected log-return in sequential decision-making [Zhao et
al., 2018; Zhang et al., 2018]. Pioneering studies include
UCRP [Cover and others, 1991], Anticor [Borodin et al.,
2004], and ONS [Agarwal et al., 2006]. Recently, several
methods have exploited the mean reversion property to select
the portfolio, e.g., OLMAR [Li and Hoi, 2012] RMR [Huang
et al., 2013] and SSR [Shen and Wang, 2017]. However, these
methods failed to take into account the learning of sequential
features and only used handcrafted features, such as moving
average and stochastic technical indicators. This can lead to
unsatisfactory PS performance due to limited feature repre-
sentations [Deng and others, 2016].

Reinforcement learning (RL) based methods aim to opti-
mize specific utility functions and learn comprehensive poli-
cies via RL algorithms [Moody and Saffell, 2001; Neuneier,
1998]. Very recently, several RL-based studies have used
deep learning [Niu et al., 2020; Zhang et al., 2019] to ex-
tract features for assets [Guo et al., 2018; Jiang et al., 2017;
Kang et al., 2018] and have achieved promising performance
for PS. To be specific, the state-of-the-art ones are EIIE [Jiang
et al., 2017] and the adversarial deep RL method [Liang and
others, 2018]. These methods resort to deep learning tech-
niques [Cao et al., 2019], e.g., CNNs or RNNs, as the se-
quential feature extractor for PS.
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By comparison, our proposed RAT explores attention
mechanism to capture in-depth the task-specific information,
i.e., correlations among assets and long-term/local sequential
patterns of assets. As a result, RAT learns more representative
sequential features for PS.

Transformer is a powerful attention model primarily used
in the field of NLP [Vaswani et al., 2017]. Note that trans-
former employs a encoder-decoder structure to capture the
sequential dependencies between the source and the target
sequence. It uses multiple attention heads (with different pa-
rameters of linear projections) to capture diverse aspects of
sequential patterns. The outputs of all heads are concatenated
and then fed into a fully connected feed-forward layer. In this
paper, we exploit it for modeling long-term series dependen-
cies and devise a Relation-aware Transformer for PS.

5 Experimental Results
To verify our proposed method, we evaluate RAT in terms
of three main aspects: (1) the profitability on real-world
datasets, (2) the feature representation ability for portfolios,
and (3) the benefits of the financial leverage.

5.1 Experimental Settings
We first describe the experimental settings.

Datasets. We examine RAT on real-world crypto-currency
and stock datasets. The statistics of all datasets are sum-
marized in Table 1. All crypto-currency datasets are ac-
cessed with Poloniex2, where data selection is based on the
method in [Jiang et al., 2017]. To be specific, we select
the assets according to the crypto-currencies with top month
trading volumes in Poloniex. We also evaluate our methods
on the S&P500 stock dataset obtained from Kaggle3. Since
decision-making of PS relies on the relative price, we normal-
ize the price series of each asset by element-wise dividing the
prices regarding the last period in the price series.

Datasets #Asset Data Range

Training Test

Crypto-A 12 2016-01 to 2017-11 2017-11 to 2018-01
Crypto-B 37 2017-11 to 2019-09 2019-09 to 2019-11
S&P500 506 2013-02 to 2017-08 2017-08 to 2018-02

Table 1: Statistics of datasets. The length of a price series spans 30
periods, where each period has a length of 30 minutes.

Baselines. We compare RAT with several advanced meth-
ods, including (1) online learning based methods: UCRP
[Cover and others, 1991], Anticor [Borodin et al., 2004],
SSR [Shen and Wang, 2017] OLMAR [Li and Hoi, 2012]
and RMR [Huang et al., 2013]; (2) reinforcement learning
(RL) based methods: ADDPG [Liang and others, 2018], EIIE
[Jiang et al., 2017] and MTL [Li et al., 2019a]. All these RL
methods use either LSTM or CNNs as the feature extractor.
To evaluate the decision-making module, we also present a
degenerate variant (RAT-B) that only uses a basic softmax in
the decision-making layer without the leverage operation.

2Poloniex’s official API: https://poloniex.com/support/api/.
3https://www.kaggle.com/camnugent/sandp500.

Metrics. Following [Shen and Wang, 2017], we use three
metrics to evaluate performance. The first is the accumulated
portfolio value: APV=Sn=S0

∏n
t=1 a

>
t yt(1 − ct), where

S0=1 is the initial wealth. Such a metric evaluates the
profitability when considering the transaction cost. A ma-
jor drawback of APV is that it neglects the risk factor. To
take risk into account, the second metric is the Sharp Ratio:
SR= Average(rt−1)

Standard Deviation(rt−1) . Although SR considers the volatil-
ity of portfolio values, it treats upward and downward move-
ments equally, while downward movements are usually more
important. To highlight the influence of downward devia-
tions, the third metric is the Calmar Ratio: CR= Sn

MDD , where
MDD denotes the biggest loss from a peak to a trough and is
calculated via MDD=maxt:τ>t

St−Sτ
St

.
Implementation Details. RAT is implemented via py-

torch. The number of attention heads is set to H=2, and the
dimension of the feature space is set to df=12. In the training
process, we adopt Adam optimizer on a single NVIDIA Tesla
P40 GPU. The training step is 80000 for crypto-currency data
and 20000 for stock data, where the batch size is 128. We
set learning rate to 10−4 and weight decay of l2 regularizer
to 10−7. The transaction cost rate is 0.25%. The temporal
length of the local context is set to l=5, while the length of
the price series is k=30. We will show the parameter sensi-
tivity analysis of RAT in a future long paper. In addition, the
portfolio vector a0 is initialized by the average assignment.
For all RL based methods, results are averaged over 5 runs
with random initialization seeds.

5.2 Evaluation on Portfolio Selection
We report the results of all methods in Table 2. Overall, RAT
outperforms all other baselines, which demonstrates strong
profitability of our method in PS. In comparison, online learn-
ing based methods fail to perform well, since these methods
do not consider the learning of sequential features for assets,
which may lead to unsatisfactory decisions for portfolios. As
for deep reinforcement learning methods, ADDPG fails in PS
because its Q network is hard to train, leading to a poor port-
folio policy. Although EIIE and MTL perform better than
ADDPG, They are still worse than RAT-B, since their struc-
ture of policy network (e.g., LSTM or CNNs) suffers from
limited sequential modeling ability for portfolio prices. Fi-
nally, RAT outperforms RAT-B by a large margin in terms
of APV, which demonstrates the contribution of the decision-
making layer and the leverage operation in PS.

5.3 Ablation Studies
To evaluate the proposed attention components, i.e., context
attention (CA) and relation attention (RA), we compare RAT-
B with three degenerate variants, i.e., Transformer (without
CA and RA), RAT-B-CA (without CA) and RAT-B-RA (with-
out RA). Here, we use RAT-B to eliminate the influence of
leverage. According to the results reported in Table 3, both
CA and RA contribute to the performance of RAT. This veri-
fies the importance of capturing local sequential patterns and
asset correlations. More specifically, CA contributes slightly
more than RA, while combining both modules yields a sig-
nificant improvement in performance.
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Algos Crypto-A Crypto-B S&P500

APV SR(%) CR APV SR(%) CR APV SR(%) CR
UCRP 2.37 4.05 6.32 1.09 1.48 6.73 1.20 11.69 2.34
Anticor 2.49 3.73 6.05 13.38 11.51 68.95 1.24 13.96 4.02
SSR 1.99 2.21 3.16 4.80 2.66 16.48 1.01 3.56 14.59
OLMAR 6.69 4.79 16.44 1117.28 15.07 6506.39 3.64 3.67 36.80
RMR 6.95 4.98 18.25 386.78 14.06 1403.91 2.81 3.14 22.55
ADDPG 5.67± 0.68 4.40 11.71 1.40± 0.32 1.89 5.88 1.16± 0.14 6.86 12.20
EIIE 16.04± 1.72 6.87 53.55 903.38± 221.03 15.81 5947.74 82.18± 4.20 10.30 1080.08
MTL 19.69± 2.72 6.90 79.21 961.24± 118.03 16.04 6361.52 88.52± 15.27 69.59 1095.47

RAT-B 25.06± 2.88 6.97 83.20 2058.67± 120.10 16.09 13085.71 112.47± 6.74 168.22 151827.01
RAT 156.53± 14.25 7.13 304.26 180007.24± 69765.49 16.42 737505.11 843945.62± 199529.36 217.68 9377166.66

Table 2: Performance comparisons on different datasets.

Algos Crypto-A Crypto-B S&P500

APV SR(%) CR APV SR(%) CR APV SR(%) CR

Transformer 17.20± 1.95 6.70 58.35 1404.12± 114.15 15.94 9283.34 101.49± 24.24 156.65 16782.29
RAT-B-CA 18.22± 2.76 6.85 59.91 1529.64± 220.92 15.99 9667.82 106.19± 17.67 157.25 46252.79
RAT-B-RA 18.52± 2.88 6.89 67.22 1573.41± 302.01 16.01 9903.57 110.14± 4.66 159.21 69379.18
RAT-B 25.06± 2.88 6.97 83.20 2058.67± 120.10 16.09 13085.71 112.47± 6.74 168.22 151827.01

Table 3: Ablation studies, where RAT-B-CA means RAT-B without context attention, and RAT-B-RA means RAT-B without relation attention.

Algos APV SR(%) CR

CNN 14.99± 1.18 6.95 54.72
LSTM 16.04± 1.72 6.87 53.55
CNN-LSTM 13.13± 1.61 6.44 41.02
RAT-B 25.06± 2.88 6.97 83.20

Table 4: Evaluation on feature representation abilities on Crypto-A.

5.4 Evaluation on Feature Representation
To evaluate the representation ability of the proposed method,
we compare RAT-B (without the leverage operation) with
three variants of RAT equipped with different feature ex-
tractors, i.e., CNN, LSTM, and CNN-LSTM (series connec-
tion). All variants in these experiments have the same opti-
mization and decision-making mechanisms as RAT yet dif-
ferent network architectures. Specifically, the network archi-
tectures of CNN and LSTM use the architectures presented in
EIIE [Jiang et al., 2017], while CNN-LSTM follows the net-
work architecture in RWCLDNN [Sainath and others, 2015].
As shown in Table 4, RAT-B outperforms all variants, which
verifies the strong series modeling ability of the attention-
based model. Moreover, by combining the results in Table 3,
we come to a conclusion that the proposed policy network has
superior representation ability for asset price series.

5.5 Evaluation on Leverage
We next evaluate the effectiveness of the leverage operation
on RAT and another deep reinforcement learning method,
i.e., EIIE, named as EIIE-L (with leverage). As shown in Fig-
ure 3, the leverage operation is beneficial to both RAT and
EIIE, leading to significant improvement in terms of APV
and CR. Moreover, the leverage operation also contributes
slightly to the SR value. In conclusion, these results demon-
strate the effectiveness of the leverage operation and confirm
its importance for profitable decision-making for PS.

Figure 3: Evaluation of the leverage operation on Crypto-A.

6 Conclusion
This paper has presented a novel Relation-aware Transformer
(RAT) for learning portfolio policy. RAT is structurally novel
to simultaneously capture sequential patterns, grasp asset cor-
relations, and make profitable portfolio decisions. By ex-
ploiting reinforcement learning to train the policy network
(i.e., RAT), our method yields significant performance im-
provements for portfolio selection. Extensive experiments, on
real-world crypto-currency and stock datasets, demonstrate
the superiority of RAT. According to the experimental results,
we argue that (1) the attention mechanism can be regarded as
a dominant scheme for PS, and (2) the leverage operation is of
great benefit to the decision making of reinforcement learning
based methods for PS.
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